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Abstract. GROMACS is a widely used package for biomolecular sim-
ulation, and over the last two decades it has evolved from small-scale
efficiency to advanced heterogeneous acceleration and multi-level paral-
lelism targeting some of the largest supercomputers in the world. Here,
we describe some of the ways we have been able to realize this through
the use of parallelization on all levels, combined with a constant focus on
absolute performance. Release 4.6 of GROMACS uses SIMD acceleration
on a wide range of architectures, GPU offloading acceleration, and both
OpenMP and MPI parallelism within and between nodes, respectively.
The recent work on acceleration made it necessary to revisit the fun-
damental algorithms of molecular simulation, including the concept of
neighborsearching, and we discuss the present and future challenges we
see for exascale simulation - in particular a very fine-grained task paral-
lelism. We also discuss the software management, code peer review and
continuous integration testing required for a project of this complexity.

1 Introduction

Molecular Dynamics simulation of biological macromolecules has evolved from a
narrow statistical-mechanics method into a widely applied biophysical research
tool that is used outside theoretical chemistry. Supercomputers are now as impor-
tant as centrifuges or test tubes in chemistry. However, this success also consid-
erably raises the bar for molecular simulation implementations - it is no longer
sufficient to reproduce experimental results or e.g. show proof-of-concept rel-
ative scaling. To justify the substantial supercomputing resources required by
many computational chemistry projects the most important focus today is sim-
ply absolute simulation performance and the scientific results achieved. Exascale
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computing has potential to take simulation to new heights, but the combination
of challenges that face software preparing for deployment at the exascale to
deliver these results are unique in the history of software. The days of simply
buying new hardware with a faster clock rate and getting shorter times to solu-
tion with old software are gone. The days of running applications on a single
core are gone. The days of heterogeneous processor design to suit floating-point
computation are back again. The days of performance being bounded by the
time taken for floating-point computations are ending fast. The need to design
with multi-core and multi-node parallelization in mind at all points is here to
stay, which also means Amdahl’s law [3] is more relevant than ever.1

A particular challenge for biomolecular simulations is that the computational
problem size is fixed by the geometric size of the protein and the atomic-scale
resolution of the model physics. Most life science problems can be reduced to
this size (or smaller). It is possible to simulate much larger systems, but it is
typically not relevant. Second, the timescale of dynamics involving the entire
system increases much faster than the length scale, due to the requirement of
sampling the exponentially larger number of ensemble microstates. This means
that weak scaling is largely irrelevant for life science; to make use of increasing
amounts of computational resources to simulate these systems, we have to rely
either on strong-scaling software engineering techniques, or ensemble simulation
techniques.

The fundamental algorithm of molecular dynamics assigns positions and
velocities to every particle in the simulation system, and specifies the model
physics that governs the interactions between particles. The forces can then
be computed, which can be used to update the positions and velocities via
Newton’s second law, using a given finite time step. This numerical integra-
tion scheme is iterated a large number of times, and it generates a series of
samples from the thermodynamic ensemble defined by the model physics. From
these samples, observations can be made that confirm or predict experiment.
Typical model physics have many components to describe the different kinds
of bonded and non-bonded interactions that exist. The non-bonded interactions
between particles model behaviour like van der Waals forces, or Coulomb’s law.
The non-bonded interactions are the most expensive aspects of computing the
forces, and the subject of a very large amount of research, computation and
optimization.

Historically, the GROMACS molecular dynamics simulation suite has aimed
at being a general-purpose tool for studying biomolecular systems, such as shown
in Fig. 1. The development of the simulation engine focused heavily on maximiz-
ing single-core floating-point performance of its innermost compute kernels for
non-bonded interactions. These kernels typically compute the electrostatic and
van der Waals forces acting on each simulation particle from its interactions with
all other inside a given spherical boundary. These kernels were first written in C,

1 Amdahl’s law gives a model for the expected (and maximum) speedup of a program
when parallelized over multiple processors with respect to the serial version. It states
that the achievable speedup is limited by the sequential part of the program.
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then FORTRAN, and later optimized in assembly language, mostly for commod-
ity x86-family processors, because the data dependencies of the computations in
the kernels were too challenging for C or FORTRAN compilers (then or now).
The kernels were also specialized for interactions within and between water mole-
cules, because of the prevalence of such interactions in biomolecular simulations.
From one point-of-view, this extensive use of interaction-specific kernels can be
seen as a software equivalent of application-specific integrated circuits.

Recognizing the need to build upon this good work by coupling multiple
processors, GROMACS 4.0 [14] introduced a minimal-communication neutral
territory domain-decomposition (DD) algorithm, [7,8] with fully dynamic load
balancing. This spatial decomposition of the simulation volume created
high-level data parallelism that was effective for near-linear scaling of the com-
putation at around 400 atoms per core. The DD implementation required the
use of MPI for message-passing parallel constructs. However, the needs of many
simulation users can be met within a single node, [23] and in that context the
implementation overhead of MPI libraries was too high, not to mention it is
difficult to employ in distributed computing. In GROMACS 4.5, [20] we imple-
mented a multi-threaded MPI library with the necessary subset of the MPI
API. The library has both POSIX and Windows threads back-ends (hence called
thread-MPI) and uses highly efficient hardware-supported atomic and lock-free
synchronization primitives. This allows the existing DD implementation to work
across multiple cores of a single node without depending on any external MPI
library.

However, the fundamental limitation remained of a one-to-one mapping of
MPI ranks to cores, and to domains. On the one hand, there is always a limit to
how small a spatial domain can be, which will limit the number of domains the
simulation box can be decomposed into, which in turn limits the number of cores
that a parallelization with such a mapping can utilize. On the other hand, the
one-to-one domains to cores mapping is cache-friendly as it creates independent
data sets so that cores sharing caches can act without conflict, but the size of
the volume of data that must be communicated so that neighboring domains
act coherently grows rapidly with the number of domains. This approach is only
scalable for a fixed problem size if the latency of communication between all
cores is comparable and the communication book-keeping overhead grows only
linearly with the number of cores. Neither is true, because network latencies
are orders of magnitude higher than shared-cache latencies. This is clearly a
major problem for designing for the exascale, where many cores, many nodes
and non-uniform memory and communication latencies will be key attributes.

