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ABSTRACT: An important and computationally demanding part of molecular
dynamics simulations is the calculation of long-range electrostatic interactions.
Today, the prevalent method to compute these interactions is particle mesh Ewald
(PME). The PME implementation in the GROMACS molecular dynamics package ¢
is extremely fast on individual GPU nodes. However, for large scale multinode
parallel simulations, PME becomes the main scaling bottleneck as it requires all-to- FMM on GPU
all communication between the nodes; as a consequence, the number of exchanged "“‘ 0 20 40
messages scales quadratically with the number of involved nodes in that
communication step. To enable efficient and scalable biomolecular simulations
on future exascale supercomputers, clearly a method with a better scaling property is
required. The fast multipole method (FMM) is such a method. As a first step on the path to exascale, we have implemented a
performance-optimized, highly efficient GPU FMM and integrated it into GROMACS as an alternative to PME. For a fair
performance comparison between FMM and PME, we first assessed the accuracies of the methods for various sets of input
parameters. With parameters yielding similar accuracies for both methods, we determined the performance of GROMACS with
FMM and compared it to PME for exemplary benchmark systems. We found that FMM with a multipole order of 8 yields
electrostatic forces that are as accurate as PME with standard parameters. Further, for typical mixed-precision simulation settings,
FMM does not lead to an increased energy drift with multipole orders of 8 or larger. Whereas an ~50 000 atom simulation system
with our FMM reaches only about a third of the performance with PME, for systems with large dimensions and inhomogeneous
particle distribution, e.g., aerosol systems with water droplets floating in a vacuum, FMM substantially outperforms PME already on
a single node.

GROMACS + Fast Multipole Method
with inhomogeneous particle dlstributipn

PME on GPU

60 ns/day
N performance of 108,000 atom aerosol

S99

1. INTRODUCTION

The evaluation of mutual interactions in many-body systems is

increasingly large systems has grown markedly, and systems of
10%—10° particles could become routine soon."”” Nevertheless,
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a crucial and limiting task in many scientific fields such as
biomolecular simulations, astronomy,” and plasma physics.”
Here, we consider molecular dynamics (MD) simulations,
where electrostatic forces
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acting on N atoms at positions x; with partial charges g; are
calculated to determine new positions of the atoms in
subsequent discrete time steps. ||:|| denotes the Euclidean

norm. A direct calculation of the forces has O(N*) complexity;
thus only systems of limited size can be computed directly in
equitable time. Additionally, a typical MD simulation employs
periodic boundary conditions (PBC) to avoid surface artifacts,
making the direct calculation unfeasible even for small systems.
In contrast to cosmological calculations, which are usually
limited by the available memory due to enormous particle
numbers, many interesting biomolecular systems consist of

0(10°-10°) particles. Recently, however, the demand to study

© 2020 American Chemical Society

7 ACS Publications

biomolecular systems, independent of their size, require long
trajectories where the length of a time step can be no longer
than a few femtoseconds for numerical stability reasons. Thus,
the time required to finish one simulation step needs to be
shortened to a millisecond or less so that long enough
trajectories can be produced in reasonable time. To overcome
these bottlenecks, the solution of eq 1 requires efficient
approximation.

The prevalent method for such approximation in the field is
particle mesh Ewald (PME).® PME uses Ewald summation to
split up the calculation into a short-range part, for which all
interactions up to a cutoff radius r, are directly evaluated, and a
long-range part, which is solved in reciprocal space. To take
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advantage of fast Fourier transforms (FFTs) for the
conversions to and from reciprocal space, the charges are
interpolated onto a uniform grid using cardinal B-splines.
Higher interpolation orders and finer grids yield higher
accuracy for the reciprocal part. PME scales with
O(N log N) and by construction provides a PBC solution,
but does not allow for nonperiodic calculations.

MD packages like GROMACS’™"" or NAMD'” have PME
implementations that are highly performance optimized. With
GROMACS, typical MD systems reach iteration rates of
O(1000) steps per second currently;'' hence all forces are
computed in less than a millisecond. However, with increasing
parallelization, as required for high performance applications,
PME runs into a communication bottleneck. Because the FFT's
require all-to-all communication, which implies quadratic
scaling with the number of processes, PME scaling breaks
down at an intermediate number of processes."”~'> A further
limitation is that the FFT grid becomes memory intensive,
particularly if high accuracy is required or for highly
inhomogeneous charge distributions.

An alternative way for ra?id evaluation of Coulomb forces is
the fast multipole method'® (FMM), which is not impaired by
the aforementioned limitations and even scales with O(N).
Therefore, while PME is fast for small to medium sized MD
systems at moderate parallelization, FMM will be competitive
for large number of particles, large simulation boxes,
inhomogeneous charge distributions, and high paralleliza-
tion.'""” Further, FMM can be used for both periodic and
open boundaries.

FMM splits the calculation into a near field, which is directly
evaluated, and into a far field. For the far field, groups of
sufficiently separated point charges are combined and
described as truncated multipole expansions. The grouping is
accomplished by recursively subdividing the simulation box
into sub-boxes in an octree fashion; i.e, each parent box is
subdivided into eight equal child boxes when the tree depth d
is increased. This yields 8 boxes on the lowermost level. For d
= 0, there is no subdivision. Interactions between particles
residing in the same or in directly neighboring boxes at the
lowest tree level are calculated directly as in eq 1, whereas
interactions between particles in distant boxes are approxi-
mated via far field calculations. FMM can also allow for direct
interactions between particles in boxes with a larger distance
from each other. The distance is controlled by the well-
separateness criterion “ws”. Larger ws improves the accuracy of
the method but it impairs its performance markedly since eq 1
scales quadratically with respect to the number of particles."”
In this work we exclusively consider ws = 1; hence, only
particles of nearest neighbor boxes interact directly.

