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Free Energy Landscape of Rim-Pore Expansion in Membrane Fusion
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ABSTRACT The productive fusion pore in membrane fusion is generally thought to be toroidally shaped. Theoretical studies
and recent experiments suggest that its formation, in some scenarios, may be preceded by an initial pore formed near the rim of
the extended hemifusion diaphragm (HD), a rim-pore. This rim-pore is characterized by a nontoroidal shape that changes with
size. To determine this shape as well as the free energy along the pathway of rim-pore expansion, we derived a simple analytical
free energy model. We argue that dilation of HD material via expansion of a rim-pore is favored over a regular, circular pore.
Further, the expanding rim-pore faces a free energy barrier that linearly increases with HD size. In contrast, the tension required
to expand the rim-pore decreases with HD size. Pore flickering, followed by sudden opening, occurs when the tension in the HD
competes with the line energy of the rim-pore, and the rim-pore reaches its equilibrium size before reaching the critical pore size.
The experimental observation of flickering and closing fusion pores (kiss-and-run) is very well explained by the observed
behavior of rim-pores. Finally, the free energy landscape of rim-pore expansion/HD dilation may very well explain why some
cellular fusion reactions, in their attempt to minimize energetic costs, progress via alternative formation and dilation of micro-
scopic hemifusion intermediates.
INTRODUCTION
Over the past 20 years it has become widely accepted that
membrane fusion proceeds through a hemifusion state
which eventually develops into a fusion pore. The structure
of the fusion pore, which is experimentally characterized by
the measurement of electric conductance or the observed
flux of fluorescence dye, is generally thought to be toroidal.
Fusion pores have been observed to either close (kiss-and-
run) (1) or rapidly expand after a metastable flickering
stage (2).

Extended hemifusion diaphragms (HD), in which the
two vesicular compartments remain separated by a single
lipid bilayer, have been observed in fusion experiments
(3). In such a scenario, the initial (fusion) pore is formed
near the rim of the extended HD, a rim-pore (3–8). Forma-
tion and subsequent expansion of a rim-pore has been
observed in a 2010 experiment (see the Supporting
Material in Nickolaus et al. (3)). The free energy barrier
of rim-pore nucleation has been estimated in molecular
simulation studies (5–8). In contrast to the toroidal
fusion pore (TFP) (9–12), however, little is known about
the free energy landscape of subsequent rim-pore expan-
sion, i.e., dilation of excess HD material, before TFP
formation.

Recently, we applied coarse-grained molecular-dy-
namics (MD) simulations to simulate the SNARE-medi-
ated fusion process between a tensionless bilayer and
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vesicle (13). In these simulations the formation of a rim-
pore was observed (Fig. 1). This nucleated rim-pore re-
mained stable over 1 ms before it eventually expanded
into a TFP. Importantly, the observation of such a flick-
ering stage shows that there must be a subsequent expan-
sion barrier. This barrier further suggests that the lateral
tension in the HD, which results from the curvature stress
in the vesicle, does not suffice to (fully) expand the rim-
pore. We emphasize that fusion between a vesicle and a
(finite-sized) flat membrane builds up asymmetry in the
fused membrane(s) (i.e., differences in leaflet area). This
building up or presence of membrane asymmetry is com-
mon in in vitro and possibly even in vivo fusion reactions.
Such an asymmetry alters the membrane’s spontaneous
curvature and opposes expansion of both the HD and
TFP (Fig. 1). As a result, the stresses subjected to the
HD may not suffice to subsequently expand the rim-
pore. Thus, aside from the nucleation of the rim-pore, its
subsequent expansion also forms an essential free energy
barrier in membrane fusion.

Motivated by the observation of a metastable rim-pore
in our simulations, we will derive a simple analytical
free energy model to explore the free energy landscape
of subsequent rim-pore expansion. Here, we will study
the shape and corresponding free-energy of the rim-
pore; we will investigate how its expansion barrier de-
pends on the size of the HD; and we will calculate the
tension required to expand the rim-pore. Finally, we
will compare our results with the observations in fusion
experiments.
http://dx.doi.org/10.1016/j.bpj.2014.08.022
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FIGURE 1 Example of the SNARE-mediated fusion process between a 20-nm-sized lipid vesicle and a flat lipid membrane patch (30 � 30 nm). A rim-

pore is formed in the 8-nm-sized extended hemifusion diaphragm (HD). Expansion of the rim-pore is associated with a metastable flickering stage. Figure

adapted from Risselada and Grubmüller (13). To see this figure in color, go online.
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MATERIALS AND METHODS

Free energy model of the rim-pore

Fig. 2 shows our model of the rim-pore.