The other important aspect of the target simulations for designing for strong
scaling is treating the long-range components of the atomic interactions. Many
systems of interest are spatially heterogeneous on the nanometer scale (e.g. pro-
teins embedded in membranes and solvated in water), and the simulation arte-
facts caused by failing to treat the long-range effects are well known. The de
facto standard for treating the long-range electrostatic interactions has become
the smooth particle-mesh Ewald (PME) method, [12] whose cost for N atoms
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Fig. 1. A typical GROMACS simulation system, featuring the ligand-gated ion-channel
membrane protein GLIC (colored), embedded in a lipid membrane (grey). The whole
system is solvated in water (not shown), giving a total of around 145,000 atoms. Image
created with VMD [15] (Colour figure online).

scales as N log(N). A straightforward implementation where each rank of a par-
allel computation participates in an equivalent way leads to a 3D Fast Fourier
Transform (FFT) that communicates globally. This communication quickly lim-
its the strong scaling. To mitigate this, GROMACS 4.0 introduced a multiple-
program multiple-data (MPMD) implementation that dedicates some ranks to
the FFT part; now only those ranks do all-to-all FFT communication.
GROMACS 4.5 improved further by using a 2D pencil decomposition [11,16] in
reciprocal space, within the same MPMD implementation. This coarse-grained
task parallelism works well on machines with homogeneous hardware, but it is
harder to port to accelerators or combine with RDMA constructs.

The transformation of GROMACS needed to perform well on exascale-level
parallel hardware began after GROMACS 4.5. This requires radical algorithm
changes, and better use of parallelization constructs from the ground up, not as
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an afterthought. More hands are required to steer the project, and yet the old
functionality written before their time must generally be preserved. Computer
architectures are evolving rapidly, and no single developer can know the details
of all of them. In the following sections we describe how we are addressing some
of these challenges, and our ongoing plans for addressing others.

2 Handling Exascale Software Challenges: Algorithms
and Parallelization Schemes

2.1 Multi-level Parallelism

Modern computer hardware is not only parallel, but exposes multiple levels of
parallelism depending on the type and speed of data access and communication
capabilities across different compute elements. For a modern superscalar CPU
such as Intel Haswell, even a single core is equipped with 8 different execution
ports, and it is not even possible to buy a single-core chip. Add hardware threads,
complex communication crossbars, memory hierarchies, and caches larger than
hard disks from the 1990s. This results in a complex hierarchical organization
of compute and communication/network elements from SIMD units and caches
to network topologies, each level in the hierarchy requiring a different type of
software parallelization for efficient use. HPC codes have traditionally focused on
only two levels of parallelism: intra-node and inter-node. Such codes typically rely
solely on MPI parallelization to target parallelism on multiple levels: both intra-
socket, intra-node, and inter-node. This approach had obvious advantages before
the multi-core and heterogeneous computing era when improvements came from
CPU frequency scaling and evolution of interconnect. However, nowadays most
scientific problems require complex parallel software architecture to be able use
petaflop hardware efficiently and going toward exascale this is becoming a neces-
sity. This is particularly true for molecular dynamics which requires reducing the
wall-time per iteration to improve simulation performance.

On the lowest level, processors typically contain SIMD (single instruction
multiple data) units which offer fine-grained data-parallelism through silicon
dedicated to executing a limited set of instructions on multiple, currently typically
4–16, data elements simultaneously. Exploiting this low-level and fine-grained par-
allelism has become crucial for achieving high performance, especially with new
architectures like AVX and Intel MIC supporting wide SIMD. One level higher,
multi-core CPUs have become the standard and several architectures support mul-
tiple hardware threads per core. Hence, typical multi-socket SMP machines come
with dozens of cores capable of running 2–4 threads each (through simultaneous
multi-threading, SMT, support). Simply running multiple processes (MPI ranks)
on each core or hardware thread is typically less efficient than multi-threading.
Achieving strong scaling in molecular dynamics requires efficient use of the cache
hierarchy, which makes the picture even more complex. On the other hand, a chip
cannot be considered a homogeneous cluster either. Accelerator coprocessors like
GPUs or Intel MIC, often referred to as many-core, add another layer of com-
plexity to the intra-node parallelism. These require fine-grained parallelism and
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carefully tuned data access patterns, as well as special programming models. Cur-
rent accelerator architectures like GPUs also add another layer of interconnect in
form of PCIe bus (Peripheral Component Interconnect Express) as well as a sep-
arate main memory. This means that data movement across the PCIe link often
limits overall throughput. Integration of traditional latency-oriented CPU cores
with throughput-oriented cores like those in GPUs or MIC accelerators is ongo-
ing, but the cost of data movement between the different units will at least for the
foreseeable future be a factor that needs to be optimized for.

Typical HPC hardware exhibits non-uniform memory access (NUMA) behav-
ior on the node level: accessing data from different CPUs or cores of CPUs
has a non-uniform cost. We started multithreading trials quite early with the
idea of easily achieving load balancing, but the simultaneous introduction of
NUMA suddenly meant a processor resembled a cluster internally. Indiscrim-
inately accessing memory across NUMA nodes will frequently lead to perfor-
mance that is lower than for MPI. Moreover, the NUMA behavior extends to
other compute and communication components: the cost of communicating with
an accelerator or through a network interface typically depends on the intra-node
bus topology and requires special attention. On the top level, the interconnect
links together compute nodes into a network topology. A side-effect of the multi-
core evolution is that, while the network capacity (latency and bandwidth) per
compute node has improved, the typical number of CPU cores they serve has
increased faster; the capacity available per core has decreased substantially.

In order to exploit the capabilities of each level of hardware parallelism,
a performance-oriented application needs to consider multiple levels of paral-
lelism: SIMD parallelism for maximizing single-core/thread performance; multi-
threading to exploit advantages of multi-core and SMT (e.g. fast data sharing);
inter-node communication-based parallelism (e.g. message passing with MPI);
and heterogeneous parallelism by utilizing both CPUs and accelerators like GPUs.

