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ABSTRACT: A molecular dynamics algorithm in principal
component space is presented. It is demonstrated that
sampling can be improved without changing the ensemble
by assigning masses to the principal components proportional
to the inverse square root of the eigenvalues. The setup of the
simulation requires no prior knowledge of the system; a short
initial MD simulation to extract the eigenvectors and
eigenvalues suffices. Independent measures indicated a 6−7
times faster sampling compared to a regular molecular
dynamics simulation.

■ INTRODUCTION
Protein dynamics is essential for function. However, protein
dynamics, at the atomic level, is notoriously hard to probe
experimentally. Therefore, molecular simulations are used
routinely to study structure−function relationships in proteins.
Due to the high dimensionality of biomolecules, this is a
computationally demanding technique; for many biological
processes, the time scales reached by simulation are too short
to observe important functional processes in a statistically
relevant manner. Thus, extensions of the current methods are
necessary to address important biological problems. There are
many attempts to enhance sampling of biomolecules. Here, we
focus especially on algorithms that enhance sampling without
using preselected order parameters. Some algorithms focus on
rapid generation of new structures, while others focus on
sampling of structures in a well-defined ensemble. Examples of
the former are tConcoord,1 the anisotropic network model
Monte Carlo (ANM-MC) method,2 or Frodan.3 Examples of
the latter are mostly extensions of the molecular dynamics
(MD) or Monte Carlo (MC)4 methods, for example, replica
exchange (RE),5 replica exchange with flexible tempering
(REFT),6 library based MC,7 or accelerated MD.8 The first
class has the advantage that it is fast and has more freedom in
generating new structures. The disadvantage is that it is more
difficult to derive thermodynamic properties from its results
because the statistical weight of every structure in those
ensembles is unknown. The second class of algorithms samples
each structure with the right statistical weight but is generally
computationally more intensive.
RE, for example, requires one to perform several simulations

at different temperatures in parallel. The swapping between
configurations of low and high temperatures speeds up the
exploration of the conformational space of the cold systems
compared to straightforward MD. Because the number of
replicas needed to achieve an acceptable swapping probability
increases rapidly with the system size, the temperature RE

method is in practice often not efficient for large biomolecular
systems. In this article, we present a new algorithm of the
second class, which gives a considerable speed up compared to
MD without the need to perform multiple simulations in
parallel.
One of the main problems of MD sampling for biomolecular

systems is that the energy landscapes of biomolecules are highly
anisotropic. As a result of this anisotropy, the time integration
steps are limited by the fastest degrees of freedom (DOFs). A
promising way to reduce these fast frequencies is to adjust the
masses because they only affect the dynamics, not the
ensemble. If one is only interested in ensemble properties,
the masses given to the atoms can be chosen freely; they can
even be assigned differently to each DOF. This idea has been
exploited in numerous studies to achieve better sampling.9−14

Three different schemes can be distinguished. In a first scheme,
the masses are chosen so that they compensate for the
anisotropy of the energy surface. The simplest example of this
is increasing the mass of hydrogen to attenuate the hydrogen
vibration frequency; as a consequence, the time step can be
increased.9 This scheme can be applied in a very general way by
coupling a different mass to every DOF using a mass
tensor.13,14 In this way, all vibrations have the same frequency,
and the time step is no longer limited to very high frequencies
that are mostly of little interest. A second scheme is lowering
the mass of the solvent to reduce the solvent viscosity and
increase the sampling.12 Scaling the mass by a factor of λ
decreases the viscosity by a factor of √λ. Lin and Tuckerman12

applied this not only to the solvent but also to the side chains.
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The mass of the solvent was scaled by a factor of 0.1, the
backbone was scaled by 1 (i.e., physical masses were kept), and
the side chains were scaled by an intermediate factor, thereby
obtaining a decoupling of solvent, side chain, and backbone
motions. A final scheme is increasing the mass to obtain larger
momenta. This has been heavily used by by Mao and co-
workers.11,15−17 They generate velocities for the normal
(lower) masses and combine those with the higher masses in
the sampling. Therefore, as noticed by Berendsen and co-
workers,9 they are essentially sampling at higher temperature,
and there is a combined effect of the increased mass and the
higher temperature; this results in an incorrect ensemble.
In this work, an algorithm is presented that changes the

masses to compensate for the anisotropy of the potential
energy surface. Principal component analysis (PCA) is used to
identify the underlying anisotropy of the potential energy
surface. This information will be used to make a suitable choice
for the masses. Information from PCA of presampled structure
ensembles has proven useful to enhance sampling.18,19 The
PCA is carried out in Cartesian space by diagonalization of the
variance−covariance matrix. The resulting eigenvectors or
principal components (PCs) span a 3N-dimensional space,
where N is the number of particles in the system. Therefore, all
DOFs are present in this 3N-dimensional space, including bond
length and angle fluctuations. PCA yields a global overview of
the anisotropy of the different DOFs. Therefore, given a
structure ensemble, PCA can be used to guide sampling
algorithms to specifically enhance exploration of soft DOFs that
are typically undersampled, for example, in MD.
Essential dynamics sampling18 and temperature-enhanced

essential dynamics replica exchange (TEE-REX) are two
examples of algorithms that utilize PCs from short MD runs
or tConcoord ensembles to successfully enhance sampling.19