The shape and free energy of a rim-pore with area A can be obtained by

minimizing the free energy integral of

Fðh; h0Þ ¼
Z a

�a

�
le

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdh=dxÞ2

q

þ �
lfp � lhd

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdf =dxÞ2

q �
dx:

(1)

Under the constraint
FIGURE 2 Model of the rim-pore, where A is the area of the rim-pore.

(Thick blue line) Circumference of the HD, f(x). (Red line) h(x) is the e-

line, i.e., the free membrane edge, with line tension le. The free membrane

edge is connected to the circumference of the HD at h(a) ¼ f(a) and

h(�a) ¼ f(�a). To see this figure in color, go online.
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A ¼
Z a

�a

½hðxÞ � f ðxÞ�dx ¼ const;

where h(x) is the shape equation of the free membrane edge and f(x) the

(known) shape of the HD-rim,

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
hd � x2

q
:

The boundary conditions x¼ a and x¼�a are the two contact points of the

membrane edge with the rim of the TFP (the circle). The physics is analo-
gous to the process of wetting in two dimensions, where a droplet is at rest

on an interacting plane (Fig. 2). Because F depends on h(x) and h0(x), and
not explicitly on x itself, the Euler-Lagrange equation reduces to the so-

called Beltrami identity (http://mathworld.wolfram.com/BeltramiIdentity.

html). After simplification and substitution of Eq. 2 in the Beltrami identity,

one obtains the differential equation

dh=dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2e �

�
lhðxÞ � ��

lfp � lhd
�
C1 þ lC2 � C3

��2�
lhðxÞ � �

lfp � lhd
�
C1 þ lC2 � C3

�2
vuut ;

(2)

where l is a Lagrange multiplier required to satisfy the area constraint. The

constants are
C1 ¼ �
lfp � lhd

�ðR=aÞarcsinða=RÞ;
C2 ¼

�
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p
þ R2arcsinða=RÞ � A

�
=2a;
and C3 is the constant introduced by the Beltrami identity. The solution of

Eq. 2, i.e., the shape of the free membrane edge, is the circle

x2 þ ðy� y0Þ2 ¼ ðle=lÞ2; (3)

where y0 is
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðle=lÞ2 � a2

q
:

Making use of the Young equation (14),
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lecosðqÞ ¼ lhd � lfp;

where q is the (relative) contact angle between the e-line and the hd/fp-line,

there exists only one circle h(x), which intersects with the circle f(x) at the

coordinates x ¼ a, x ¼ �a for a given contact angle. The Young relation

yields the derivative of the circle h(x) in the coordinate 5a, f(a), which al-

lows direct calculation of its radius and offset. The free energy of the cor-

responding rim-pore is subsequently obtained by substitution in Eq. 2.

The area and free energy function of the rim-pore in the vicinity of the

expansion barrier, where h(x) can be approximated by a straight line be-

tween the points –a,h and a,h, can be modeled as a parametric function

of q (where q is 0 / p):

AðqÞ ¼ R2
hdðq� sin q cos qÞ; (4)

FðqÞ ¼ 2Rhd

�
lfp � lhd

�
qþ 2Rhdlesin q� sA: (5)
In this work, we have used le ¼ þ5 kBT/nm and lfp � lhd 51 kBT/nm.

The reported values in picoNewtons are rounded. We have neglected a

possible (small) contribution coming from the two contact points, i.e., the

point where the membrane edge is connected with the TFP. Its relative

contribution to the free energy is expected to become rather insignificant

when the HD becomes large. We further stress that these models are unable

to describe the actual nucleation process of the rim-pore (A z 0).

F* and A* follow from the maximum in Eq. 5: dF/dq¼ 0. Equation 5 has

a maximum at

q� ¼ arccos

	�lfp þ lhd

le



:

Because we study the rim-pore under tensionless conditions (s¼ 0), sub-

stitution of q* in Eq. 4 and Eq. 5 yields

F�ðRhdÞ ¼ 2Rhd
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	�lfp þ lhd

le


9=
;: (7)

Finally, a first approximation for the effective tension required for rim-

pore expansion is obtained by differentiating Eq. 4 and Eq. 5 with respect

to q. This approximation is most accurate in the vicinity of the expansion

barrier:

seffðqÞ ¼ dF

dA
¼ dF=dq

dA=dq
¼ lfp � lhd þ lecosq

Rhdsin
2q

: (8)

The exact solution (i.e., taken into account the variable shape of the e-

line) can be obtained numerically by calculating the derivative of the

F(A) plot obtained by solving the integral in Eq. 2. The presence of tension

is not expected to affect the shape of the rim-pore, because the surface free
energy of the pore, sA, only depends on its area and not on its shape. The

latter is, for example, quite in contrast to a tensed rope that bends because of

gravity (a catenary). Finally, we note that lfp � lhd ¼ 0 / A* ¼ 1/2 Ahd.