For the far field interactions, the inverse distance between
charged particles with index i and j is approximated as'®
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where Y and Y* are spherical harmonics and their complex
conjugate, respectively. The multipole order p controls the
accuracy of the approximation. FMM achieves linear scaling
with respect to N by performing hierarchical far field
operations on multipoles expanded in octree boxes. Computa-
tionally, the most demanding part of the far field evaluation is

the multipole-to-local (M2L) transformation. It requires O(pz)
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dot products with O(p*) complexity, yielding an overall
complexity of O(p*).

The spherical harmonics based FMM (eq 2) was developed
by Greengard and Rokhlin.'"® Following this, other approx-
imations of the inverse distance have been developed, such as
the plane wave expansion approach' to reduce operational
costs of the M2L operator from O(p*) or 0(p3) to O(pz) or
the black-box FMM,”® which utilizes Chebyshev interpolation
to minimize the far field representation of the multipoles.

One of the first parallel GPU implementations of the

spherical harmonics based FMM?*' used O(p®) operators and
achieved accuracy dependent speedups of 30—70 relative to a
serial run on a single CPU core. Recently, the 0(p3) M2L
operator for a single GPU was optimized further.”> GPUs were
used to speed up the kernel independent FMM**** and the
black-box FMM.”* A single-GPU implementation of the
spherical harmonics FMM™ was also parallelized over a
cluster” with 32 GPUs where it reached parallel efficiencies of
44% for 10° particles and 66% for 107 particles. Larger,
multinode, multi-GPU parallelization”” for a 256 million
particle system over 256 GPUs followed. Blanchard et al.”®
and Agullo et al** presented task based parallelization
strategies.

The FMM has been successfully used to compute Coulomb
or gravitational interactions in a wide range of applications,'
whereas its use for biomolecular simulations is still limited with
a few exceptions.””’® We have therefore developed,
implemented, and optimized an FMM for MD simulations
with GROMACS.

As GROMACS usually runs in mixed precision, using double
precision only for accumulation order sensitive tasks, consumer
GPUs are extremely attractive for the force computation, as
they offer a high single-precision FLOP rate at a low price,
especially compared to CPUs.”' Therefore, we implemented
the complete FMM workflow on the GPU. Whereas rotational

M2L operators with complexity O(p®) have been proposed,'®

here we consider an O(p*) approach for the M2L operator as it
is better suited for GPU parallelization.*”

Our GPU version is based on the ScaFaCoS FMM,” which
we fully parallelized with CUDA™ and optimized for
GROMACS. Here, we assess the performance of our GPU
FMM implementation®® and evaluate its accuracy in
comparison to GROMACS’ PME implementation.

2. BENCHMARK METHODS

In a first step, we verified that our CUDA FMM
implementation yields accurate energies and forces by
comparing against known reference solutions for several
input systems. Subsequently, we used typical MD systems to
compare FMM vs PME performance in GROMACS 2019.

2.1. Accuracy of FMM Results. The forces and energies
computed with the FMM deviate from their exact values
mainly due to truncation of the multipole expansion at finite
order p, which for small p causes the main contribution to the
numerical error. Additionally, the errors in the energies vary
due to different accumulation orders in the parallelized
reductions. To quantify the magnitude of these errors, we
compared FMM derived forces, potentials, and energies with
reference solutions.

Given a reference solution v, i = 1, .., N, with N values of
the potential at the atomic positions, or the 3N individual

https://dx.doi.org/10.1021/acs.jctc.0c00744
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scalar values x, y, and z force components, we estimated the
approximation error with the cumulative relative L, error
norm:

1/2

Zf\il (Vi - 171)2
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where 7, are the approximated values.

2.2. Benchmark Systems. To assess the correctness and
performance of our FMM implementation, we created five
benchmark systems, which were then used to check different
aspects of our implementation. We first verified that the FMM
forces and energies for open and periodic boundaries are
correct; then we found the FMM parameters yielding the same
accuracy as the existing GROMACS PME implementation.
Finally, we compared the performance of both methods at the
same accuracy.

GROMACS benchmark systems were set up with
GROMACS' 2019 using the AMBERO3 force field,* the
TIP3P*® water model, and an integration time step of 4 fs.
Note that this force field and water model are just an
example—in fact, all force fields and water models supported
by GROMACS can be combined with FMM electrostatics.

2.2.1. Infinite Ideal Crystal. The “ideal crystal” benchmark
represents an infinite lattice of alternating positive and negative
elementary charges. The charges were arranged as in an NaCl
crystal in a 32 X 32 X 32 nm® large box containing alternating
+1e and —1e charges at 0.5, 1.5, 2.5, .., 30.5, 31.5 nm in each
dimension, in total 32° = 32768 point charges. The shortest
distance between nearest charges is exactly 1.0 nm, allowing for
direct comparison with an analytical solution.

Considering the PBC, such a system of size 2 X 2 X 2 nm’
would be sufficient to compare against an analytical solution.
However, the number of charges was chosen in a way that
allows for flexibility during the tests regarding the choice of
parameters. For instance, with PME a larger range of real-space
cutoffs can be used, and with FMM various tree depths d = 1,
2, 3, 4 can be tested having a significant number of charges
even on the lowest levels.