However, these methods have in common that the generated
ensembles are not well-defined and likely only approximately
approach canonical ensembles. The novelty of our work is that
we only change the masses according to the PCA eigenvalues,
thereby guaranteeing canonical sampling.

■ METHODS
The Algorithm. In this work, an algorithm is presented

where sampling is done in the space of the PCA vectors instead
of in the Cartesian space. Using the leapfrog integrator20 and
the thermostat of Bussi et al.,21 we can write the update step as
follows
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Here, q, u, and g are the collective positions, velocities, and
forces, respectively. 1/μ is the diagonal mass matrix having
inverse PCA masses 1/μi on its diagonal. q, u, and g can be
determined from the Cartesian coordinates, velocities, and
forces by multiplying them by the matrix of eigenvectors (C),
for example, q(t) = C(x(t) − ⟨x⟩), with x(t) as the Cartesian
positions at time t and ⟨x⟩ as the average position obtained

from the reference simulation. The velocity rescaling factor α
comes from the thermostat of Bussi et al.21 It is found by
dividing the kinetic energy drawn form a canonical equilibrium
kinetic energy distribution Kt by the instantaneous kinetic
energy K. Note that overall translation or rotation are absent in
the kinetic energy because the corresponding PCs are not
updated. This guarantees a canonical distribution with a
minimal disturbance of the momentum. μi is the mass
associated with a certain coordinate qi and can be chosen
freely. Different possibilities will be discussed in the Results and
Discussion section. A flowchart of the full algorithm is given in
Figure 1. Note that two steps in the MD loop in collective

coordinates are absent in the MD loop in Cartesian
coordinates. This is the projection of the coordinates from
the collective space to the Cartesian space and the reversed
projection of the forces. This is because the force field is
expressed in Cartesian coordinates and the forces are
determined in Cartesian coordinates. As a result, the code in
collective coordinates has two extra matrix vector multi-
plications compared to the main MD loop in Cartesian
coordinates, but this remains a small overhead compared to the
determination of the forces. The codes runs approximately 10%
slower than the standard MD code for the dialanine system
tested in this paper.

Simulation Setup. All simulations were carried out on
dialanine with the OPLS-AA force field.22 The system was built
using Pymol.23 For the initial MD simulations to determine the
PCA vectors, the standard GROMACS24 simulation package
was used. The solvent was modeled using the generalized born
implicit solvent model of Still and co-workers25 implemented in
GROMACS.26 The system was propagated with a leapfrog
integrator with a time step of 1 fs using the thermostat of Bussi
et al.21 to control the temperature. Overall rotation and
translation were constrained with the holonomic rototransla-
tional constraints algorithm of Amadei et al.27 Using
rototranslational constraints produces an ensemble with 3N
− 6 degrees of freedom, and because of that, only 3N − 6 PCs

Figure 1. Flowchart of the MD-PCA algorithm.
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were used in the MD algorithm in PCA coordinates (MD-
PCA). This again results in a simulation without overall
rotation and translation. It should be noted that neglecting
overall rotation has an influence on the ensemble generated;
this effect can be especially pronounced when large conforma-
tional transitions occur. Including overall rotation will give an
additional stabilization to more extended states of the system.
This is however not a fundamental problem because the effect
of rotation can always be recovered by a correction proposed by
Amadei et al.27

MD-PCA was carried out with a modified version of
GROMACS using the same thermostat as the reference
simulation but with a time step dependent on the masses
chosen such that stable integration is guaranteed. Unless
mentioned otherwise, the MD-PCA simulation was carried out
for 5 × 108 steps using eigenvectors extracted from a 1 ns MD
simulation, masses equal to the inverse square root of the
eigenvalue, and a time step of 5 fs.
Statistical Inefficiency. To analyze the simulations, we use

a measure called the statistical inefficiency,28 which gives us the
variance on the mean taking into account that we have
correlated data. If we have uncorrelated data, we can compute
the error in the mean of a property simply by dividing the
variance of by the number of data points