Therefore, one can experimentally observe whether lfp � lhd is positive or

negative. For example, in Fig. S1 in Nickolaus et al. (3), the HD is clearly

under tension whereas the rim-pore is larger than 1/2 Ahd. We therefore

chose lfp � lhd ¼ þ1 kBT/nm or ~4 pN to estimate the required effective

tension (Fig. 5).
Ising model

We performed grid Monte Carlo simulations to obtain the solution of our

two-dimensional three-spin Ising model at constant pore area (spin magne-

tization). The total grid was 80 � 80 ¼ 6400 elements, where the circle

contained 4872 grid elements. The energy of an Ising spin configuration

is given by E ¼ �JSdijsisj, with coupling constant J ¿ 0 (the sum runs

over the eight nearest neighbors). If the neighbors are direct neighbors,

dij ¼ 1. If the neighbors are diagonal neighbors, dij ¼ 0.5. The spin value

of a fusion pore area element was s ¼ �1, of an HD element s ¼ þ1,

and the spin of the circular boundary is s ¼ 0. These interaction parameters

represent the scenario where lfp � lhd ¼ 0. To conserve the area of the pore

a randomly selected HD element was exchanged with a randomly selected

pore element according to the Metropolis criterion. We performed the sim-

ulations below phase transition temperature, J/kBT ¼ 2. We performed

5,000,000 MC steps for each pore area, where we defined equilibrium by

a plateau in the potential energy of the system.
Molecular simulations

The MD simulations results shown in this article are purely illustrative.

We performed our fusion simulations in the presence of four SNARE com-

plexes. The 20-nm-sized POPE vesicle consisted of 2217 lipids, the 30 �
30 nm2 flat target membrane of 3200 lipids, and 186,363 solvent beads

were present. The simulations described in this article were performed

with the simulation package GROMACS, Ver. 4.0.5 (15). We used the

modeling software MARTINI, Ver. 2.1 (16,17) to simulate the lipids and

amino acids. The system was coupled to a constant temperature bath

(18), T ¼ 310 K, with a relaxation time T T of 1.0 ps. The time step used

in the simulation was 20 fs. Shifted potentials were used to describe both

van der Waals and electrostatic pairwise interactions. In both cases, the

neighbor-list cutoff was 1.2 nm and these potentials were gradually shifted

to zero when the pairwise distance exceeded 0.9 nm. The neighbor-list was

updated every 10 simulation steps. The pressure was weakly coupled (18) to

1 bar with a relaxation time T p of 0.5 ps. In analogy to the other studies

done with the MARTINI model, the timescales quoted in this work were

scaled by a factor of 4 to correct for the four-times faster diffusion rates

of water and lipids found in the coarse-grained model (16), with respect

to reality. These corrected timescales, however, remain an approximate.

The starting structure of the neuronal SNARE complexes present in our

simulations was derived from the x-ray-resolved structure (PDB:3IPD) of

the fully assembled SNARE complex by pulling the trans membrane regions

(TMRs) of a solvated SNARE complex apart from one other. For simplicity,

ourmodel of the SNAREcomplex only included the resolved SNAREmotifs

and the complete TMRs of syntaxin and synaptobrevin, consisting of rat syn-

taxin-1A (residues 188–288), SNAP-25 without the linker region (residues

7–82 and 141–200), and synaptobrevin-2 (residue 26–116). The last two

amino acids of the TMR of Syntaxin 1A (residues 287 and 288), which

were not resolved in the x-ray structure, were included additionally.
RESULTS

Fig. 4 A shows a rim-pore in more detail, and also motivates
the simple analytical model developed below. The geometry
Biophysical Journal 107(10) 2287–2295
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involves three different types of boundary lines: the hd-line,
i.e., the junction between the diaphragm and the vesicular
membrane (green); the fp-line, i.e., the upper boundary of
the rim-pore corresponding to the partially fused bilayers
(blue); and the e-line, i.e., the lower boundary of the rim-
pore provided by the free edge of the diaphragm (red).
The total free energy of this system can be described by

F
�
Lfp; Le;A

� ¼ �
lfp � lhd

�
Lfp þ leLe � sA; (9)

where L values are the lengths and l values are the line ten-
FIGURE 3 Grid Monte Carlo simulation of rim-pore expansion as a

function of the relative pore area under the condition lfp � lhd ¼ 0.

