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Three approximate switching algorithms for trajectory surface hopping calculations are presented using
simple models to describe the dependence of the hopping probability on the nonadiabatic coupling
strength. The switching algorithms are applied to the calculation of the electronic deexcitation in ethyl-
ene, methaniminium ion and trans-azobenzene. Compared with the results from the standard fewest
switching algorithm (FSA), the simplest approximation based on a local diabatic representation shows
some qualitative failures and overestimates the decay times severely. The other two approximate switch-
ing algorithms incorporate stochastic features and reproduce the FSA results well, with a deviation of typ-
ically 20–30% in the computed decay times. They offer a simple and efficient description of the
nonadiabatic dynamics of the investigated systems.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Trajectory surface hopping (TSH) [1–12] is a general approach
to study the dynamics of non-Born-Oppenheimer processes occur-
ring in molecular systems. In this method the system is divided
into a quantum and a classical part. The nonadiabatic dynamics
is described by a swarm of classical trajectories with each trajec-
tory evolving independently on a single electronic potential energy
surface (PES) and the possibility of sudden instantaneous hops to
different surfaces. However, there is not a generally accepted def-
inition of how these transitions should be incorporated in the TSH
method and the use of different hopping algorithms [1,3,5–7,10–
12] leads to slightly different TSH methods.

The most popular implementation of the TSH method is based
on Tully’s fewest switches algorithm (FSA) [5,6], which gives a
good compromise between accuracy and computational effi-
ciency. In the FSA the quantum amplitudes are propagated
coherently along the trajectory and the transition probabilities
are proportional to the variation of the quantum state popula-
tions. In addition, the number of transitions is required to be
as small as possible. Although the FSA is conceptually very sim-
ple, its implementation requires the computation of nonadiabatic
coupling vectors and the integration of quantum amplitudes at
every point of the trajectory. Moreover, the exact transition prob-
ability is given by a complex expression that involves, in addition
to nonadiabatic couplings, also the relative phases of the real and
imaginary components of the quantum amplitudes. For these
ll rights reserved.
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reasons the use of the FSA may be impractical for the study of
large systems or for QM/MM applications, where the explicit
computation of nonadiabatic coupling vectors may no longer be
feasible. In such cases it is desirable to use approximate switch-
ing methods that involve a numerical evaluation of the nonadia-
batic couplings in terms of wavefunction overlap at successive
time steps (see Section 2).

Approximate switching algorithms are commonly used in sur-
face hopping studies on large systems [1,4,13–19], since they have
a small computational cost and allow for a simple interpretation of
the nonadiabatic dynamics. In particular, methods similar to the
AS1 method (see below) have recently been applied in QM/MM
studies of the photoactivation of the Photoactive Yellow Protein
[16], in ab initio studies (CASSCF) of the photoisomerization of
the retinal chromophore [17] and in QM/MM studies of the ultra-
fast deactivation of DNA base pairs [19]. However, to our knowl-
edge, the intrinsic limitations of such approaches and their
accuracy have not been investigated so far.

In this work we present a study on three approximate hopping
methods. The first method (AS1) is based on a local diabatic hop-
ping criterium and is a variant of a widely used approximate hop-
ping algorithm [16,17,19]. We perform a full investigation of the
capabilities and limitations of this approach. Furthermore, we
introduce two new hopping algorithms (AS2, AS3) designed to cor-
rect the problems found in the AS1 approach. The three methods
form a hierarchy of approximate switching algorithms that aim
at reproducing the FSA results. The FSA is taken as reference,
although it suffers from some well-known limitations
[10,12,20,21], because it is by far the most widely used method
in molecular surface hopping calculations and usually yields
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good-quality results. The approximate switching algorithms are
applied to three case studies, electronic deexcitation in ethylene,
methaniminium ion and trans-azobenzene, and the results are
compared with those obtained using the standard FSA approach.
We find that the approximate switching algorithms introduced in
this work, in particular the AS3 method, can reproduce the FSA re-
sults well and at the same time provide a simple and intuitive pic-
ture of nonadiabatic dynamics. In addition, since the computation
of nonadiabatic coupling vectors and the integration of quantum
amplitudes is avoided in these approximate methods, they are
computationally efficient and easy to implement.