The potential energies at each charge center were calculated
analytically with Madelung’s constant M.”” Its value was
obtained by summing a specific, three-dimensional Epstein
zeta function

M(s)= )

x,y,2€EZ

rel __
L2 =

()

(_ 1)x+y+z

(xz + yz + Zz)s (4)
for the case of s = 1/2, where ).’ excludes the origin sum to
avoid singularity. The sum is absolutely convergent when
summing over expanding cubes.*® For comparison we used the
value M = —1.74756459..., which is given with 60 digits by
Crandall.*”

2.2.2. Salt Water. Our “salt water” benchmark consists of
16 861 water molecules with 46 Na* and 46 Cl™ ions in an &8
X 8 X 8 nm’® periodic simulation box, yielding S0 675 atoms in
total. We used it to compare PME versus FMM errors and to
determine which FMM parameters are needed to obtain a
desired accuracy. Considering the Coulomb forces, we expect
this system to reasonably well approximate the error behavior
of typical MD systems of macromolecules embedded in water.
However, setups with highly nonuniform charge distributions,
e.g., membrane systems, could differ in their error distribution
and magnitude.
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An initial trajectory was generated with cutoffs set to 1 nm.
PME was used for electrostatic interactions with a grid spacin§
of 0.135 nm and fourth order B-spline interpolation.
Temperature coupling to a heat bath of 300 K was done
with the V-rescale algorithm,*” while the pressure was kept at 1
bar with the use of Berendsen coupling.”’

2.2.3. Salt Water Droplet. The “salt water droplet,” as
shown in Figure 1, contains the same number of molecules as
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Figure 1. Salt water droplet test system. Water molecules are shown
in surface representation (oxygens, red; hydrogens, white), with Na*
ions in magenta, Cl™ ions in green, simulation box in black.

the periodic salt water system, but in open boundaries. It was
built by centering a snapshot of the above system in a larger
box of size 14 X 14 X 14 nm>. Apart from the fixed volume and
therefore variable pressure, the simulation parameters are
identical to those of the periodic case. With open boundaries,
the system adopted an approximately spherical shape within
~50 ps.

In principle, the box size is only relevant with PBC;
technically, however, we used the box to treat the individual
single water molecules that did occasionally evaporate from the
droplet, as if they were in PBC, simply to keep them from
flying too far away. A 130 ns long trajectory of the droplet was
simulated, of which snapshots for later analysis were extracted.

The droplet system with open boundaries allows for
computation of the reference Coulomb energy and forces by
direct summation. It was, therefore, used assess the correctness
of the complete FMM implementation apart from the periodic
part, which is computed with an additional lattice operator.

2.2.4. Aerosol/Multidroplet Evaporation System. The
“multidroplet system” (Figure 2) was built to demonstrate
the advantages of the FMM for systems with highly
nonuniform particle distributions, as occur in the atomistic
simulation of, e.g., electrospray ionization as a prerequisite for
mass spectrometric analysis,4l_43 ion mobili sgectrometry,44
laser-induced liquid beam ion desorption,””* and various
naturally occurring®” or artificially produced*® aerosols.

MD simulations can significantly complement these experi-
ments by providing a detailed picture of the involved
processes, e.g., the various aspects of droplet formation and
evolution, charge migration, ion/lipid/protein desolvation,

Sy
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Figure 2. Aerosol/multidroplet system. Water surface representation
as in Figure 1; close-ups to the right show individual droplets with
Na" jons in magenta and CI~ ions in green.

collisions with the background gas, and gas-phase unfolding.
Simulating proteins, lipids, ion, and waters in the gas phase ?
implies spatially extended simulation systems consisting mostly
of vacuum.

In the gas phase, due to the lack of shielding, the correct
treatment of long-range electrostatic forces is even more
crucial than for fully solvated species to avoid artifacts™ and to
correctly describe experimental conditions.”’ With such
extended systems, PME often reaches its limits, as memory
requirements become prohibitive for the underlying large FFT
grids. Sometimes the use of PME is precluded because, for
optimal agreement with experiment, open boundaries may be
more appropriate than PBC.*

Being a prototype for such sparse systems, our multidroplet
benchmark contains 75 small water droplets in a box of side
length 135.6 nm with 108 663 atoms. Sixty-three Na* and 63
CI” ions were distributed within the droplets. The system was
run in the NVE ensemble with PBC. The van der Waals cutoff
was set to 2 nm. For PME, to prevent a prohibitively large FFT
grid, a Coulomb cutoft of 2.943 nm was used in combination
with a grid spacing of 0.353 nm. This results in a Fourier grid
of 384° points.

2.2.5. Water Boxes of Different Sizes. To assess how our
FMM implementation scales with respect to the number of
particles N, we have build cubic boxes of edge lengths 3.13—
674 nm containing 1000—10 000000 TIP3P water mole-
cules, i.e., N = 3000—30 000 000 particles. Benchmarks were
run in the NVT ensemble with the use of Berendsen
temperature coupling40 at a reference temperature of 300 K.
Coulomb and van der Waals cutoffs were set to 1 nm. With
PME, a mesh spacing of 0.135 nm was used with fourth order
interpolation.

2.2.6. Random Charges. To assess the FMM performance
and scaling in a standalone setting, i.e., without being coupled
to GROMACS, we used 1000 < N < 286 000000 randomly
distributed charges in a box of a constant size of 100 nm. FMM
standalone tests estimate the overhead introduced by
integration of the FMM into GROMACS.