σ ⟨ ⟩ = σ
N
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2
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with ⟨ ⟩t the average of over a certain time interval t. It is
well-known that data points generated by molecular dynamics
simulations are correlated. We can take this into account using
the statistical inefficiency.28 To compute this, we divide the
simulation in nb blocks of τb data points. The mean value of
for each block (⟨ ⟩b) can be calculated as
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and the mean values from all of the blocks can be used to
estimate the variance
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For large τb, we expect the variance to be inversely proportional
to τb as the blocks become large enough to be statistically
uncorrelated. The aim of the statistical inefficiency method is to
estimate the constant of proportionality. We define the
statistical inefficiency s as

=
τ σ ⟨ ⟩
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We can now find the statistical inefficiency by plotting s as a
function of τb

1/2; the plateau gives the statistical inefficiency.
The variance can now be computed as

σ ⟨ ⟩ = σs
N

( ) ( )t
2 2

(8)

The lower the statistical inefficiency, the more uncorrelated the
data points, which is a prerequisite for efficient sampling.

■ RESULTS AND DISCUSSION
Canonical Sampling. To verify that the MD-PCA

algorithm samples the correct ensemble, we compare the free
energy along the first eigenvector with a reference MD
simulation of 1.5 μs. The free energy along this coordinate is
computed as −RT ln(P(x)/Pmax(x)), with P(x) as the
probability of state x. The free-energy profile shows two
minima corresponding to a closed and an extended
conformation, as indicated in Figure 2. The rmsd between

the two curves shown in the figure is 0.01 kJ mol−1, showing
that both methods sample the same ensemble.

Influence of the Choice of the Mass. The statistical
inefficiency is used to measure the efficiency of the algorithm.
Figure 3 compares the statistical inefficiency analysis analysis of

the MD and the MD-PCA simulations. The property that we
use here for the statistical inefficiency is the ratio between the
extended and closed conformations of dialanine. A structure is
assigned to the closed state if the projection on the first
eigenvector is smaller than −0.1 nm and to the extended state if
the projection is lager than 0.4 nm; structures in the transition
region are not counted. The closed state is given a value of 0,
and the extended is given state a value of 1. For the MD
simulation, a statistical inefficiency of s = 48 was found, and for
MD-PCA, it was s = 8 (Table 1). This means that to obtain the
same variance in the mean ratio, six times fewer data points are
needed for MD-PCA compared to a normal MD simulation.
The masses should be chosen such that the motions of the

slow modes are amplified while at the same time motions of the
fast modes damped. This can be achieved by choosing the
masses inversely proportional to the PCA eigenvalues (λi).
Because the eigenvalues are a measure of the mean-square
positional fluctuation along the corresponding eigenvector, a

Figure 2. Free energy along eigenvector 1: black for the MD-PCA
simulation and red for a normal MD simulation. The structures
corresponding to the different minima are indicated.

Figure 3. Statistical inefficiency: black for the MD-PCA simulation and
red for a normal MD simulation.
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logical choice would be to choose the masses μ equal to 1/√λ.
In Figure 4, the eigenvalue spectrum of dialanine from a 1 ns

simulations is given. With the choice of μ = 1/√λ, this results
in a value of approximately 1.5 for μ1 and 1.9 for μ2 and goes up
to 595 for μ76. In Table 1, different choices of masses are
compared with respect to the statistical inefficiency and how
often the structure crosses the energy barrier between the two
minima. Note that the time step is always chosen to be as large
as possible to obtain stable integration. It can be seen in Table
1 that the choice of the mass as 1/√λ is the optimal choice. By
choosing the mass as 1/λ, the time step can be increased to 8 fs,
but the overall sampling is not improved; the number of
crossings is reduced by more than a factor of 2, and the
statistical inefficiency follows the same trend. Because sampling
in PCA space is most important for the vectors with lower
eigenvalues, the possibility of choosing the mass as (1/λ)1/2 in
the first, first and second, and first through fifth eigenvectors
with high masses assigned to the other vectors (1000.0 g/mol)
was also considered. It can be seen (Table 2) that choosing the
masses according to this scheme does not improve the
sampling. The large damping of the other vectors also has an
influence on the sampling in the other subspace. In the same
spirit, an inverse scheme was tried where a lower mass was
chosen for the first vectors, and all of the others were kept at 1/
√λ. This as well results in sampling similar to choosing all of
the masses equal to 1/√λ.
Influence of the Length of the Initial Simulation. In

Table 2, the influence of the length of the initial simulation
used to extract the eigenvalues and eigenvectors is shown. The
masses are always chosen as 1/(λi)