The article is organized as follows. In Section 2 the FSA is briefly
reviewed and three approximate hopping algorithms are intro-
duced. In Section 3 computational details are reported. In Section
4 the approximate hopping algorithms are applied to three test
cases, and the results are compared with those from FSA. Finally,
in Section 5 we present our conclusions.

2. Theory

2.1. Fewest switches algorithm

According to Tully’s FSA [5,6] the hopping probability is propor-
tional to the variation of the quantum populations with the addi-
tional constraint that the number of hopping events is
minimized. In the adiabatic representation the probability of hop-
ping from the adiabatic surface i to the adiabatic surface j is

Pij ¼maxðqij;0Þ ð1Þ

with

qij ¼
2
R tþDt

t Re c�i ðsÞcjðsÞ
_~R �~dij

h i
ðsÞ

� �
ds

ciðtÞc�i ðtÞ
: ð2Þ

The complex-valued coefficients c are the quantum amplitudes of
the expansion of the total electronic wavefunction in terms of adi-
abatic states and are obtained from the solution of the time-depen-

dent Schrödinger equation, _~R is the vector of nuclear velocities, and
~dij is the nonadiabatic coupling vector for the adiabatic states i and j.

The term _~R �~dij

h i
is the nonadiabatic coupling between the adiabatic

surfaces i and j.
To determine whether a switch from state i to state j will occur

at each time step a uniform random number n 2 ½0;1� is selected
and the hopping is performed if

Xj

k

Pik < n <
Xjþ1

k

Pij: ð3Þ

After the hopping the velocity in the direction of the nonadiabatic
coupling vector ~dij is scaled in order to conserve the total energy
of the system. If the scaling procedure is not sufficient to allow
the conservation of total energy the hopping is rejected and the
velocity components in the direction of the nonadiabatic coupling
vector are reversed.

2.2. Approximate switching algorithms

In the FSA the hopping probability is proportional to the varia-
tion of the electronic populations. Since the changes in the
electronic populations are driven by the magnitude of the nonadi-
abatic coupling, the hopping events occur only in regions of non-
vanishing coupling and in particular in regions of high coupling,
which are usually located close to the crossings (both allowed or
avoided) of two adiabatic surfaces. Crossing regions are therefore
particularly important for the description of surface hopping. This
finding is also confirmed by the Landau–Zener formula for the
hopping probability between two electronic states [22–24]

P ¼ exp �1
4

pf

� �
: ð4Þ

The parameter f is the Massey parameter, defined as

f ¼ DE
�hD

; ð5Þ

where DE is the energy gap and D is the nonadiabatic coupling be-
tween the two states. The hopping probability expressed by Eq. (4)
is maximised when DE approaches zero and rapidly decays when DE
increases. Moreover, the nonadiabatic coupling D is largest when a
diabatic crossing occurs. As a consequence the great majority of
hopping events will occur in regions of very small energy gap and
proceed through the diabatic crossing. Hence, in the development
of approximate treatments, we first focus on such regions and use
a local diabatic representation allowing the system to move on
the diabatic surface. A switch between two adiabatic surfaces will
thus occur if the diabatic surfaces cross.