(Blue) Rim-pore area; (green) remaining HD; and (gray) boundary mem-

brane. Note that the free membrane edge adopts concave, linear, and convex

shapes during expansion. To see this figure in color, go online.
sions (forces) of, respectively, the fp-line, hd-line, and
e-line. A is the area of the rim-pore, and s is the lateral ten-
sion in the HD. In this model, F is a function of Lfp, Le, and
A, which implies that the rim-pore can optimize its shape to
optimize its free energy. Note that lfp� lhd is in fact the free
energy difference between the HD and (similar-sized) TFP
normalized by its circumference. Due to the additional
cost of creating a three-bilayer junction, lfp � lhd can
become (slightly) negative (9). This implies that the rim
of the TPF favorably replaces the HD rim. However,
creating the free membrane edge is energetically costly, le
>> 0 and lfp � lhd << le. This implies that the pore will
adopt a shape that represents the best trade-off between
the perimeter of the costly free diaphragm edge, Le, and
the (relatively) favorable toroidal fusion pore, Lfp. This
free energy balance is confirmed by the direct experimental
observation of a pore that remains at the rim of the HD (see
Fig. S1 in Nickolaus et al. (3)).

The shape of the rim-pore that represents the optimal en-
ergy minimum can be determined by the Euler-Lagrange
equation of the respective variational problem (see Appen-
dix). It is interesting to note that the above model is similar
to the one that describes the formation of lipid domains
within the contact area of adhering membranes (19), or
the wetting of a curved/deformed surface in two dimensions
(20). To study the expansion of a nucleated rim-pore at van-
ishing HD tension (s ¼ 0) in more detail, we assume, for
simplicity, that the HD has a circular shape. We further as-
sume that the size and shape of its cross section does not
change much during expansion of the rim-pore up to the
critical pore size, which defines the position of the expan-
sion barrier of interest.

Closer analysis of our simulations (1) suggests that this
assumption is indeed well justified; here, the diameter and
shape of the HD seems not significantly affected by the for-
mation/expansion of the rim-pore. Relative magnitudes for
lfp � lhd and le can be estimated from Katsov et al. (9).
With þ5 kT/nm or þ20 pN being a commonly cited value
for the experimentally derived line-tension of le (21), we
choose lfp � lhd ¼ 51 kT/nm or 54 pN. We emphasize
that the precise values chosen for these parameters do not
affect the main conclusions we will be able to further
draw below. Finally, we note that our rim-pore undergoes
a quasi-static expansion. In reality, the membrane viscosity,
Biophysical Journal 107(10) 2287–2295
and to a lesser extent the solvent viscosity, will additionally
oppose dynamic expansion of the rim-pore.

Fig. 4 B graphically illustrates the pathway of rim-pore
expansion under the condition lfp � lhd ¼ þ4 pN (see
Appendix for further detail). The here-derived pathway is
quite similar to the one observed in experiments (3). When-
ever lfp � lhd < le,

1. The pore is attracted to the HD rim;
2. The pore is not circular overall in shape; and
3. The pore’s free energy is lower than that of an isolated

circular pore (i.e., the driving force of the observed
attraction to the rim).

The contact angle between the e-line and the fp-line is a
direct consequence of their line-tensions (i.e., forces); me-
chanical equilibrium requires that the net force on the
three-junction point equals zero. This force balance is satis-
fied by the Young equation

lecosðp� qÞ ¼ lfp � lhd;

where q is the (relative) contact angle between the e-line and
the fp-line. A negative value of lfp � lhd results in q < 90�

and a positive value in q > 90�. Because the three line-ten-
sions are a constant/conserved material property, expansion
of the pore conserves the contact angle of the e-line with
the circular fp-line (14). Therefore, the shape of the e-line
becomes shallower during expansion and is eventually
described by a straight line (the expansion barrier). Further
expansion of the rim-pore in fact inverts its shape. The rela-
tive location of this shape transition depends on the magni-
tude of lfp � lhd (Fig. 4 B). The expansion of the rim-pore
can be alternatively visualized by Monte Carlo simulations
(Fig. 3).
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Fig. 4 C compares the free energy of the expanding rim-
pore (Rhd ¼ 4 nm, le ¼ þ20 pN) with a regular, circular
pore. The expansion of a (centrally located) circular pore
is energetically up-hill up to the point where the HD has
completely dilated (Rpore ¼ Rhd ). In contrast, the free en-
ergy profile of the rim-pore is only energetically up-hill
up to a critical pore size, A* (Fig. 4 C). Once the correspond-
ing barrier F* is surpassed, subsequent dilation of the HD
via expansion of the rim-pore is spontaneous. We emphasize
that the shape of the free diaphragm edge Le is very well
approximated by a straight line in the vicinity of the expan-
sion barrier. The expansion barrier stems from the fact that
the growth of the free diaphragm edge (e-line) decreases and
eventually reverses when the rim-pore expands. In the
regime where the expansion of the rim-pore occurs sponta-
neously, i.e., after the expansion barrier, the now compres-
sive force on the HD and concave shape of the e-line is
expected to result in either up- or downward buckling of
the remaining HD (see Fig. S1 in Nickolaus et al. (3)).

In contrast to the free energy profile of the TFP (9), the
profile of the rim-pore does not display a shallow local
free energy minimum that could result in pore-flickering
(Fig. 4 C). However, so far our model did not include the ef-
fect of lateral tension on pore growth.

In a stressed membrane at constant membrane area, a
formed pore can initially grow spontaneously despite an
unfavorable increase in line-energy because its growth
simultaneously reduces the surface free energy of the
stressed membrane. Metastability is reached when these
two opposing free-energy contributions balance each other
A C

B

(22). Similarly, the metastable rim-pore observed in our
simulations (Fig. 1) is most likely explained by the presence
of an initial tension in the HD that competes with the line
energy of the rim-pore. However, in contrast to a circular
pore, the rim-pore may reach its equilibrium size near an
expansion barrier. Therefore, in correspondence with our
simulations (Fig. 1), such a rim-pore can display a meta-
stable flickering stage before sudden expansion.

We further note that the free energy profile of the rim-
pore displays a large relatively flat regime near F*, espe-
cially when the HD becomes larger (Fig. 5). Therefore,
substantial size fluctuations (i.e., conductance fluctuations)
may occur as a result of thermal fluctuations (flickering).
On the other hand, the flickering rim-pore will close if the
tension on the HD dissipates during the fusion reaction,
for example, due to an increase in leaflet asymmetry in
the bulk membrane. The latter would, for example, occur
in the presence of multiple (hemi)fusion events. Thus, the
experimental observation of flickering fusion pores and sub-
sequent opening/closing (1,2,9) may very well relate to rim-
pores as well as TFPs (9–11).

A question that naturally arises is whether fusion proteins,
such as SNARE molecules, may actively contribute to rim-
pore expansion. Indeed, bystander fusion proteins may exert
a squeezing force on the remaining HD rim via the C-
termini of their trans membrane domains. Such a force
causes thinning of the HD rim (hydrophobic mismatch),
and thereby increases the line tension lhd such that lfp �
lhd decreases. The latter decreases both the barrier F* and
the critical pore size A* (Fig.4 C). Thus, bystander fusion
FIGURE 4 (A) A rim-pore in detail (13). The ge-

ometry involves three different types of boundary

lines: the hd-line, i.e., the junction between the dia-

phragm and the vesicular membrane (green); the

fp-line, i.e., the upper boundary of the rim-pore

corresponding to the partially fused bilayers

(blue); and the e-line, i.e., the lower boundary of

the rim-pore provided by the free edge of dia-

phragm (red). (B) Pathway of rim-pore expansion

as a function of relative pore area under the condi-

tions lfp � lhd 51 kT/nm or 54 pN (for further

detail, see Appendix). (Thick, black central circle)

Circumference of the HD (i.e., the hd-line and the

fp-line). The shape of the e-line is represented by

the intersecting, colored circles. The rim-pore

expansion proceeds from top to bottom. (C) Free

energy of the expanding rim-pore for different

values of lfp � lhd. (Black line) Regular circular

pore. (Dashed lines) Free energy of a rim-pore;

(straight line) e-line. To see this figure in color,

go online.
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FIGURE 5 Approximation of the effective, external tension, (dF/dA),

required to expand the rim-pore for different values of Rhd (see Appendix

and Eq. 9). (Thin black line overlaying purple line) Exact numerical solu-

tion for Rhd ¼ 500 nm. To see this figure in color, go online.
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proteins may actively enhance expansion of the rim-pore,
and thereby affect the conductivity of the fusion pore (1).