Driven by this evolution of hardware, we have initiated a re-redesign of
the parallelization in GROMACS. In particular, recent efforts have focused on
improvements targeting all levels of parallelization: new algorithms for wide
SIMD and accelerator architectures, a portable and extensible SIMD paral-
lelization framework, efficient multi-threading throughout the entire code, and
an asynchronous offload-model for accelerators. The resulting multi-level paral-
lelization scheme implemented in GROMACS 4.6 is illustrated in Fig. 2. In the
following sections, we will give an overview of these improvements, highlighting
the advances they provide in terms of making efficient use of current petascale
hardware, as well as in paving the road towards exascale computing.

2.2 SIMD Parallelism

All modern CPU and GPU architectures use SIMD-like instructions to achieve
high flop rates. Any computational code that aims for high performance will
have to make use of SIMD. For very regular work, such as matrix-vector multi-
plications, the compiler can generate good SIMD code, although manually tuned
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vendor libraries typically do even better. But for irregular work, such as short-
range particle-particle non-bonded interactions, the compiler usually fails since
it cannot control data structures. If you think your compiler is really good at
optimizing, it can be an eye-opening experience to look at the raw assembly
instructions actually generated. In GROMACS, this was reluctantly recognized
a decade ago and SSE and Altivec SIMD kernels were written manually in assem-
bly. These kernels were, and still are, extremely efficient for interactions involving
water molecules, but other interactions do not parallelize well with SIMD using
the standard approach of unrolling a particle-based Verlet-list [25].

It is clear that a different approach is needed in order to use wide SIMD exe-
cution units like AVX or GPUs. We developed a novel approach, where particles
are grouped into spatial clusters containing fixed number of particles [17]. First,
the particles are placed on a grid in the x and y dimensions, and then binned
in the z dimension. This efficiently groups particles that are close in space, and
permits the construction of a list of clusters, each containing exactly M particles.
A list is then constructed of all those cluster pairs containing particles that may

Fig. 2. Illustration of multi-level parallelism in GROMACS 4.6. This exploits sev-
eral kinds of fine-grained data parallelism, a multiple-program multiple-data (MPMD)
decomposition separating the short-range particle-particle (PP) and long-range Parti-
cle Mesh Ewald (PME) force calculation algorithms, coarse-grained data parallelism
with domain-decomposition (DD) over MPI ranks (implemented either on single-node
workstations or compute clusters), and ensembles of related simulations scheduled e.g.
by a distributed computing controller.
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be close enough to interact. This list of pairs of interacting clusters is reused over
multiple successive evaluations of the non-bonded forces. The list is constructed
with a buffer to prevent particle diffusion corrupting the implementation of the
model physics.

The kernels that implement the computation of the interactions between two
clusters i and j use SIMD load instructions to fill vector registers with copies
of the positions of all M particles in i. The loop over the N particles in j
is unrolled according to the SIMD width of the CPU. Inside this loop, SIMD
load instructions fill vector registers with positions of all N particles from the
j cluster. This permits the computation of N interactions between an i and all
j particles simultaneously, and the computation of M × N interactions in the
inner loop without needing to load particle data. With wide SIMD units it is
efficient to process more than one j cluster at a time.

M , N and the number of j clusters to process can be adjusted to suit the
underlying characteristics of the hardware. Using M = 1 and N = 1 recovers the
original Verlet-list algorithm. On CPUs, GROMACS uses M = 4 and N = 2,
4 or 8, depending on the SIMD width. On NVIDIA GPUs, we use M = 8 and
N = 4 to calculate 32 interactions at once with 32 hardware threads executing in
lock-step. To further improve the ratio of arithmetic to memory operations when
using GPUs, we add another level of hierarchy by grouping 8 clusters together.
Thus we store 64 particles in shared memory and calculate interactions with
about half of these for every particle in the cluster-pair list.

The kernel implementations reach about 50 % of the peak flop rate on all
supported hardware, which is very high for MD. This comes at the cost of calcu-
lating about twice as many interactions as required; not all particle pairs in all
cluster pairs will be within the cut-off at each time step, so many interactions are
computed that are known to produce a zero result. The extra zero interactions
can actually be put to use as an effective additional pair list buffer addition-
ally to the standard Verlet list buffer. As we have shown here, this scheme is
flexible, since N and M can be adapted to current and future hardware. Most
algorithms and optimization tricks that have been developed for particle-based
pair lists can be reused for the cluster-pair list, although many will not improve
the performance.

The current implementation of the cluster-based non-bonded algorithm alre-
ady supports a wide range of SIMD instruction sets and accelerator architectures:
SSE2, SSE4.1, AVX (256-bit and 128-bit with FMA), AVX2, BG/Q QPX, Intel
MIC (LRBni), NVIDIA CUDA. An implementation on a field-programmable
gate array (FPGA) architecture is in progress.

Multi-threaded Parallelism.

Before GROMACS 4.6, we relied mostly on MPI for both inter-node and intra-
node parallelization over CPU cores. For MD this has worked well, since there is
little data to communicate and at medium to high parallelization all data fits in
L2 cache. Our initial plans were to only support OpenMP parallelization in the
separate Particle Mesh Ewald (PME) MPI ranks. The reason for using OpenMP
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in PME was to reduce the number of MPI ranks involved in the costly collective
communication for the FFT grid transpose. This 3D-FFT is the only part of
the code that involves global data dependencies. Although this indeed greatly
reduced the MPI communication cost, it also introduced significant overhead.

GROMACS 4.6 was designed to use OpenMP in all compute-intensive parts
of the MD algorithm.2 Most of the algorithms are straightforward to parallelize
using OpenMP. These scale very well, as Fig. 3 shows. Cache-intensive parts of
the code like performing domain decomposition, or integrating the forces and
velocities show slightly worse scaling. Moreover, the scaling in these parts tends
to deteriorate with increasing number of threads in an MPI rank – especially
with large number of threads in a rank, and when teams of OpenMP threads
cross NUMA boundaries. When simulating at high ratios of cores/particles, each
MD step can take as little as a microsecond. There are many OpenMP barriers
used in the many code paths that are parallelized with OpenMP, each of which
takes a few microseconds, which can be costly.