A diabatic crossing can be characterized by the quantity

sij ¼ hwiðtÞ j wjðt þ DtÞi ð6Þ

and the conditions

sii � 0; sjj � 0 ð7Þ

jsijj � 1; jsjij � 1; ð8Þ

where j wi denotes adiabatic states. We define a first approximate
switching algorithm (AS1) as follows. When the energy gap be-
tween two adiabatic surfaces i and j is lower than a certain thresh-
old DE we compute the average value of jsijj and jsjij,

j Dij j¼
hwiðtÞ j wjðt þ DtÞi � hwjðtÞ j wiðt þ DtÞi

2

����
����: ð9Þ

Comparison with Eq. (28) of Ref. [6] shows that

Dij �
_~R �~dij

h i
ðtþDt=2Þ

Dt: ð10Þ

That is, Dij represents the nonadiabatic coupling over the time per-
iod Dt. The hopping i! j is performed if j Dij j exceeds a threshold
DP. In this work we used DE = 30 kcal/mol and DP ¼ 0:5. It turns
out that conditions (7) are always satisfied whenever j Dij j> 0:5.
After a hopping event a velocity adjustment is not strictly needed
since in this approximation the system never leaves the diabatic
surface. Tests indeed show that the use of a velocity adjustment
procedure leaves the final results almost unchanged.

In the AS1 method weak nonadiabatic coupling regions are
completely ignored because the hopping can occur only if a dia-
batic crossing occurs. However, when the FSA is employed, the
weak coupling regions, if sufficiently extended, can play a signifi-
cant role despite the fact that the hopping probability is very low
at every single trajectory point. In fact, in the limit of an infinite
region of small (or even infinitesimal) coupling the FSA yields a
total hopping probability equal 1, while AS1 yields 0. This is a gen-
eral deficiency of the AS1 method which can not be remedied by
using a smaller value for DP. On the contrary, in regions of high
nonadiabatic coupling, too small values of the parameter DP may
lead to repeated hopping and thus to loss of the independent tra-
jectory description. Therefore it is advisable to relax the switching
condition defining the AS1 method.

In our second approximate switching algorithm (AS2) the cou-
pling Dij defined in Eq. (9) is computed when the energy gap is low-
er than a certain threshold DE (we use DE = 30 kcal/mol). A random
number n 2 ½0;1� is selected and the hopping i! j is performed if
n <j Dij j. After the hopping a velocity scaling is needed since,
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contrary to AS1, the system is no longer bounded to the diabatic
surface. To avoid the computation of the nonadiabatic coupling
vector the velocity scaling can be performed along the gradient dif-
ference vector. The effect of using the gradient difference in place
of the nonadiabatic coupling vector is negligible [25,26].

The AS2 method can be directly derived from the FSA by setting
Pij ¼ qij in Eq. (1) and assuming that in the time interval Dt there is
a uniform complete transfer of population from state i to state j. In
this case the quantum amplitudes (here supposed real for simplic-
ity) in Eq. (2) are given by

ciðtÞ ¼ 1; ciðt þ Dt=2Þ ¼ 1=
ffiffiffi
2
p

; ciðt þ DtÞ ¼ 0 ð11Þ

cjðtÞ ¼ 0; cjðt þ Dt=2Þ ¼ 1=
ffiffiffi
2
p

; cjðt þ DtÞ ¼ 1: ð12Þ

The integral in Eq. (2) can then be evaluated by the middle-point
rule.

Disregarding approximations in the integral evaluation, the AS2
method and the FSA are equivalent if there is a uniform complete
transfer of population from state i to state j. This condition is very
strong and not satisfied in general. In fact, in the FSA the changes in
quantum amplitudes are usually rather small and the hopping
probability is further reduced due to the different phases of real
and imaginary parts of the quantum amplitudes. Moreover, accord-
ing to Eq. (1), the FSA hopping probability is zero for those points in
which the active state increases its quantum population (when
qij < 0). Therefore we can expect the AS2 method to overestimate
the overall hopping probability since, in the FSA, there are some re-
gions of non-negligible nonadiabatic coupling that do not contrib-
ute to the hopping process. Unfortunately, there are no simple
arguments to estimate the change in the quantum amplitudes. A
simple model can be used however to obtain information on the
average hopping probability.