2.3. Benchmarking Procedure. All performance bench-
marks were run on a node with Intel ES-2630v4 @ 2.2 GHz
CPU, and NVIDIA RTX 2080Ti GPU running Scientific Linux
7.6 GROMACS 2019 was compiled with GCC 7.4.0, CUDA
10.0, thread-MPI, and AVX2 256 SIMD instructions, and with
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OpenMP and hwloc™ 1.11 support. For the runs with PME on
the CPU, the FFTW 3.3.7° library was used.

For oIptimum performance in a single-CPU, single-GPU
setting,1 21 we used a single thread-MPI rank with either as
many OpenMP threads as physical CPU cores (10) or as many
OpenMP threads as CPU hardware threads (20). On modern
Intel CPUs, using all available hardware threads can provide a
performance benefit of up to ~#15% for cases with at least a few
thousand atoms per core. We tested both settings in our
benchmarks and report the performance of the fastest setting.
It turned out that our benchmark systems with 50 000 atoms
or more were faster with 20 threads instead of 10.

Additionally, the FMM vs PME scaling benchmarks were
run on a node with 20-core Intel Xeon Gold 6148F CPU and
NVIDIA V100-PCIE-32GB GPU running SLES 12.4. Here,
GROMACS was compiled with GCC 8.4.0, CUDA 10.1, Intel
MPI 2019, and AVX 512 SIMD instructions, and with
OpenMP and hwloc 2.1.

Each benchmark ran for several minutes, ie. several
thousand time steps. Because the initial time steps often
require long execution times due to memory allocations and
load balancing effects, all times were recorded for the second

half of each run.

3. RESULTS AND DISCUSSION

3.1. FMM Convergence and Correctness. In this section
we quantify the errors resulting from the FMM evaluation of
the Coulomb interactions. We will first show that, with
increasing order p of the multipole expansion, FMM converges
to the correct solution. This was done in two steps. First, we
used a system with open boundaries, where the correct
solution (within numerical limits) can be obtained by a direct
summation. Second, a simple periodic crystal with analytically
derived solution was used as a reference to verify the
correctness of the FMM PBC solution.

The Coulomb potential V. for a system of N charges is

N qij
Ve=k) )

ioj<i |7

q
il

(s)

with k = 1/(4ze,) and €, is the vacuum permittivity. Our
FMM implementation uses dimensionless values with k set to
unity, whereas in GROMACS, k ~ 138.935 k] nm/(mol ¢?),
with e the elementary charge. If an axis of a plot shows
kilojoules per mole units for the potential energy and kilojoules
per mole per nanometer for a force, the GROMACS unit
system is used; otherwise energy and forces will be
dimensionless.

3.1.1. Comparison to the Direct Summation for Open
Boundaries. We first asked how accurate the FMM is for open
boundaries. For an exemplary snapshot of the salt water
droplet (Figure 1), we compared the FMM result for different
parameters to a reference solution, which was determined by
directly summing all Coulomb interactions in double precision.

Figures 3 and 4 quantify the FMM errors in the Coulomb
forces for double and single precision, respectively. The upper
rows (black) show the distribution of the 3N individual
components of the forces fi*f (i = 1, ..., 3N) as absolute values.
The colored histograms show error distributions computed
from the differences to the reference values I — ffMM] for
various multipole orders for depths d = 2, 3, and 4.

As can be seen, the force errors decrease exponentially with
growing multipole order p and begin to saturate at p = 40 and

https://dx.doi.org/10.1021/acs.jctc.0c00744
J. Chem. Theory Comput. 2020, 16, 6938—6949
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direct eval.

10—15

Figure 3. FMM errors for the 50 675 atom salt water droplet (Figure
1) using double precision. (left) Absolute values of individual force
components (black stars, index on x-axis), and deviations from
reference values for exemplary cases p = 8 (orange dots) and p = 24
(purple dots). Colored histograms show distributions of absolute
errors in the forces for multipole approximations p = 4—50 and tree
depths d = 2, 3, and 4. For comparison, black histograms show
distributions of actual forces (in absolute values). The black outline
near the bottom shows the error for directly evaluating all
interactions. Note that the black force histograms were scaled by
0.75 to fit in the panels.

depth d=2 d=3

107°4

Figure 4. FMM errors for 50 675 atom salt water droplet (Figure 1).
Same as Figure 3, but for single-precision FMM.

p = 10 in double and single precision, respectively. With single
precision, as commonly used for MD simulations, increasing
the multipole order to p > 12 does not result in a further
reduction of the error in the Coulomb forces for d < 4.
Increasing the tree depth d by 1 increases the errors by
approximately 1/2 order of magnitude; however, this effect is
less pronounced for higher multipole orders.

The black-outlined histograms at the bottom of Figures 3
and 4 quantify the error distributions between different runs of
a direct summation. These errors reach maximal relative
machine precision,”* which is 2.22 X 107" and 5.96 X 107* for
double and single precision, respectively. Hence, since the
FMM errors with multipole orders p = 40 in double precision
and p = 12 in single precision saturate in the region of a direct
summation error, for both precisions FMM reaches the
numerical limits at these multipole orders.
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Figures 5 and 6 show Ly error norms of potentials and
energies for an exemplary snapshot of the salt water droplet

Depth 2 potential
Depth 2 energy
Depth 3 potential
Depth 3 energy
Depth 4 potential
Depth 4 energy

1072

1073\
1078

10—11

relative L2 error norm

10—14

0 5 10 15 20 25 30 35 40 45

multipole order p

50

Figure S. Relative Li! error norm (eq 3) of the total electrostatic
energy (solid lines with circles) and of the potentials at the atomic
positions (dashed lines with stars) for the salt water droplet with open
boundaries (double precision).