Does the expansion barrier depend on the size of the
formed HD? To address this question, we calculated the bar-
rier of rim-pore expansion, F*, as a function of HD size, Rhd

(see Eq. 6). We found that F* is linearly proportional to Rhd.
The critical pore size, A*, increases quadratically with
Rhd. The implications of such a scaling are substantial. For
example, even if lfp � lhd ¼ �8 pN, i.e., the HD is thermo-
dynamically rather unstable with respect to the toroidal
fusion pore, then F* ¼ 3.76 Rhd and A* ¼ 1.57 Rhd

2. There-
fore, a rim-pore formed in a micrometer-sized HD (Rhd ¼
500 nm) still faces a huge expansion barrier of almost
2000 kBT. Dilation of such an HD via expansion of an
isolated circular pore, however, is substantially more expen-
sive. The latter would require a huge free energy of 2pRhd�
le, which is >15,000 kBT. This explains why an extended
HD formed between two giant unilamellar vesicles is unusu-
ally stable, because the available bending energy, which is
8pk (z500 kBT) and is independent on vesicle size, does
not suffice to dilate the HD.

Intriguingly, even at micrometer length-scales, (sponta-
neous) rim-pore expansion has been experimentally ob-
served in the presence of an externally induced tension
(3). Here, an interleaflet tension was induced in the net nega-
tively charged outer leaflets of giant unilamellar vesicles by
introducing divalent charged counterions (electrostatic
condensation) (23). This interleaflet tension induces a sub-
stantial lateral tension in the microscopic HD, which is esti-
mated to be 10 mN/m (24). It is important to stress that the
free energy pumped into such a system is proportional to the
tension as well as the total microscopic leaflet area and
therefore, even at small tensions, the supplied free energy
can become huge, and much larger than the bending energy.

We estimated the tension on the HD required to expand a
rim-pore as a function of HD size. We note that the sign of
Biophysical Journal 107(10) 2287–2295
lfp � lhd can be obtained by experimental observation of an
expanding rim-pore. If lfp � lhd ¼ 0, the barrier is at A* ¼
Ahd/2. Thus, if the rim-pore seems larger than Ahd/2 while
the HD remains under tension, such as observed in the
experiment (3), then lfp � lhd > 0. Based on the obtained
microscopy images (3), Eq. 8, and Fig. 4 C, we take lfp �
lhd ¼þ4 pN as an approximation for the line tension in
the experiments.

Fig. 5 shows an estimation of the effective tension
required for rim-pore expansion, seff ¼ dF/dA, against the
normalized pore area, A/Ahd (see Eq. 9). Independent of
HD size, this tension is maximal at A¼ 0, i.e., the nucleation
of the rim-pore, and gradually decreases up to A* where it
crosses zero. We emphasize, however, that the barrier of
pore nucleation is not trivially derived from its line energy
(25), and our model is inaccurate at A/Ahd z 0.

Increasing the size of the HD relatively decreases the ten-
sion required for subsequent rim-pore expansion (Fig. 5). In
fact, tensions of ~0.01 mN/m suffice (lfp � lhd ¼ þ4 pN) to
expand a micrometer-sized HD during the largest part of its
expansion. For comparison, an externally applied tension of
0.1 mN/m is commonly reported as a large biological mem-
brane tension. Thus, despite the fact that the microscopic
rim-pore faces a huge free energy barrier against expansion,
expansion seems promoted by achievable tensions, and is
thus experimentally observed (3). Moreover, because the
effective tension is maximal near the regime of rim-pore
nucleation, an externally applied tension that suffices to
nucleate a rim-pore on relatively short timescales will
most certainly suffice to subsequently expand the rim-
pore, and a metastable rim-pore will not be observed (3,5–
7,26). In contrast, rim-pore nucleation in SNARE-mediated
fusion can occur on shorter timescales despite a low HD ten-
sion because nucleation is additionally facilitated by the
local forces that the SNARE molecules impose on the HD
via their trans membrane domains. Therefore, a metastable
rim-pore is more likely observed in SNARE-mediated
fusion where nucleation of the rim-pore more easily occurs
within the low tension regime (Fig. 1).
DISCUSSION

