
Computer Physics Communications 180 (2009) 455–458
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

g_permute: Permutation-reduced phase space density compaction ✩

F. Reinhard a, O.F. Lange b, J.S. Hub d,e, J. Haas c,e,∗, H. Grubmüller c,e

a Laboratoire Kastler Brossel, ENS, UPMC-Paris 6, CNRS, 24 rue Lhomond, 75005 Paris, France
b Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
c Theoretical and Computational Biophysics Department, Am Fassberg 11, 37077 Göttingen, Germany
d Computational Biomolecular Dynamics Group, Am Fassberg 11, 37077 Göttingen, Germany
e Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 July 2008
Received in revised form 22 October 2008
Accepted 29 October 2008
Available online 8 November 2008

PACS:
02.60.Pn
02.70.-c
02.70.Ns
05.10.-a
87.10.-e
87.10.Tf
05.70.-a
65.40.gd

Keywords:
Permutation reduction
Solvent entropy
All-atom (fully atomistic) molecular dynam-
ics simulations
GROMACS
Compacted configuration space density

Biomolecular processes are governed by free energy changes and thus depend on a fine-tuned interplay
between entropy and enthalpy. To calculate accurate values for entropies from simulations is particularly
challenging for the solvation shell of proteins, which contributes crucially to the total entropy of
solvated proteins, due to the diffusive motion of the solvent molecules. Accordingly, for each frame
of a Molecular dynamics (MD) trajectory, our software relabels the solvent molecules, such that the
resulting configuration space volume is reduced by a factor of N! with N being the number of solvent
molecules. The combinatorial explosion of a naive implementation is here overcome by transforming
the task into a linear assignment problem, for which algorithms with complexity O(N3) exist. We have
shown in previous research that the solvent entropy can be estimated from such a compacted trajectory
by established entropy estimation methods. In this paper, we describe the software implementation
which also allows applications beyond entropy estimation, such as the permutation of lipids in membrane
bilayers.

Program summary

Program title: g_permute
Catalogue identifier: AECJ_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AECJ_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GPL
No. of lines in distributed program, including test data, etc.: 45 173
No. of bytes in distributed program, including test data, etc.: 2 730 678
Distribution format: tar.gz
Programming language: C
Computer: PC-compatible running Linux
Operating system: Linux
RAM: Dependent on the number of solvent molecules, min 12 582 912 bytes
Classification: 3, 4.8, 4.9
External routines: liblap (included); From GROMACS-3.3.1: libgmx (not included)
Nature of problem: Estimating the entropy of solvent molecules from a molecular dynamics simulation
trajectory cannot be performed on ordinary trajectories.
Solution method: Compacting the configuration space of molecules by exploiting their permutation
symmetry. Applies to trajectories either compatible to those obtained with the GROMACS simulation
package [1] or multi-model pdb (Protein Data Bank) files.
Restrictions: In rare cases the time to find a solution for the linear assignment problem can be very long.
Running time: Dependent on trajectory length and number of molecules to be permuted.

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author at: Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
E-mail address: jhaas@gwdg.de (J. Haas).
0010-4655/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2008.10.018

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AECJ_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:jhaas@gwdg.de
http://dx.doi.org/10.1016/j.cpc.2008.10.018

456 F. Reinhard et al. / Computer Physics Communications 180 (2009) 455–458
References:
[1] D. van der Spoel, et al., J. Comput. Chem. 26 (2005) 1701.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Solvation is known to directly effect not only the structure of
proteins and other macromolecular complexes [1], but also their
functions in biological processes. These are governed by free en-
ergy changes and thus depend on a fine interplay of enthalpy
and entropy. Paradoxically, although all entropic effects and driv-
ing forces are fully described by atomistic MD simulations, it turns
out to be rather challenging to actually extract accurate values
for entropic contributions from an MD trajectory. This is particu-
larly true for the biologically relevant solvation shell, which, due
to the diffusive motion of the solvent molecules is inaccessible
to the straightforward application of established entropy estima-
tion methods [2,3]. The main obstacle is the huge configuration
space, which is inadequately sampled. We have shown in previ-
ous research, that the permutation symmetry of the solvent can
be exploited by transforming the trajectory with the permuta-
tion reduced (PR) approach [4] such that established estimation
methods are applicable, e.g., the quasiharmonic approximation or
principal component analysis (PCA). Here, we focus on the imple-
mentation of the PR approach within the GROMACS framework.
The method involves a combinatorial problem, which is solved
through its equivalence with the linear assignment problem, for
which O(N3) methods exist [5]. A further advantage is that our
implementation makes diffusive systems accessible to improved fit
functions.