Depth 2 potential
Depth 2 energy
+- Depth 3 potential
Depth 3 energy
Depth 4 potential
Depth 4 energy

10
multipole order p

15 20

rel

Figure 6. Relative L5 error norm (eq 3) of the total electrostatic
energy (solid lines with circles) and of the potentials at the atomic
positions (dashed lines with stars) for the salt water droplet with open
boundaries (single precision).

system. In single precision, increasing the multipole order to p
> 12 does not reduce the error any further as the error reaches
the limited machine representation.

In summary, for open boundaries we conclude that FMM
forces are as accurate as forces from a direct summation for
high multipole orders p. In double precision, p = 40 yields as
accurate forces as a direct summation, whereas for single
precision, p 2 12 suffices to reach the numerical limits. The
relative accuracy of the Coulomb potential energy is about
1077 for p > 8 in single precision, whereas with double
precision, accuracies of 10~'* are reached for p > 40. For p < 50
in double precision and p < 12 in single precision, the errors in
forces and energies are larger for higher tree depth d.

3.1.2. Comparison to Analytic Solution for Periodic
Boundaries. Next, we compared the FMM electrostatic energy
for the ideal crystal with the analytical results. Figure 7 shows
the relative error in the energy for a double-precision
computation. The energy error decays exponentially with
increasing multipole order. Note that the decay of the energy
(compare also Figures 6 and S) is not strictly monotonic,
which follows from the evaluation of the Coulomb integral on
cuboids and has been described elsewhere.'”>> Reaching the
relative accuracies at the numerical limit for p 2 40 verifies that
the treatment of the periodic boundaries in our FMM
implementation is correct and that the FMM approximated
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Figure 7. FMM energy error for the ideal crystal (double precision).
Circles show the relative deviation of the energy computed with FMM
from its correct value as a function of multipole order p and tree

depth d.

energy with full PBC converges to the true value for growing
multipole orders.

3.2. Comparison of FMM to PME. After establishing the
correctness of our FMM implementation, we compared it to
PME by asking which FMM parameters p and d yield
accuracies similar to those of several representative PME
parameter settings, e.g., the spacing s of the Fourier grid and
the B-splines interpolation order (also called PME order). In
GROMACS’ PME implementation, the ewald-rtol
parameter controls the relative strength of the direct potential
at the cutoff r, and thereby how accurate the real space part is
in relation to the reciprocal space part.”® Smaller values yield a
more accurate real space contribution but a less accurate
reciprocal space contribution. The default PME parameters use
107 for ewald-rtol, which minimizes the error for typical
MD settings with cutofts of r. & 1 nm and PME grid spacings
of s & 0.12 nm. To reach optimal PME accuracy, however, a
much smaller value of the ewald-rtol parameter is
required in combination with a very fine PME grid and a
sufficiently large interpolation order.

3.2.1. PME and FMM for the Ideal Crystal. Figure 8 shows
how much the energy of the ideal crystal computed using
several different PME parameters deviates from the reference

§ 107* @ PME(r.=2nm,s = 0.05 nm) §
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Figure 8. PME energy error for the ideal crystal (double precision).
Circles show the relative deviation of the energy computed with PME
from its correct value as a function of the ewald-rtol parameter
for interpolation order 12 for four parameter sets (see legend, r, =
real-space cutoff, s PME grid spacing) For comparison, the
corresponding FMM errors for p > 40 are indicated by the shaded
region (compare Figure 7).
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values. For the used very fine grids with spacing s = 0.05—0.1
nm (corresponding to 320°—640° grid points) combined with
a high interpolation order of 12, PME accuracy mainly
depends on the value of the ewald-rtol parameter. For
ewald-rtol < 107" the energy error achieves roughly
107", whereas FMM reaches this error bound for p > 40.
Hence, we have shown that both PME and FMM reach a
relative accuracy of ~107'* in double precision in a periodic
system.

3.2.2. PME vs FMM for the Salt Water System. Having
shown that FMM and PME vyield the same numerical accuracy
for the potential energy for a simple periodic system, we switch
to a more typical MD setting, namely the periodic salt water
box with 50 675 atoms. For this system, we used a reference
solution computed with the FMM in double precision using p
=50and d = 0.

The colored histograms in Figure 9 show the errors in the
Coulomb forces for various FMM and PME parameters. For

FMM double PME double

FMM single

PME single

high

depth 0

extreme

maximal

PME settings:

r,=1.0 nm, s=0.12 nm, rtol 104, order 4

[ J r,=1.2nm, s=0.10 nm, rtol 106, order 6
r.=1.5nm, s=0.08 nm, rtol 108, order 8
r.=4.0 nm, s =0.04 nm, rtol 1014, order 12

x,y,z force components (kJ/mol/nm)

Figure 9. Accuracy of FMM and PME Coulomb forces for a snapshot
of the 50 675 atom periodic salt water system for double precision
(left two panels) and single precision (right two panels). Black
histograms show distributions of actual forces (in absolute values).
For FMM, colored histograms show distributions of absolute errors in
forces for multipole approximations p = 2—50 at d = 3. For PME,
values for four representative parameter sets are shown color coded
(see legend). Note that the black force histograms were multiplied by
0.9 to fit in the panels. The black outline in the FMM panels shows
the error for a direct evaluation of all interactions that are in the
simulation box (d = 0) combined with a p = 50 (for double precision,
p = 20 for single) multipole approximation for the surrounding
periodic images.