Consider a region of non-zero nonadiabatic coupling consisting
of N trajectory points. Suppose that the probability of hopping is p
at each point. The probability of moving across the entire region
without hopping will be ð1� pÞN and the probability of hopping
will be P ¼ 1� ð1� pÞN . If M points do not contribute to the hop-
ping (i.e. they have p ¼ 0) the total hopping probability will be
P0 ¼ 1� ð1� pÞðN�MÞ. Equivalently the effective probability per
point (including all N points) is p0 ¼ 1� ð1� pÞ1�M=N .

In our third approximate switching algorithm (AS3) we extrap-
olate this simple model. As in the AS2 method, we suppose that
the hopping probability is directly proportional to the magnitude
of the nonadiabatic coupling Dij. The trajectory is divided into
small regions where the magnitude of the coupling is (almost)
constant and the above reasoning is applied to every region. The
coupling Dij defined in Eq. (9) is computed when the energy gap
between two states is lower than a certain threshold DE (default:
DE = 30 kcal/mol). The coupling is then scaled according to the
formula

D0ij ¼ 1� ð1� DijÞa ð13Þ

where 0 6 a 6 1 is a parameter (see below). To decide if a hop
should occur a random number n 2 ½0;1� is selected and the hopping
i! j is performed if n <j D0ij j. After a hopping event the velocity is
adjusted along the gradient difference vector.

In principle the value of a should be different for every region
of constant coupling and optimized according to the magnitude of
Dij. This is impractical in actual applications. Tests have shown,
however, that the optimum a values vary only slightly in different
regions and that D0ij from Eq. (13) is rather insensitive to such
small changes in a. Therefore it is possible to employ an average
value of a in Eq. (13) and treat it as a fixed parameter (we use
a ¼ 0:5).
3. Computational details

The TSH method has been applied to the description of the elec-
tronic deexcitation in ethylene, methaniminium ion and trans-azo-
benzene after vertical excitation from the ground state. Transition
probabilities have been computed using the FSA and the three
approximate switching algorithms described in Section 2.2.

The initial configurations for the TSH calculations were pre-
pared by selecting a series of snapshots from a preliminary Born-
Oppenheimer ground state MD run with the constraint that the
vertical excitation energies of the initially populated state fall in
the energy window E0 � 0:15 eV, with E0 being the vertical excita-
tion energy at the ground state geometry optimized at the same le-
vel of computation. The same initial configurations were used to
generate the swarms of trajectories for all the switching criteria
examined.

Molecular orbitals were obtained from closed-shell OM2
[27,28] calculations. Energies and gradients were determined from
a GUGA configuration interaction (CI) treatment [29]. The nonadi-
abatic couplings were computed following the analytical proce-
dure described in Refs. [30,31]. Other details of the calculations
performed with the FSA are described in Ref. [32].

For ethylene a minimal CI treatment, with an active space com-
prising the HOMO and LUMO orbitals, was used to compute the
lowest three electronic states. Initially the first excited state was
populated and each trajectory was propagated for 200 fs with a
time step of 0.05 fs. The final average occupation of the states
was obtained averaging over 80 trajectories.

In the case of the methaniminium ion the lowest three elec-
tronic states were computed by GUGA-CI using an active space
consisting of four electrons and three orbitals (HOMO-1, HOMO,
LUMO). At the beginning of the simulation the second excited state
was populated. Each trajectory was then propagated for 150 fs
with a time step of 0.05 fs. The final results were obtained averag-
ing over 80 trajectories.

The electronic deexcitation in azo-benzene was simulated con-
sidering only the ground and the first excited state (n! p� excita-
tion). Electronic states were calculated by a GUGA-CI treatment
with an active space consisting of eight electrons in seven orbitals
(from HOMO-3 to LUMO+2). The excited state was initially popu-
lated and each trajectory was propagated for 1 ps with a time step
of 0.2 fs. The average occupation of the states was obtained by
averaging over 40 trajectories.

All calculations were performed with the semiempirical MNDO
package [33] including the recently developed TSH implementa-
tion [32]. The use of approximate switching algorithms reduced
the overall computational time typically by 30–50% (compared
with the FSA).
4. Results

4.1. Ethylene

Fig. 1 reports the average occupation of the lowest three states
of ethylene computed using the FSA and the three approximate
switching algorithms described in Section 2.2.