Kiss-and-run: rim-pore versus toroidal
fusion pore

In contrast to the process of rim-pore closing, which has
been observed in MD simulations (8), the process of TFP
closing directly relates to the process of membrane fission
where the inside of a fission neck (the TFP) is dehydrated
to form a stalk intermediate. Membrane fission, however,
is GTP-driven and requires the presence of Dynamin, which
forms a spiral around the neck of the TFP. The latter indi-
cates that complete closing of the TFP very likely faces a
substantial free energy barrier. The so-called kiss-and-run
events observed in synaptic fusion (1), where the fusion
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pore completely closes after opening, are difficult to
envisage for a TFP in the absence of the fission machinery.
Instead, in these systems the membrane tension may be suf-
ficiently low such that the nucleated HD can expand to a
metastable size before rupturing (5). A recent in vitro fusion
experiment illustrated that the survival of the HD severely
limits the rate of the synaptic fusion reaction (27). These ex-
periments further illustrated that the interplay among
SNARE molecules, Complexin, and Synaptotagmin-1 pre-
vents formation/stabilization of the HD (27). Corruption
of this pathway may lead to stabilization/expansion of the
nucleated HD and result in the here-described rim-pore phe-
nomena. Further, the presence of molecules that oppose
membrane rupture, such as, e.g., cholesterol, enhance sur-
vival of the nucleated hemifusion diaphragm and thereby
facilitate expansion of the HD toward a more metastable
size. Because the subsequent rupture of such an HD involves
rim-pore formation, the presence of cholesterol is thus ex-
pected to enhance the propensity of pore-flickering (28).
Finally, fluctuations in tension will discern between closure
or complete opening of the rim-pore.
FIGURE 6 Alternative pathways for the dilation of hemifusion interme-

diates. (A) A double HD or inverted micelle intermediate (IMI) formed dur-

ing fusion between a pure POPE membrane and vesicle. Note the conserved

amount of isolated lipid material that is entrapped within the inner leaflet of

the inverted micelle. Therefore, quite in contrast to the HD, the bulk mem-

brane is essentially unable to absorb excess IMI material. (B) Initial crack

present near the edge of the IMI, i.e., the four-bilayer junction. Propagation

of the crack will cleave off a deflated vesicle. To see this figure in color, go

online.
Formation and dilation of the microscopic
hemifusion diaphragm: implications for
biological membrane fusion

The estimated free energies at microscopic length scales rai-
ses the question whether cellular organisms, in their attempt
tominimize energetic costs, would favor a fusionmechanism
that proceeds via formation of amicrometer-sizedHDand re-
quires subsequent HD dilation. At these length scales the
bending energy stored in the membrane(s) would not suffice
to dilate the HD, and expansion of the rim-pore requires up to
several thousands of kBT. It is also important to note that the
excess area of the HD observed in, for example, vacuole
fusion is substantial with respect to the area of the bulkmem-
brane, and therefore the uptake of HD material by the bulk
membrane(s) would require a substantial additional free en-
ergy. Moreover, the formation/nucleation of an HD itself, as
well as its subsequent expansion toward amicroscopic size, is
also opposed by a similar, substantial free energy barrier
(9,23). It is very unlikely that biological membrane fusion
would spend a huge amount of energy to form a microscopic
HD only to spend another huge amount of energy for its
subsequent dilation. Thus, it is intuitive that biological mem-
brane fusion circumvents both the formation and subsequent
dilation of the (microscopic) HD.

The microscopic HD formed in homotypic vacuole fusion
has been observed to cleave off as a large deflated vesicle
that remains within the fused structure (29,30)—quite in
contrast to the process of rim-pore expansion observed in
recent experiments (3). The occurrence of an alternative
pathway in in vivo fusion is not coincidental nor surprising,
given the illustrated energy crisis of HD formation/dilation
on these cellular length scales.
There are three possible scenarios to explain the observed
dilation of an HD in homotypic vacuole fusion:

1. Curvature generating proteins, such as BAR-domains,
drive the expansion of the rim-pore, i.e., dilation of the
HD. In such a scenario, the deflated vesicle is a bud
formed in the HD (the process of membrane budding
and tubulation). However, such a scenario would be
extremely costly, because aside from expanding the
rim-pore, a large additional energetic cost would be
incurred in creating additional membrane curvature in
the HD.