PME, we selected four different parameter sets, two of which
are representative for typical MD settings, another which
pushes the parameters toward maximum accuracy, and an
intermediate one. The “default” set uses the GROMACS
default values of PME parameters, which are typical settings for
many biomolecular simulations, i.e., a Coulomb cutoff of r, =
1.0 nm with a PME grid spacing of s = 0.12 nm and a B-spline
interpolation order of 4. The “high precision” set uses r, = 1.2
nm with s = 0.1 nm and an interpolation order of 6. We also
test a “maximal” parameter set using the largest possible cutoff
that still respects the minimum image convention (r. = 4.0
nm) with s = 0.04 nm and an interpolation order of 12, which
is the highest order supported by GROMACS. The “extreme”
parameter set yields a precision between the “high” and
“maximal” settings; see the legend of Figure 10. For each of the
four PME parameter sets we have selected the ewald-rtol
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Figure 10. Coulomb energy error for various PME parameters, as in
Figure 8but for a snapshot of the salt water system for double
precision (solid lines with large circles) and single precision (dotted
lines with darker small circles). For each combination of r, s, and
PME order, there is one value of the ewald-rtol parameter that
minimizes the PME error. The reference energy was determined using
a double-precision FMM calculation with p = 50 at d = 0. As almost
all energy errors are >107° for single precision, they were omitted
from the graph for the “maximal” parameter set (brown).

parameter such that it yields the minimal error in the Coulomb
energy in double precision, as summarized in Figure 10.

For the typical use case with single-precision forces, the
accuracy of the Coulomb forces for “default” PME parameters
is similar to that of FMM for p = 7 at d = 3. The “high
precision” PME parameters require an FMM with p = 14.

3.2.3. Periodic Boxes with Noncubic Geometry. With PBC,
our implementation is currently limited to cubic box shapes.
Noncubic simulation boxes require modified octree subdivi-
sion,”” as eq 2 converges only if ||x|| < [[xj|. As shown in
Figure 11A, this condition is always fulfilled for cubic boxes. A
slight deviation from cubicity, Figure 11B, does not violate this
condition, but a larger ratio s := [|x||/||x| affects the
convergence rate of the approximation. With decreasing s,
the approximation error decreases with |lx; — x| 'sP*! for
given p."” As a rough guideline, a rectangular box with a 1.2:1
aspect ratio should achieve an accuracy similar to that of a
cubic box with p = 8 (or p = 12), if the multipole order is
raised to p = 10 (or p = 25). Slight deviations from cubicity,
ie, a few percent, should however not markedly affect the
accuracy at constant p.

3.3. Energy Conservation with FMM. For NVE
simulations without temperature and pressure control, all
employed algorithms must be energy conserving to prevent a
gradual, unphysical heating (or cooling) of the simulation
system. But even when a thermostat is in place to absorb excess
heat, algorithms should in general not introduce or remove
significant amounts of heat from the system as that could cause
artifacts. In practice, however, slight deviations from perfect
energy conservation may be tolerated and, in fact, many of the
employed algorithms contribute (with positive or negative
sign) to an overall energy drift. The drift is caused by
accumulated numerical and integration errors due to, e.g., the
finite integration step size, the finite numerical precision, the
constraint algorithm(s), or the various approximations during
force calculations.

One such approximation is the pair lists for the Coulomb
and van der Waals interactions within the cutoff. For enhanced
performance, these lists are constructed from the cutoff plus an
added buffer region (called Verlet buffer) so that they do not
need to be updated every step. However, with list lifetimes > 1
step, even with such a radial buffer, occasionally a distant
nonbonded interaction may be missed, thus contributing to the
overall energy drift.>®

In contrast, for FMM-computed Coulomb interactions,
energy drift results from octree space discretization. Whereas
PME uses a smooth switching function between interactions
computed in direct versus reciprocal space, FMM particles
contribute either completely or not at all to an octree box.
Hence, particles crossing the octree box boundaries produce
small discontinuities in the forces over time.

When substituting PME with FMM, we need to make sure
that FMM does not increase the total energy drift. Therefore,
we have determined the energy drift over time in a typical,
mixed-precision simulation with PME and compared it to the
same simulation with FMM for various FMM parameters.
Figure 12 shows the drift of the total energy for the salt water
benchmark with FMM in comparison to PME with “default”
parameters (r. = 1.0 nm, s = 0.12 nm, fourth order
interpolation, ewald-rtol = 107*). With FMM, at the
depth that yields the highest performance (d = 3), the PME
default drift level is met for multipole orders p > 8. The values
of the total drift smaller than the black dashed line are due to
cancellation of the positive FMM contribution with negative
contributions as, e.g., result from the water SETTLE
constraints.”® Whereas with double precision and a large
enough Verlet buffer, the total drift can be reduced to <1077
kJ/mol/ps per atom for both PME and FMM (see Figure 11 in
Kohnke et al.””), typical mixed-precision MD settings yield
drifts of (5—8) X 107> kJ/mol/ps per atom. Regularizing the
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Figure 11. Chosen strict octree subdivision requires the simulation box to be approximately cubic; otherwise the convergence criterion is not
fulfilled. (A) Exactly cubic box; (B) slightly noncubic box; (C) extremely noncubic box. A source particle x; and a target particle x; are positioned in
a way that maximizes the ||x||/||x|| ratio reflecting the worst-case scenario.