Accordingly, the hybrid MPI + OpenMP parallelization is often slower than
an MPI-only scheme as Fig. 3 illustrates. Since PP (particle-particle) ranks only
do low-volume local communication, the reduction in MPI communication from
using the hybrid scheme is apparent only at high parallelization. There, MPI-only
parallelization (e.g. as in GROMACS 4.5) puts a hard upper limit on the number
of cores that can be used, due to algorithmic limits on the spatial domain size, or
the need to communicate with more than one nearest neighbor. With the hybrid
scheme, more cores can operate on the same spatial domain assigned to an MPI
rank, and there is no longer a hard limit on the parallelization. Strong scaling
curves now extend much further, with a more gradual loss of parallel efficiency.
An example is given in Fig. 4, which shows a membrane protein system scaling
to twice as many cores with hybrid parallelization and reach double the peak
performance of GROMACS 4.5. In some cases, OpenMP-only parallelization can
be much faster than MPI-only parallelization if the load for each stage of the
force computation can be balanced individually. A typical example is a solute in
solvent, where the solute has bonded interactions but the solvent does not. With
OpenMP, the bonded interactions can be distributed equally over all threads in
a straightforward manner.

Heterogeneous Parallelization.

Heterogeneous architectures combine multiple types of processing units, typically
latency- and throughput-oriented cores – most often CPUs and accelerators like
GPUs, Intel MIC, or FPGAs. Many-core accelerator architectures have been
become increasingly popular in technical and scientific computing mainly due to
their impressive raw floating point performance. However, in order to efficiently
utilize these architectures, a very high level of fine-grained parallelism is required.

2 At the time of that decision, sharing a GPU among multiple MPI ranks was inef-
ficient, so the only efficient way to use multiple cores in a node was with OpenMP
within a rank. This constraint has since been relaxed.
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The massively parallel nature of accelerators, in particular GPUs, is both an
advantage as well as a burden on the programmer. Since not all tasks are well
suited for execution on the accelerators this often leads to additional challenges
for workload distribution and load balancing. Moreover, current heterogeneous
architectures typically use a slow PCIe bus to connect the hardware elements
like CPUs and GPUs and move data between the separate global memory of
each. This means that explicit data management is required. This adds a further
latency overhead to challenge algorithms like MD that already face this as a
parallelization bottle-neck.

GPU accelerators were first supported experimentally in GROMACS with
the OpenMM library, [10] which was used as a black box to execute the entire
simulation on the GPU. This meant that only a fraction of the diverse set of
GROMACS algorithms were supported and simulations were limited to single-
GPU use. Additionally, while OpenMM offered good performance for implicit-
solvent models, the more common type of runs showed little speedup (and in

Fig. 3. Comparison of single-node simulation performance using MPI, OpenMP, and
combined MPI+OpenMP parallelization. The OpenMP multi-threading (blue) achieves
the highest performance and near linear scaling up to 8 threads. It only deteriorates
when threads on OpenMP regions need to communicate across the system bus. In
contrast, the MPI-only runs (red) that require less communication scale well across
sockets. Combining MPI and OpenMP parallelization with two ranks and varying the
number of threads (green) results in worse performance due to the added overhead of
the two parallelization schemes. Simulations were carried out on a dual-socket node
with 8-core Intel Xeon E5-2690 (2.9 GHz Sandy Bridge). Input system: RNAse protein
solvated in a rectangular box, 24k atoms, PME electrostatics, 0.9 nm cut-off (Colour
figure online).
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Fig. 4. Improvements in strong scaling performance since GROMACS 4.5, using the
M×N kernels and OpenMP parallelization in GROMACS 4.6. The plot shows simula-
tion performance in ns/day for different software versions and parallelization schemes.
Performance with one core per MPI rank is shown for GROMACS 4.5 (purple) and 4.6
(black). Performance with GROMACS 4.6 is shown using two (red) and four (green)
cores per MPI rank using OpenMP threading within each MPI rank. Simulations were
carried out on the Triolith cluster at NSC, using two 8-core Intel E5-2660 (2.2 GHz
Sandy Bridge) processors per node and FDR Infiniband network. The test system
is the GLIC membrane protein shown in Fig. 1 (144,000 atoms, PME electrostatics.)
(Colour figure online).

some cases slowdown) over the fast performance on multi-core CPUs, thanks to
the highly tuned SIMD assembly kernels.

With this experience, we set out to provide native GPU support in GROMACS
4.6 with a few important design principles in mind. Building on the observation
that highly optimized CPU code is hard to beat, our goal was to ensure that all
compute resources available, both CPU and accelerators, are utilized to the great-
est extent possible. We also wanted to ensure that our heterogeneous GPU accel-
eration supported most existing features of GROMACS in a single code base to
avoid having to reimplement major parts of the code for GPU-only execution.
This means that the most suitable parallelization is the offload model, which other
MD codes have also employed successfully [9,18]. As Fig. 5 illustrates, we aim to
execute the compute-intensive short-range non-bonded force calculation on GPU
accelerators, while the CPU computes bonded and long-range electrostatics
forces, because the latter are communication intensive.
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The newly designed future-proof SIMD-oriented algorithm for evaluating
non-bonded interactions with accelerator architectures in mind has been dis-
cussed already. It is highly efficient at expressing the fine-grained parallelism
present in the pair-force calculation. Additionally, the atom cluster-based app-
roach is designed for data reuse which is further emphasized by the super-cluster
grouping. As a result, our CUDA implementation is characterized by a high ratio
of arithmetic to memory operations which allows avoiding memory bottlenecks.
These algorithmic design choices and the extensive performance tuning led to
strongly instruction-latency bound CUDA non-bonded kernels, in contrast to
most traditional particle-based GPU algorithms which are reported to be mem-
ory bound [4,9]. Our CUDA GPU kernels also scale well, reaching peak pair-force
throughput already around 20,000 particles per GPU.

In contrast to typical data-parallel programming for homogeneous CPU-only
machines, heterogeneous architectures require additional code to manage task
scheduling and concurrent execution on the different compute elements, CPU
cores and GPUs in the present case. This is a complex component of our het-
erogeneous parallelization which implements the data- and control-flow with the
main goal of maximizing the utilization of both CPU and GPU by ensuring
optimal CPU-GPU execution overlap.