1/2. Note that the time step is
always chosen to be as large as possible to obtain stable
integration. To determine this time step, a MD simulation in a

microcanonical ensemble is performed; the largest time step
that conserves the total energy is used. It can be seen that
already for a short initial simulation of 1 ps, we obtain a
considerable improvement over normal MD simulations.
The eigenvalues are not converged here, and especially, the

eigenvalues of the first eigenvectors are lower than those in the
case of the longer simulations (≥1 ns). This results in larger
masses and is the reason why a longer time step can be chosen
in this case. From an initial simulation length of 1 ns onward,
eigenvectors and eigenvalues are reasonably well converged,
and a maximal efficiency is reached. This can be explained by
the number of crossings in the initial simulation (Table 2).
Starting from initial simulation lengths of 1 ns or more, there is
already a significant exploration of the two minima with ≥22
crossings between them so that no further improvement can be
noted for longer initial simulations.

Other Efficiency Measures. In order to compute the
statistical inefficiency on a property that is independent of the
PCA analysis, it is also computed on the potential energy. The
same trend is seen for this measure; s = 9 for the MD
simulation, and s = 1.7 for the MD-PCA. In Figure 5, the

convergence of the free energy to the reference 1.5 μs
simulation is shown for a normal MD simulation and for a MD-
PCA simulation. This graph was obtained by dividing the
trajectory in blocks and computing for each block the root-
mean-square deviation (rmsd) to the reference ensemble, the
result in the graph is the average for blocks with the length
indicated on the x-axis. To reach a rmsd of 0.4 kJ/mol, 106

steps of MD-PCA are needed, and 6 × 106 steps of a normal
MD simulation are necessary, indicating a six-fold higher
convergence.

Table 1. Time Step, Number of Crossings, and Statistical
Inefficiency for the Reference Simulation and MD-PCA with
Different Lengths of Initial Simulations

simulation
time step

(fs)
no. of

crossings
statistical
inefficiency

MD 1 11844 48
1/√λ 5 47912 8
1/λ 8 20261 25
μ1 = 1.0, rest(1/√λ) 5 48325 8
μ1 = 1.0, μ2 = 1.0, rest(1/
√λ)

5 47861 8

μ1 = 1/√λ, rest =1000.0 5 7184 80
μ1,2 = 1/√λ, rest =1000.0 6 13149 50
μ1−5 = 1/√λ, rest =1000.0 5 15092 32
equal masses (10 g/mol) 2 16526 30

Figure 4. Eigenvalue spectrum for dialanine extracted from a 1 ns
simulation.

Table 2. Time Step, Number of Crossings, and Statistical
Inefficiency for the Reference Simulation and MD-PCA with
Different Length of Initial Simulations

simulation
time

step (fs)
no. of

crossings
no. of crossings in
initial simulation

statistical
inefficiency

MD 1 11844 / 48
PCA on
1 ps

8 23777 0 17

PCA on
10 ps

7 32795 0 16

PCA on
100 ps

7 31491 3 17

PCA on
1 ns

5 47464 22 8

PCA on
10 ns

5 47912 299 8

PCA on
100 ns

5 48214 2903 8

PCA on
500 ns

5 47758 11844 8

Figure 5. Convergence of the free energy along PCA vector 1.
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The mean-square displacement in the space of the first two
eigenvectors is computed (Figure 6). It can be seen that the

MD-PCA converges to the maximal value in 20 000 steps, while
the MD simulations need 135 000 steps to reach this value.
This again points to a 6−7-fold faster exploration of the space
of the first two eigenvectors.
In Figure 7, the average step size along the different

eigenvectors is shown. It can be seen that with MD-PCA, much

larger steps can be taken along the first eigenvectors, which are
the vectors considered most important for the conformational
transitions. The difference decreases with the eigenvector index,
and for the vectors corresponding to bond and angle vibrations,
the MD algorithm takes on average larger steps. Overall, we see
that the MD-PCA algorithm ensures a faster exploration of the
slow modes and reduces the average step size in the fast modes,
resulting in a faster exploration of the conformation space.

■ CONCLUSION

This work demonstrates how simulation in PC space with
properly adjusted masses can enhance sampling of the
canonical ensemble with just a small modification of a regular
MD code. The improved sampling is demonstrated using
several measures, including convergence of the free-energy
landscape, statistical inefficiency of the potential energy/
extended closed ratio, and mean-square displacement, which
all point to a factor of 6 improvement for the dialanine test
case. The masses can easily be adjusted rationally by setting
them as the inverse square of the eigenvalues. Conveniently, no
prior knowledge of the system is needed to set up the
simulations; a short initial simulation for the initial PCA
suffices.
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