6944

https://dx.doi.org/10.1021/acs.jctc.0c00744
J. Chem. Theory Comput. 2020, 16, 6938—6949


https://pubs.acs.org/doi/10.1021/acs.jctc.0c00744?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00744?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00744?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00744?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00744?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00744?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00744?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00744?fig=fig11&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00744?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

= = PME default

3
£
<

>

2

[

<

[
2
S

0.0 0.5 1.0 1.5 2.0
time (ns)

-~ 1072 +—w 3

é ®.,‘U 3 — — PME default
E 10—3 i @ ® ©,

2 ’

£ 107 5 . :

© I O I O,

— 5 © o 5

g 105 4 L

£ ®

© 10_6 T T T T T T

2 4 6 8 10 12

multipole order p

Figure 12. Drift of total energy at typical mixed-precision settings for
the periodic salt water system. Dashed black lines show the total (in
this case negative) energy drift with PME (At = 4 fs, “default” PME
parameters as given in Figure 9, default Verlet buffer tolerance of
0.005 kJ/mol/ps). (top) Evolution of total energy with FMM at depth
3 (red) compared to PME (black). (bottom) Absolute drift of total
energy derived from a linear fit. At depth d = 3 (encircled numbers),
which results in optimal FMM performance for this system, for p > 8,
the positive drift component from the FMM does not lead to an
increased total drift.

FMM could help to meet the energy conservation require-
ments of MD simulation at even lower p, as shown by
Shamshirgar et al.*”

3.4. Performance of GPU FMM in GROMACS.
3.4.1. FMM vs PME Performance. With previous tests we
have established that the FMM with p = 8 and d = 3 achieves
the same approximation quality as the PME with “default”

parameters (see Figure 9). Therefore, we compared the
performances of the two methods at these parameters.

We first determined the FMM performance as a function of
p and d for simulations in mixed precision (Figure 13). At p =
8, the salt water and multidroplet benchmarks achieve 153 and
72 ns/day, respectively. For both benchmarks d = 3 maximizes
the performance. However, the scaling behaviors with respect
to p notably differ when comparing both systems.

The inhomogeneity of the particle distribution in the
multidroplet system changes the near field to far field
calculation intensity ratio. Clustered particles occupy only a
few FMM boxes; hence, for the far field, the empty boxes are
skipped to enhance performance. We can observe that
performance dependency on p is significant only for higher
multipoles as the calculation is dominated by a very large
number of directly interacting particles clustered into only a
few boxes.

Figure 14 shows a performance comparison between FMM
and PME for both systems. For the periodic salt water system,
GROMACS with GPU FMM achieves about a third of the
GPU PME performance. The situation reverses for the strongly
inhomogeneous multidroplet system: here, FMM outperforms
PME by more than a factor of 2.

We finally compared the FMM and PME scaling behaviors
with respect to the number of particles for N = 3000-—
30000 000. To ensure optimal scaling, we determined the
proper FMM depth for each system size at p = 8. As can be
seen in Figure 15, for both methods we can identify two
different slopes with polynomial scaling O(N“), where a
describes the slope of the curve. For small systems (N <
30000), a is approximately 0.5. This indicates that with
growing N in this region the GPU utilization increases leading
to a better scaling behavior than linear. For N > 30 000 both
methods achieve @ & 1 on the Tesla V100 GPU with 32 GB
memory in the entire tested particle range. However, when the
RTX 2080Ti GPU with 11 GB memory is used, the scaling
begins to worsen already by ~300000 particles. Here the
FMM scales slightly better (@ = 1.02) whereas the PME
achieves @ = 1.08, indicating a performance decrease due to
higher memory requirement.
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Figure 13. GROMACS performance with FMM electrostatics for the S0 675 atom periodic salt water system (left) and for the 108 663 atom
aerosol/multidroplet benchmark (right). Encircled numbers indicate FMM tree depth. With p = 8 as indicated by the dashed vertical line, FMM
offers an accuracy of the electrostatic interactions that is comparable to the “default” PME parameter set (i.e., r. = 1.0 nm, PME grid spacing s =
0.12 nm, fourth order interpolation, see Figure 9). Benchmarks were run with 20 OpenMP threads on the CPU.
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Figure 14. FMM versus PME performance in GROMACS for salt water (top) and multidroplet (bottom) benchmarks. Settings were chosen such
that PME and FMM vyield similar accuracies of electrostatic forces as well as comparable energy drifts. FMM used p = 8 and d = 3, whereas PME
used the “default” parameter set (r, = 1.0 nm, PME grid spacing s = 0.12 nm, fourth order interpolation, see Figure 9). For the multidroplet system,
for optimal PME performance, both r, and s were scaled by a factor of 2.943, which leaves the PME accuracy essentially unchanged.
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Figure 15. FMM and PME scaling with respect to system size N for
up to 268 million charges. Benchmarks were run on an NVIDIA Tesla
V100 GPU with 32 GB RAM (solid lines) and on an RTX 2080Ti
GPU (dashed lines). Blue (single precision) and orange (double
precision) colors denote FMM standalone timings for the random
charge benchmark (left scale) with depths d = 1—6 (encircled
numbers) and multipole order p = 8, whereas the lower and upper
boundaries of the shaded regions indicate timings for p = 7 and p = 9.
Gray and dark blue lines show wall clock time per MD step (left
scale) and resulting GROMACS performance (right scale) for PME
(gray stars) and FMM (blue circles) for water boxes of different sizes.
GROMACS benchmarks were run on a 10-core E5-2630v4 node with
RTX 2080Ti GPU (dashed lines) and on a 20-core Xeon Gold 6148F
with V100 GPU (solid lines) with all nonbonded interactions
offloaded to the GPU.