We combine a set of CPU cores running OpenMP threads with a GPU.
As shown in Fig. 5, the pair-lists required for the non-bonded computation are
prepared on the CPU and transferred to the GPU where a pruning step is carried
out after which the lists are reused for up to 100 iterations. The extreme floating-
point power of GPUs makes it feasible to use the much larger buffers required for
this. The transfer of coordinates, charges, and forces as well as compute kernels
are launched asynchronously as soon as data becomes available on the CPU.
This ensures overlap of CPU and GPU computation. Additional effort has gone
into maximizing overlap by reducing the wall-time of CPU-side non-overlapping
program parts through SIMD parallelization (in pair search and constraints)
and efficient multi-threaded algorithms allowing GROMACS to achieve a typical
CPU-GPU overlap of 60–80 %.

This scheme naturally extends to multiple GPUs by using the existing effi-
cient neutral territory domain-decomposition implemented using MPI paral-
lelization. By default, we assign computation on each domain to a single GPU
and a set of CPU cores. This typically means decomposing the system into as
many domains as GPUs used, and running as many MPI ranks per node as
GPUs in the node. However, this will often require to run a large number of
OpenMP threads in a rank (8–16 or even more with a single GPU per node),
potentially spanning across multiple NUMA domains. As explained in the pre-
vious section, this will lead to suboptimal multi-threaded scaling – especially
affecting cache-intensive algorithms outside the CPU-GPU overlap region. To
avoid this, multiple MPI ranks can share a GPU, which reduces the number of
OpenMP threads per rank.

The heterogeneous acceleration in GROMACS delivers 3-4x speedup when
comparing CPU only with CPU-GPU runs. Moreover, advanced features like
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arbitrary simulation box shapes and virtual interaction sites are all supported
(Fig. 6). Even though the overhead of managing an accelerator is non-negligible,
GROMACS 4.6 shows great strong scaling in GPU accelerated runs reaching
126 atoms/core (1260 atoms/GPU) on common simulation systems (Fig. 7).

Based on a similar parallelization design, the upcoming GROMACS version
will also support the Intel MIC accelerator architecture. Intel MIC supports
native execution of standard MPI codes using the so-called symmetric mode,
where the card is essentially treated as a general-purpose multi-core node. How-
ever, as MIC is a highly parallel architecture requiring fine-grained parallelism,
many parts of typical MPI codes will be inefficient on these processors. Hence,
efficient utilization of Xeon Phi devices in molecular dynamics – especially with
typical bio-molecular simulations and strong-scaling in mind – is only possible
by treating them as accelerators. Similarly to GPUs, this means a parallelization
scheme based on offloading only those tasks that are suitable for wide SIMD and
highly thread-parallel execution to MIC.

2.3 Ensemble Simulations

The performance and scaling advances in GROMACS (and many other pro-
grams) have made it efficient to run simulations that simply were too large only
a few years ago. However, infrastructures such as the European PRACE provide
access only to problems that scale to thousands of cores. This used to be an
impossible barrier for biomolecular dynamics on anything but ridiculously large
systems when an implementation could only run well with hundreds of parti-
cles per core. Scaling has improved, but the number of computational units in
supercomputers is growing even faster. There are now multiple machines in the
world that reach roughly a million cores. Under ideal conditions, GROMACS
can scale to levels where each PP rank handles 40 atoms, but there are few if
any concrete biological problems that require 40 million atoms without corre-
sponding increases in the number of samples generated. Even in the theoretical
case where we could improve scaling to the point where each core only contains
a single atom, the simulation system would still be almost an order of magnitude
larger than the example in Fig. 1.

To adapt to this reality, researchers are increasingly using large ensembles of
simulations, either to simply sample better, or new algorithms such as replica
exchange simulation, [24] Markov state models, [22] or milestoning [13] that
analyze and exchange data between multiple simulations to improve overall
sampling. In many cases, this achieves as much as two-fold superscaling, i.e.,
an ensemble of 100 simulations running on 10 nodes each might provide the
same sampling efficiency as a single simulation running on 2000 cores. To auto-
mate this, GROMACS has been co-developed with a new framework for Parallel
Adaptive Molecular Dynamics called Copernicus [19]. Given a set of input struc-
tures and sampling settings, this framework automatically starts a first batch
of sampling runs, makes sure all simulations complete (with extensive support
for checkpointing and restarting of failed runs), and automatically performs the
adaptive step data analysis to decide what new simulations to start in a sec-
ond generation. The current ensemble sampling algorithms scale to hundreds
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Fig. 5. GROMACS heterogeneous parallelization using both CPU and GPU resources
during each simulation time-step. The compute-heavy non-bonded interactions are
offloaded to the GPU, while the CPU is responsible for domain-decomposition book-
keeping, bonded force calculation, and lattice summation algorithms. The diagram
shows tasks carried out during a GPU-accelerated normal MD step (black arrows) as
well as a step which includes the additional pair-search and domain-decomposition
tasks are carried out (blue arrows). The latter, as shown above in blue, also includes
an additional transfer, and the subsequent pruning of the pair list as part of the non-
bonded kernel (Colour figure online).
Source: http://dx.doi.org/10.6084/m9.figshare.971161. Reused under CC-BY; retriev-
ed 22:15, March 23, 2014 (GMT).

http://dx.doi.org/10.6084/m9.figshare.971161
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Fig. 6. An important feature of the current heterogeneous GROMACS GPU implemen-
tation is that it works, and works efficiently, in combination with most other features of
the software. GPU simulations can employ domain decomposition, non-standard boxes,
pressure scaling, and virtual interaction sites to significantly improve the absolute sim-
ulation performance compared to the baseline. Simulation system: RNAse protein sol-
vated in rectangular (24 K atoms) and rhombic dodecahedron (16.8 k atoms) box, PME
electrostatics, cut-off 0.9 nm. Hardware: 2x Intel Xeon E5650 (2.67 GHz Westmere), 2x
NVIDIA Tesla C2070 (Fermi) GPU accelerators.

or thousands of parallel simulations (each using up to thousands of cores even
for small systems). For the first time in many years, molecular dynamics might
actually be able to use all the cores available on next-generation supercomputers
rather than constantly being a generation or two behind.