The FSA, AS2 and AS3 methods give a very similar description of
the nonadiabatic dynamics of the ethylene. Upon excitation the
molecule, initially in the S1 state and with planar geometry, starts
immediately a torsional motion around the C@C bond followed by
a pyramidalization of one of the two CH2 groups. During the tor-
sional motion the molecule approaches the region of the twisted
orthogonal conical intersection. In this region the S1 and S2 states
experience a moderately high nonadiabatic coupling and hopping
to the S2 state is possible, although the system usually rapidly
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Fig. 1. Average occupation of the three lowest states of ethylene computed using
the fewest switches algorithm (FSA) and the AS1, AS2 and AS3 switching methods
described in Section 2.2.
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decays back to the S1 state. Increasing pyramidalization brings the
molecule towards the twisted-pyramidalized conical intersection.
In the twisted-pyramidalized configuration the S1 and S0 states
are strongly coupled and hopping from the S1 state to the S0 state
is highly probable. In a small number of trajectories the S1 ! S0

deexcitation follows a different path and proceeds through a
hydrogen migration mechanism (ethylidene conical intersection).
Similar results are found also in other TSH studies [34–37] and in
quantum wavepacket calculations [38,39].

In Table 1 the decay time s of the S1 state, calculated using a sin-
gle exponential decay model, is reported for all the hopping meth-
ods. Compared with the FSA the AS2 method yields a slightly
smaller decay time and the AS3 method a slightly larger one. Both
methods give results close to those obtained with the FSA.

Application of the AS1 method leads to an underestimation of
the hopping probability. Due to the stiff hopping criterion of the
AS1 method and the fact that the nonadiabatic coupling around
the twisted orthogonal conical intersection is not very high, the
molecule needs to reach a configuration very close to the conical
intersection before transitions between the S1 and the S2 state
are possible. Therefore the probability of hopping from state S1

to state S2 is very low. For similar reasons if the molecule switches
to the S2 state it can not easily decay back to the S1 state (as usually
happens in the FSA description) and the final S2 average population
computed with the AS1 method is higher than that computed with
the FSA. Similar considerations hold for the S1 ! S0 hopping but in
this case the two states are strongly coupled in the region of the
twisted pyramidalized conical intersection and the AS1 method
works better. The increase in the S0 occupation is slower than that
computed with the FSA but follows a similar trend. Part of the dif-
ference in the predicted occupations is also due to the fact that the
S0 state starts to be populated at t � 20 fs in the AS1 case, and al-
ready at t � 9 fs in the FSA case because the molecule must be clo-
ser to the conical intersection before a hopping is allowed in the
AS1 method.
Table 1
Decay times in fs for the excited states of ethylene, methaniminium ion and trans-
azobenzene calculated with the fewest switches algorithm (FSA) and the three
approximate switches algorithm described in Section 2.2

System State FSA AS1 AS2 AS3

Ethylene S1 64 164 57 80
Methaniminium S2 15 224 10 14

S1 97 215 63 93
Azobenzene S1 664 2993 265 394
4.2. Methaniminium ion

The average occupation of the lowest three states of the meth-
animinium ion computed using the FSA and the three approximate
switching algorithms described in Section 2.2 is reported in Fig. 2.

The FSA predicts a fast S2 ! S1 deexcitation through the planar
S2/S1 conical intersection. After this first hopping two pathways are
possible for the S1 ! S0 deexcitation. For the majority of trajecto-
ries the S1 ! S0 hopping occurs in the region of the twisted conical
intersection, because of the high nonadiabatic coupling character-
izing this configuration. In about 30% of the trajectories the hop-
ping occurs instead in a configuration characterized by a very
large CAN bond distance and bipyramidalization. This mechanism
is often associated with a very early S2 ! S1 hopping (in agreement
with the dynamical interpretation suggested in Ref. [40]) and offers
a faster decay path with respect to the first one. However, the
occurrence of a hopping event in the stretched-bipyramidalized
configuration is disfavored since in this configuration the nonadia-
batic coupling is not as high as in the region of the twisted conical
intersection and since the quantum population of the ground state
grows very slowly along the stretching-bipyramidalization reac-
tion coordinate. Similar findings are reported in previous TSH
investigations [40–42].