From the FMM standalone tests, also shown in Figure 15,
we can clearly see that our FMM is tightly integrated into the
GROMACS time stepping over the whole tested N range, as
the runtimes of the FMM with GROMACS are not
significantly longer than the FMM standalone runtimes.

Furthermore, on the Tesla V100 GPU, with the standalone
FMM implementation we were able to run performance tests
for an even larger number of particles as, in contrast to PME,
where the simulation box size is limited by the available
memory, FMM is limited only by the number of particles.
Figure 15 shows that standalone FMM scales linearly up to
/270 000 000 and =160 000 000 particles in single and double
precision, respectively. The ability to perform efficient double-
precision calculations on a GPU introduces a new asset as
GROMACS is limited to run double-precision simulations
only on a CPU.
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3.4.2. Comparison to Other FMM Implementations.
Finally, we compared the performance of our implementation
with that of GemsFMM,” which is another GPU FMM
implementation written in CUDA. It uses spherical harmonics
for the far field evaluation and O(p*) operators to shift and
transform the moments. Unfortunately, we were unable to find
any other complete GPU FMM implementations (i.e., that
compute both the far field and the near field) that can be
tested and provide verifiable results.

Figure 16 compares FMM runtimes for particle numbers N
= 10*-10". The optimal depth for each N was chosen

—— GemsFMM
1000 —e— this work
------- FEON)
m
§ 100
[J]
£
=
10
1
10% 10° 106 107
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Figure 16. Performance of our FMM (blue) compared to the
GemsFMM implementation (red). Shown are the average runtimes
for a single complete FMM evaluation (far field plus near field) at p =
8 on an NVIDIA RTX 2080 GPU. The black dashed line depicts
linear scaling.

separately for each implementation to ensure optimal perform-
ance. Both implementations show a linear scaling with respect
to N. The FMM implementation described in this work
outperforms GemsFMM by a factor of 5.5 to 13.

4. CONCLUSIONS AND OUTLOOK

Here we have assessed the accuracy and performance of our
GPU FMM described in detail by Kohnke et al’* We
demonstrated that our implementation provides correct
electrostatic energies and forces for single and double
numerical precisions by comparison to high-precision refer-
ence solutions for open and periodic systems. Using bench-
mark systems of various sizes and compositions, ranging from
3000 to 286 000000 particles, we measured and compared
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FMM and PME performances in GROMACS on up-to-date
GPU models.

As a prerequisite to calculating Coulomb interactions in MD
simulations with the FMM, as well as for a proper performance
comparison, we have determined the FMM parameters that
yield results as accurate as those with typical PME settings. For
a representative biomolecular simulation system of about
50000 particles in size, a multipole order of 7 yields a similar
accuracy for the Coulomb energies and forces as standard
PME parameters in a mixed-precision simulation. The error
distribution for the Coulomb forces is comparable for both
solvers. Limiting the energy drift to the level present in a
standard PME simulation requires raising the multipole order
to about 8.

For typical biomolecular systems (proteins in solution) of up
to 30 million particles in size, the GROMACS 2019
performance with our CUDA FMM is about a third of that
with PME on a single GPU node. However, for systems with
larger dimensions and nonuniform particle distributions, such
as our ~100 000 atom aerosol/multidroplet example, FMM
easily outperforms PME already at small particle numbers.
Here, the huge memory requirements for the FFT grid become
the limiting factor for PME.

GemsFMM is a completely independent FMM implementa-
tion, which also runs exclusively on the GPU and which uses
the same operators for the far field evaluations as our
implementation. Our GPU FMM outperforms GemsFMM
by a factor of about 8. Unfortunately, further comparisons were
not possible because we did not find additional ready-to-use
FMM codes that provide verifiable results.

One of the drawbacks of the FMM is that it does not
intrinsically allow for noncubic simulation boxes with periodic
boundaries. For noncubic boxes the governing octree structure
of the FMM would have to be redesigned,é0 requiring further
optimizations if the level of achieved performance is to be
maintained. Moreover, for typical biomolecular simulation
systems of proteins in solution, the single-node GPU FMM is
still slower than the highly optimized GROMACS GPU PME
implementation; however, single-node GPU FMM can handle
larger particle systems and larger simulation boxes.

One of the advantages of FMM electrostatics over PME is
that also open boundaries can be handled; however, the
FMM’s main strength will become apparent on larger exascale
clusters of GPU nodes, where PME scaling breaks down due to
its inherent communication bottleneck. In combination with
the demonstrated high single-GPU performance of this
implementation, the performance of a parallelized FMM
should eventually beat that of PME. For large sparse systems,
FMM already outperforms PME on a single GPU. Addition-
ally, due to FMM’s flexible octree structure that allows one to
easily evaluate local energy differences, A-dynamics calcu-
lations, as needed for MD simulations at constant pH, can be
implemented without much computational overhead.*”

The next step toward higher FMM performance will be a
parallel implementation for multiple GPUs. As the FMM
communication requirement is small compared to that of
PME, we expect a parallelized FMM to scale significantly
better than PME with the number of GPUs. Additionally,
harnessing new CUDA programming features such as
persistent threads and CUDA graphs should be beneficial
also for single-node GPU performance. Considering large
sparse systems, additional optimizations should yield even
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more speedup because the current implementation was only
slightly adopted to handle nonuniform particle distributions.

B APPENDIX

A modified version of GROMACS that includes our CUDA
FMM is available for download; please follow the instructions
at https://www.mpibpc.mpg.de/grubmueller/sppexa.
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