2.4 Multi-level Load Balancing

Achieving strong scaling to a higher core count for a fixed-size problem requires
careful consideration of load balance. The advantage provided by spatial DD is
one of data locality and reuse, but if the distribution of computational work is not
homogeneous then more care is needed. A typical membrane protein simulation
is dominated by

• water, which is usually treated with a rigid 3-point model,
• a lipid membrane, whose alkyl tails are modeled by particles with zero partial

charge and bonds of constrained length, and
• a protein, which is modeled with a backbone of fixed-length bonds that require

a lengthy series of constraint calculations, as well as partial charge on all
particles.
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Fig. 7. Strong scaling of GROMACS 4.6 on the HYDRA heterogeneous GPU-equipped
machine in Garching, Germany. Grey lines indicate linear scaling. The hybrid version
of GROMACS scales very well and achieves impressive absolute performance for both
small and large systems. For the smaller systems, peak performance is achieved with
150 atoms per core, and the larger systems achieve sustained effective flop rate of
0.2 petaflops (only counting the number of useful floating-point operations, not the
total). Simulation systems: typical production systems of 81 k atoms (circles), 2 M
atoms (stars), and 12 M atoms (triangles) in size. Hardware (per node): 2 10-core Xeon
E5-2680v2 (2.8 GHz Ivy Bridge), 2 NVIDIA K20X, InfiniBand FDR14 (4×14 Gb/s)
network.

These problems are well known, and are addressed in the GROMACS DD
scheme via automatic dynamic load balancing that distributes the spatial vol-
umes unevenly according to the observed imbalance in compute load. This app-
roach has limitations because it works at the level of DD domains that must map
to MPI ranks, so cores within the same node or socket have unnecessary copies
of the same data. We have not yet succeeded in developing a highly effective
intra-rank decomposition of work to multiple cores. We hope to address this via
intra-node or intra-socket task parallelism.

One advantage of the PME algorithm as implemented in GROMACS is that it
is possible to shift the computational workload between the real- and reciprocal-
space parts of the algorithm at will. This makes it possible to write code that
can run optimally at different settings on different kinds of hardware. The per-
formance of the compute, communication and bookkeeping parts of the overall
algorithm vary greatly with the characteristics of the hardware that implements
it, and with the properties of the simulation system studied. For example,
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shifting compute work from reciprocal to real space to make better use of an
idle GPU increases the volume that must be communicated during DD, while
lowering the required communication volume during the 3D FFTs. Evaluating
how best to manage these compromises can only happen at runtime.

The MPMD version of PME is intended to reduce the overall communication
cost on typical switched networks by minimizing the number of ranks partici-
pating in the 3D FFTs. This requires generating a mapping between PME and
non-PME ranks and scheduling data transfer to and from them. However, on
hardware with relatively efficient implementations of global communication, it
can be advantageous to prefer the SPMD implementation because it has more
regular communication patterns [2]. The same may be true on architectures with
accelerators, because the MPMD implementation makes no use of the accelera-
tors on the PME ranks. The performance of both implementations is limited by
lack of overlap of communication and computation.

Attempts to use low-latency partitioned global address space (PGAS) meth-
ods that require single-program multiple-data (SPMD) approaches are particu-
larly challenged, because the gain from any decrease in communication latency
must also overcome the overall increase in communication that accompanies the
MPMD-to-SPMD transition [21]. The advent of implementations of non-blocking
collective (NBC) MPI routines is promising if computation can be found to over-
lap with the background communication. The most straightforward approach
would be to revert to SPMD and hope that the increase in total communica-
tion cost is offset by the gain in available compute time, however, the available
performance is still bounded by the overall cost of the global communication.
Finding compute to overlap with the NBC on the MPMD PME ranks is likely
to deliver better results. Permitting PME ranks to execute kernels for bonded
and/or non-bonded interactions from their associated non-PME ranks is the
most straightforward way to achieve this overlap. This is particularly true at the
scaling limit, where the presence of bonded interactions is one of the primary
problems in balancing the compute load between the non-PME ranks.

The introduction of automatic ensemble computing introduces another
layer of decomposition, by which we essentially achieve MSMPMD parallelism:
Multiple-simulation (ensemble), multiple-program (direct/lattice space), and
multiple-data (domain decomposition).

2.5 Managing the Long-Range Contributions at Exascale

A promising candidate for exascale-level biomolecular simulations is the use of
suitable implementations of fast-multipole methods such as ExaFMM [6,27]. At
least one implementation of FMM-based molecular dynamics running on 100,000
cores has been reported, [5] but so far the throughput on problems of comparable
size is only equivalent to the best PME-based implementations. FMM-based
algorithms can deliver linear scaling of communication and computation with
both the number of MPI ranks and the number of particles. This linear scaling
is expected to be an advantage when increasing the number of processing units
in the exascale era. Early tests showed that the iteration times of ExaFMM
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doing only long-range work and GROMACS 4.6 doing only short-range work
on homogeneous systems of the same size were comparable, so we hope we can
deploy a working version in the future.

2.6 Fine-Grained Task Parallelism for Exascale

We plan to address some of the exascale-level strong-scaling problems men-
tioned above through the use of a more fine-grained task parallelism than what
is currently possible in GROMACS. Considerable technical challenges remain to
convert OpenMP-based data-parallel loop constructs into series of tasks that
are coarse enough to avoid spending lots of time scheduling work, and yet fine
enough to balance the overall load. Our initial plan is to experiment with the
cross-platform Thread Building Blocks (TBB) library, [1] which can coexist with
OpenMP and deploy equivalent loop constructs in the early phases of develop-
ment. Many alternatives exist; those that require the use of custom compil-
ers, runtime environments, or language extensions are unattractive because that
increases the number of combinations of algorithm implementations that must
be maintained and tested, and compromises the high portability enjoyed by
GROMACS.