2. The HD cleaves off as an isolated membrane disk via for-
mation/propagation of a crack formed along the rim of
the HD. In such a scenario, the deflated vesicle results
from the obtained isolated disk that folds up into a
vesicle (31–33). In principle, spontaneous crack propa-
gation can occur when lfp � lhd þ le > 0. However,
whenever le> 0, the system tends to minimize the length
of the free membrane edge and a rim-pore is formed. In
contrast, if le % 0, the disk will never fold up into the
observed vesicle (31,33). Moreover, the disk-to-vesicle
transition is expected to yield a spherical vesicle that is
under osmotic stress (34), rather than a deflated vesicle.

3. The formed internal vesicle does not result from an HD,
but from an alternative fusion intermediate (30).

We explore Scenario 3, because Scenario 1 faces a large
energy crisis, whereas Scenario 2 most likely results into a
reaction pathway that seems not to conform with the exper-
imental observation of an instantaneously formed deflated
vesicle (29,30). The experimental observations of vacuole
fusion further suggest that the formed HD is comprised of
two membranes, i.e., an extended inverted micelle interme-
diate (IMI) (Fig.6 A), rather than a single membrane (29,30).
MD simulations and self-consistent field theory in fact sup-
port the formation of such an intermediate (13,35,36). The
Biophysical Journal 107(10) 2287–2295
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formation of the deflated vesicle can be understood as a
crack that linearly propagates along the rim of the double
HD and which cleaves it off as a deflated vesicle (Wang
et al. (29), Wickner (30); and see Fig. 6 B). This explains
why the cleaved-off, deflated vesicle seems instantaneously
formed in the experiment (29). In such a scenario, formation
of the costly free membrane edge is not required because the
two membranes can associate into the relatively favorable
bent membrane, i.e., the rim of the deflated vesicle. During
propagation, the free energy of the crack changes simulta-
neously with

Lcrack

�
lfp � lIMI þ lves

�
;

where Lcrack is the length of the crack, and lfp, lIMI, and
lves are the line tensions of the toroidal fusion pore, dou-
ble-membrane junction, and vesicle rim, respectively.
Spontaneous crack propagation requires slfp – lIMI þ lves
< 0. In contrast to the HD, when lves% 0, the equivalent of
a rim-pore is not formed, because the bulk membrane is un-
able to absorb the entrapped, excess material of the IMI
(Fig. 6). Thus, crack propagation is the only scenario to
dilate an IMI without rupturing the individual membranes.
However, we emphasize that lIMI should be (initially)
negative to from a thermodynamically stable IMI, via a
so-called stalk elongation mechanism (13,35). We note
that lIMI < 0 corresponds to the induction of a (local) in-
verted hexagonal phase regime. The latter may very well
explain why the concentration of inverted hexagonal-phase
former membrane components increases along the perim-
eter of the contact interface before membrane fusion, form-
ing a so-called vertex ring (30). It is thus plausible that the
vertex ring is formed to both drive and guide the formation
and subsequent elongation of the stalk.

An important indication of stalk elongation is the occur-
rence of (transient) leakage during progression of fusion
(35,36). MD simulations suggest that rupture of one of the
encircled membrane fractions may occur before formation
of the IMI is completed, i.e., before the stalk has fully en-
circled the vertex ring (37). Such a premature rupture results
in leaky fusion (37). In correspondence with the IMI
pathway, the reaction pathway of vacuole fusion is rather
susceptible to leakage. For example, perturbing the fusion
pathway by overexpressing a single SNARE protein results
in leaky fusion (38). In summary, formation of a double HD
and subsequent IMI dilation via vesicle formation provides a
very plausible scenario to explain these experimental
observations.

Further, because the (initial) condition lIMI < 0 is essen-
tial for IMI formation, the driving force of crack formation
(vesicle budding) likely stems from the combined favorable
creation of a TFP (lfp) and the inflation of the cleaved-off
vesicle edge (lves). Here, the molecular forces exerted by
nearby fusion proteins are likely crucial in satisfying this
free energy balance. In contrast to the rim-pore, the crack
Biophysical Journal 107(10) 2287–2295
propagation mechanism does not face an HD size-depen-
dent free energy barrier, nor is it opposed by an additional
energetic cost for uptaking excess HD area. The latter
may become a substantial advantage when fusion is associ-
ated with cellular length scales and a relatively large excess
membrane area such as in vacuole fusion.

The here-illustrated scenario can be experimentally vali-
dated by the addition of distinct fluorescence lipid dyes on
both the inner and outer leaflet of the fusing vacuoles. The
lipid dyes that are added to the outer leaflet of the vacuole
should end up within the inner leaflet of the formed internal
vesicle and vice versa.
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