The AS1 method fails in providing a correct description of the
S2 ! S1 hopping. The nonadiabatic coupling between the S2 and
the S1 state is never particularly high, but of moderate strength
over a large part of configurational space. In this situation the
FSA hopping probability is high but the coupling is rarely strong
enough to allow for hopping at the AS1 level. As a consequence
about one half of the trajectories evolve only on the S2 adiabatic
surface at the AS1 level and in any case the S2 decay time is
strongly overestimated (see Table 1). Thus, the average occupation
of the S1 state grows slowly and its deexcitation dynamics at the
AS1 level can be hardly compared with that predicted by the
FSA. For the AS1 method, the twisted conical intersection pathway
is almost the only channel for the S1 ! S0 deexcitation and almost
no hopping occurs along the stretching-bipyramidalization path-
way due to its reduced nonadiabatic coupling.

The description of the S2 ! S1 hopping is strongly improved
when using the AS2 method although the S2 decay time is slightly
underestimated. The S1 ! S0 hopping events are evenly distributed
among the two decay paths described for the FSA case. The number
of trajectories evolving through the stretching-bipyramidalized
path is overestimated due to the fact that the AS2 method makes
hopping too easy in these configurations and neglects the role of
0

A
ve

r

0 30 60 90 120 150
Time [fs]

0

0.4

0.8

S
2

Fig. 2. Average occupation of the three lowest states of methaniminium ion com-
puted using the fewest switches algorithm (FSA) and the AS1, AS2 and AS3 switc-
hing methods described in Section 2.2.
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the population/depopulation of quantum states. As a result of hav-
ing almost half of the trajectories in the fast stretching-bipyrami-
dalization deexcitation path, the S1 decay time is computed to be
63 fs, smaller than at the FSA level. Note however that a decay time
similar to that computed with the AS2 method is found in a recent
ab initio study [42] where a similar ratio between the two decay
paths is observed.

The AS3 method yields results very similar to the FSA. In partic-
ular it avoids the problems of the AS2 method in the description of
the S1 ! S0 hopping and correctly assigns the relative number of
trajectories to each of the deexcitation paths. A small overestima-
tion of the S1 ! S0 hopping probability is still observed between 20
and 50 fs. In this time interval the small quantum occupation of the
S0 state makes the FSA hopping probability rather low, but this ef-
fect is ignored by the AS3 method.

4.3. Trans-azobenzene

The average occupation of the first excited state (n! p� transi-
tion) of the trans-azobenzene molecule after vertical excitation
from the ground state has been computed using the FSA and the
three approximate switching algorithms described in Section 2.2.
The results are shown in Fig. 3.

After the excitation there is a slow torsion around the N@N dou-
ble bond accompanied by fast oscillations of the NNC angles. Dur-
ing this motion the molecule is repeatedly brought into the
proximity of the S0/S1 conical intersection, each time with slightly
different values of the CNNC dihedral angle and the NNC angles.
The magnitude of the nonadiabatic coupling depends on how clo-
sely the conical intersection is approached. At the beginning, for
relatively small values of the torsional angle, there is only a small
coupling. The magnitude of the nonadiabatic coupling increases
successively as the torsional angle and the NCC angles move to-
wards �90� and �120�, respectively. Finally, the nonadiabatic cou-
pling is again reduced when the NNC angles slowly drift to larger
values. This means that the decay of the excited state occurs only
during a limited time period (lasting �400 fs) which is preceded
and followed by periods where the average occupation of the ex-
cited state is almost constant. Similar observations are described
in previous TSH studies [43–45] and wavepacket dynamics inves-
tigations [44].