One particular problem that might be alleviated with fine-grained task paral-
lelism is reducing the cost of the communication required during the integration
phase. Polymers such as protein backbones are modeled with fixed-length bonds,
with at least two bonds per particle, which leads to coupled constraints that
domain decomposition spreads over multiple ranks. Iterating to satisfy those
constraints can be a costly part of the algorithm at high parallelism. Because
the spatial regions that contain bonded interactions are distributed over many
ranks, and the constraint computations cannot begin until after all the forces
for their atoms have been computed, the current implementation waits for all
forces on all ranks to be computed before starting the integration phase. The
performance of post-integration constraint-satisfaction phase is bounded by the
latency for the multiple communication stages required. This means that ranks
that lack atoms with coupled bonded interactions, such as all those with only
water molecules, literally have nothing to do at this stage. In an ideal imple-
mentation, such ranks could contribute very early in each iteration to complete
all the tasks needed for the forces for the atoms involved in coupled bond con-
straints. Integration for those atoms could take place while forces for interactions
between unrelated atoms are being computed, so that there is computation to
do on all nodes while the communication for the constraint iteration takes place.
This kind of implementation would require considerably more flexibility in the
book-keeping and execution model, which is simply not present today.
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3 Handling Exascale Software Challenges:
Process and Infrastructure

3.1 Transition from C to C++98

The major part of the GROMACS code base has been around 1–1.5 million
lines of C code since version 4.0 (http://www.ohloh.net/p/gromacs). Ideally,
software engineering on such moderately large multi-purpose code bases would
take place within the context of effective abstractions [26]. For example, someone
developing a new integration algorithm should not need to pay any attention to
whether the parallelization is implemented by constructs from a threading library
(like POSIX threads), a compiler-provided threading layer (like OpenMP), an
external message-passing library (like MPI), or remote direct memory access
(like SHMEM). Equally, she/he should not need to know whether the kernels
that compute the forces they are using as inputs are running on any particular
kind of accelerator or CPU. Implementing such abstractions generally costs some
developer time, and some compute time. These are necessary evils if the software
is to be able to change as new hardware, new algorithms or new implementations
emerge.

Considerable progress has been made in modularizing some aspects of the
code base to provide effective abstraction layers. For example, once the main
MD iteration loop has begun, the programmer does not need to know whether
the MPI layer is provided by an external library because the computation is
taking place on multiple nodes, or the internal thread-based implementation is
working to parallelize the computation on a single node. Portable abstract atomic
operations have been available as a side-effect of the thread-MPI development.
Integrators receive vectors of positions, velocities and forces without needing
to know the details of the kernels that computed the forces. The dozens of
non-bonded kernels can make portable SIMD function calls that compile to the
correct hardware operations automatically.

However, the size of the top-level function that implements the loop over time
steps has remained at about 1800 code and comment lines since 4.0. It remains
riddled with special-case conditions, comments, and function calls for differ-
ent parallelization conditions, integration algorithms, optimization constructs,
housekeeping for communication and output, and ensemble algorithms. The
function that computes the forces is even worse, now that both the old and
new non-bonded kernel infrastructures are supported! The code complexity is
necessary for a general-purpose multi-architecture tool like GROMACS. How-
ever, needing to be aware of dozens of irrelevant possibilities is a heavy barrier
to participation in the project, because it is very difficult to understand all side
effects of a change.

To address this, we are in the process of a transition from C99 to C++98
for much of this high-level control code. While we remain alert to the possibility
that HPC compilers will not be as effective at compiling C++98 as they are
for C99, the impact on execution time of most of this code is negligible and the
impact on developer time is considerable.

http://www.ohloh.net/p/gromacs
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Our expectation is that the use of virtual function dispatch will eliminate
much of the complexity of understanding conditional code (including switch
statements over enumerations that must be updated in widely scattered parts of
the code), despite a slightly slower implementation of the actual function call.
After all, GROMACS has long used a custom vtable-like implementation for run-
time dispatch of the non-bonded interaction kernels. Objects managing resources
via RAII exploiting compiler-generated destructor calls for doing the right thing
will lead to shorter development times and fewer problems because developers
have to manage fewer things. Templated container types will help alleviate the
burden of manual memory allocation and deallocation. Existing C++ testing
and mocking libraries will simplify the process of developing adequate testing
infrastructure, and existing task-parallelism support libraries such as Intel TBB
[1] will be beneficial.

It is true that some of these objectives could be met by re-writing in more
objected-oriented C, but the prospect of off-loading some tedious tasks to the
compiler is attractive.

3.2 Best Practices in Open-Source Scientific Software Development

Version control is widely considered necessary for successful software devel-
opment. GROMACS used CVS in its early days and now uses Git (git clone
git://git.gromacs.org/gromacs.git). The ability to trace when behavior changed
and find some metadata about why it might have changed is supremely valuable.

Coordinating the information about desires of users and developers, known
problems, and progress with current work is an ongoing task that is difficult
with a development team scattered around the world and thousands of users
who rarely meet. GROMACS uses the Redmine issue-tracking system3 to dis-
cuss feature development, report and discuss bugs, and to monitor intended and
actual progress towards milestones. Commits in the git repository are expected to
reference Redmine issues where appropriate, which generates automatic HTML
cross-references to save people time finding information.

Peer review of scientific research is the accepted gold standard of quality
because of the need for specialist understanding to fully appreciate, value, criti-
cize and improve the work. Software development on projects like GROMACS is
comparably complex, and our experience has been that peer review has worked
well there. Specifically, all proposed changes to GROMACS – even from the core
authors – must go through our Gerrit code-review website4, and receive positive
reviews from at least two other developers of suitable experience, before they
can be merged. User- and developer-level documentation must be part of the
same change. Requiring this review to happen before acceptance has eliminated
many problems before they could be felt. It also creates social pressure for peo-
ple to be active in reviewing others’ code, lest they have no karma with which
to get their own proposals reviewed. As features are implemented or bugs fixed,

3 http://redmine.gromacs.org.
4 http://gerrit.gromacs.org.

http://redmine.gromacs.org
http://gerrit.gromacs.org
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corresponding Redmine issues are automatically updated. Gerrit also provides
a common venue for developers to share work in progress, either privately or
publicly.

Testing is one of the least favourite activities of programmers, who would
much rather continue being creative in solving new problems. The standard pro-
cedure in software engineering is to deploy continuous integration, where each
new or proposed change is subjected to a range of automatic tests. In the GRO-
MACS project, we use Jenkins5 to build the project on a wide range of oper-
ating systems (MacOS, Windows, flavours of Linux), compilers (GNU, Intel,
Microsoft, clang; and several versions of each), and build configurations (MPI,
thread-MPI, OpenMP, different kinds of SIMD), and then automatically test
the results for correctness. This immediately finds problems such as program-
mers using POSIX constructs that are not implemented on Windows. Most of
our tests detect regressions, where a change in the code leads to an unintended
change in behavior. Unfortunately, many of these tests are still structured around
executing a whole MD process, which makes it difficult to track down where a
problem has occurred, unless the code change is tightly focused. This moti-
vates the discipline of proposing changes that only have one logical effect, and
working towards adding module-level testing. New behaviors are expected to be
integrated alongside tests of that behavior, so that we continue to build upon
the test infrastructure for the future. All tests are required to pass before code
changes can be merged.