The behavior outlined above is captured rather well by the AS2
and AS3 methods although both predict the beginning of excited
state decay too early. This difference can be rationalized consider-
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Fig. 3. Average occupation of the excited state of the trans-azobenzene molecule
computed using the fewest switches algorithm (FSA) and the AS1, AS2 and AS3
switching methods described in section 2.2.
ing that the FSA hopping probability depends not only on the mag-
nitude of the nonadiabatic coupling, but also on the absolute value
of the quantum population of the ground state. Before the ground
state quantum population can grow to a significant value the mol-
ecule must cross a coupling region several times. This shifts the
beginning of the excited state decay to a later time in the FSA
description. The AS2 method predicts a decay time s ¼ 265 fs
which is too short compared to s ¼ 664 fs from the FSA. The use
of the AS3 method leads to some improvement. The computed va-
lue s ¼ 393 fs is however still too small with respect to the FSA re-
sult. The difference between the two results comes mainly from
the fact that the FSA decay starts at a later time than the AS3 decay,
and possibly also from the use of an a parameter in the AS3 model
that has not been optimized.

In the AS1 method only configurations very close to the S0/S1

conical intersection yield a sufficiently high coupling to allow the
hopping. As a result a very slow decay of the excited state is pre-
dicted. The decay time is almost three times larger than that pre-
dicted with the FSA, and after 1 ps only about 40% of the
trajectories are propagating on the ground state PES.
5. Conclusions

The fewest switches algorithm is the standard approach for the
computation of the hopping probability in TSH calculations. The
FSA is based on the minimization of the number of transitions
needed to maintain the self-consistency between the quantum
and the classical populations. In its practical implementation the
FSA requires the knowledge of the nonadiabatic couplings and
the coherent integration of the quantum amplitudes along the en-
tire trajectory. This information is then used in Eqs. (1) and (2) to
compute the hopping probability. These requirements can not be
easily fullfilled in applications on large systems, if one insists on
an explicit evaluation of the nonadiabatic coupling vectors, and
therefore the FSA is rarely applied in these studies. This motivates
attempts to describe the relationship between the magnitude of
the nonadiabatic coupling and the hopping probability by simpler
models. The corresponding approximate algorithms should offer a
simple picture of the nonadiabatic dynamics and, at the same time,
reproduce the hopping probabilities with good accuracy.

In this work we introduced three approximate switching algo-
rithms for TSH calculations. The performance of the three approx-
imate switching algorithms against the FSA was tested by applying
them to the calculation of the electronic deexcitation in ethylene,
methaniminium ion and trans-azobenzene.

The first approximate method (AS1) is based on a local diabatic
approximation for the interaction region. This method can qualita-
tively capture the main features of the hopping process but is too
simple to yield accurate quantitative predictions. The hopping
probability is generally underestimated and the decay time of ex-
cited states is on average five times larger than that computed at
the FSA level.

The main weakness of the AS1 method is that it does not incor-
porate any contribution from regions with weak nonadiabatic cou-
pling. This limitation is overcome in the AS2 method by using a
stochastic procedure to determine whether a hopping event should
occur. The AS2 methods performs much better than the AS1 meth-
od and predicts the decay times typically within 30% of the FSA
values.

The AS2 method tends to overestimate hopping probabilities
because it does not consider the effect of quantum depopulation
on the hopping probability. This is corrected in the AS3 method
with the introduction of an effective hopping probability, depend-
ing on a parameter a. The parameter a was not optimized in this
study, but fixed to the value of 0.5. With this choice the AS3
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method improves on the performance of the AS2 method and
yields decay times that deviate on the average by only 19% from
the FSA values.

The presence of a parameter in the AS3 method offers the
opportunity to optimize it against reference targets other than
the FSA. It would be particularly interesting to find out whether
the AS3 method can partially correct the well known drawbacks
of the FSA [10,12,20,21] by calibrating it against the results of
quantum wavepacket calculations [46–52]. This is a topic for fu-
ture studies.
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