Testing regularly for changes in execution speed is an unsolved problem that
is particularly important for monitoring our exascale software developments. It
is less suited for deployment via continuous integration, because of the quantity
of computation required to test the throughput of code like GROMACS with
proper load-balancing, at-scale, and on a range of hardware and input condi-
tions. It would be good to be able to execute a weekly end-to-end test run that
shows that unplanned performance regressions have not emerged, but we have
not prioritized it yet. Waiting to do these tests until after feature stability is
achieved in the software-development life cycle is not appropriate, because that
requires extra work in identifying the point in time (i.e. the git commit) where
the problem was introduced, and the same work identifying the correct way to
manage the situation. This is much better done while the change is fresh in devel-
opers’ minds, so long as the testing procedure is reasonably automatic. Also, in
the gap between commit and testing, a regression may be masked by some other
improvement. More extensive human-based testing before releases should still be
done; but avoiding protracted bug hunts just before releases makes for a much
happier team.

Cross-platform software requires extensive configuration before it can be
built. The system administrator or end user needs to be able to guide what kind
of GROMACS build takes place, and the configuration system needs to verify
that the compiler and machine can satisfy that request. This requires searching
for ways to resolve dependencies, and disclosing to the user what is being done

5 http://jenkins.gromacs.org.

http://jenkins.gromacs.org
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with what is available. It is important that compilation should not fail when
configuration succeeded, because the end user is generally incapable of diag-
nosing what the problem was. A biochemist attempting to install GROMACS
on their laptop generally does not know that scrolling back through 100 lines of
output from recursive make calls is needed to find the original compilation error,
and even then they will generally need to ask someone else what the problem is
and how to resolve it. It is far more efficient for both users and developers to
detect during configuration that compilation will fail, and to provide suggested
solutions and guidance at that time. Accordingly, GROMACS uses the CMake
build system (http://www.cmake.org), primarily for its cross-platform support,
but makes extensive use of its high-level constructs, including sub-projects and
scoped variables.

3.3 Profiling

Experience has shown that it is hard to optimize software, especially an HPC
code, based on simple measurements of total execution speed. It is often neces-
sary to have a more fine-grained view of the performance of individual parts of
the code, details of execution on the individual compute units, as well as commu-
nication patterns. There is no value in measuring the improvement in execution
time of a non-bonded kernel if the execution time of the FFTs is dominant!

Standard practice is to use a profiling/tracing tool to explore which func-
tions or code lines consume important quantities of time, and to focus effort
on those. However, if the measurement is to provide useful information, the
profiler should perturb the execution time by a very small amount. This is par-
ticularly challenging with GROMACS because in our case an MD iteration is
typically in the range of a millisecond or less wall clock time around the cur-
rent scaling limit, and the functions that are interesting to profile might execute
only for microseconds. Overhead introduced by performance measurement that
is acceptable in other kinds of applications often leads to incorrect conclusions
for GROMACS. Statistical sampling from periodically interrupting the execu-
tion to observe which core is doing which task could work in principle, but (for
example) Intel’s VTune 3 Amplifier defaults to a 10 ms interval, which does
not create confidence that use of the tool would lead to accurate observations
of events whose duration is a thousand times shorter. Reducing the profiling
overhead to an acceptable level while still capturing enough information to be
able to easily interpret the performance measurements has proved challenging.
Additionally, this often required expert knowledge, assistance of the developers
of the respective performance measurement tool. This makes it exceptionally
hard to use in-depth or large-scale profiling as part of the regular GROMACS
development workflow.

However, we have not been optimizing in the dark; the main mdrun simula-
tion tool has included a built-in tracing-like functionality for many years. This
functionality relies on manual instrumentation of the entire source code-base
(through inlined start/stop timing functions) as well as low-overhead timing
measurements based on processor cycle counters. The great benefit is that the

http://www.cmake.org
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log output of every GROMACS simulation contains a breakdown of detailed
timing measurements of the different code parts. However, this internal trac-
ing functionality does not reach its full potential because the collected data is
typically displayed and analyzed through time-averages across MPI ranks and
time-steps, often hiding useful details.

To realize more of this potential, we have explored the possibility of more
detailed MPI rank-based statistics, including minimum and maximum execu-
tion times across ranks as well as averages. However, this information is still less
detailed than that from a classical trace and profile visualizer. We are explor-
ing combining our internal instrumentation with a tracing library. By adding
API calls to various tracing libraries to our instrumentation calls, we can pro-
vide native support for detailed trace-generation in GROMACS just by linking
against a tracing library like Extrae6. This will make it considerably easier to
carry out performance analysis without the need for expert knowledge on col-
lecting performance data while avoiding influencing the program behavior by
overhead.

4 Future Directions

GROMACS has grown from an in-house simulation code into a large interna-
tional software project, which now also has highly professional developer, testing
and profiling environments to match it. We believe the code is quite unique in
the extent to which it interacts with the underlying hardware, and while there
are many significant challenges remaining this provides a very strong base for
further extreme-scale computing development. However, scientific software is
rapidly becoming very dependent on deep technical computing expertise: Many
amazingly smart algorithms are becoming irrelevant since they cannot be imple-
mented efficiently on modern hardware, and the inherent complexity of this
hardware makes it very difficult even for highly skilled physicists and chemists
to predict what will work. It is similarly not realistic to expect every research
group to afford a resident computer expert, which will likely require both research
groups and computing centers to increasingly join efforts to create large open
source community codes where it is realistic to fund multiple full time develop-
ers. In closing, the high performance and extreme-scale computing landscape is
currently changing faster than it has ever done before. It is a formidable chal-
lenge for software to keep up with this pace, but the potential rewards of exascale
computing are equally large.
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