2. Theoretical background

Our program g_permute reads a trajectory and transforms it
by permuting the indices of the solvent molecules in each frame.
We refer to this process as “permutation reduction” or “relabeling”
of the solvent molecules. This transformation leaves all properties
of the system unchanged, such that the resulting trajectory will
still provide accurate thermodynamic quantities, albeit with the
potential to significantly improve sampling. Apparently, optimal
sampling is achieved for maximally reduced configuration space
volume. As will be detailed below, the combinatorial problem of
selecting for each MD frame the one, which maps the configuration
vector into a maximally compact volume out of the N! possible
permutations, is overcome through the equivalence with the linear
assignment problem. This renders the resulting trajectory acces-
sible to established density estimation methods such as PCA and
solves the sampling problem.

To describe the algorithm in detail, let us consider a pure sol-
vent trajectory, containing N solvent molecules consisting of m
atoms each. Each configuration (“frame”) of this trajectory will
thus be described by a 3Nm-dimensional configuration vector x.
To uniquely label the molecules and atoms, we will assume this
vector to consist of Nm 3-dimensional vectors xi, j , i ∈ 1 . . . N ,
j ∈ 1 . . .m, denoting the position of atom j of the solvent molecule
i. The full input trajectory is thus given by a time series of T
frames of these vectors

xi, j(tn), i = 1 . . . N, j = 1 . . .m, n = 1 . . . T .

Let furthermore x0 be a fixed reference configuration, e.g., the first
frame of the trajectory.

We aim at transforming the trajectory frame by frame by rela-
beling the molecules. Its output will thus be a trajectory xπn(i), j(tn)
with πn ∈ SymN being a permutation of the N solvent molecules,
which in general will be different for each frame.

To obtain a trajectory, that is maximally compact in configu-
ration space, each permutation πn is chosen such as to map the
respective configuration of each frame x(tn) to a new configuration
which is as close as possible to the reference structure x0 accord-
ing to 3Nm-dimensional Euclidean metrics (see Fig. 1),

dn =
N∑

i=1

∣∣xπn(i),1(tn) − x0
i,1

∣∣2
.

Finding πn is equivalent to the “linear assignment problem”
(LAP), for which O(N3) methods exist [5]. g_permute is based on
a LAP solving algorithm developed by Jonker [6], an implementa-
tion of this algorithm is available electronically [7] and distributed
along with g_permute.

Two different ways of computing the distance dn are imple-
mented in g_permute. By default, only the distances between the
first atoms (j = 1) are considered. This procedure is appropriate for
permuting water molecules, where the first atom corresponds to
the oxygen atom. Alternatively, g_permute can operate in a center
of mass (COM) mode. Then, dn is the distance between the COMs
of the solvent molecules, extending greatly the range of molecules,
which can be permuted (e.g., to lipids), and hence the scope of
possible applications. For both modes one can either supply a ref-
erence frame containing the reference structure or points (COMs)
for the group of molecules to be permuted. Alternatively, the ref-
erence structure or COMs are calculated from the first frame.

From a configuration space perspective, the resulting trajec-
tory is mapped into a compact configuration space region centered
around the reference configuration x0. It is instructive, however, to
consider this permutation in real (3D) space (Fig. 2).

Recall that, a molecule A will be swapped (relabeled) with an-
other molecule B, whenever A approaches the reference position
of B. As a result, each molecule will remain close to its reference
position (Fig. 2B), rather than exploring the full available as in the
original trajectory (Fig. 2A).

3. Overview of the software structure

g_permute is written in C and linked to the lap and GROMACS
libraries. While liblap is supplied with the distribution, libgmx has
to be installed separately (script supplied). Sample makefiles are
also provided for the GNU gcc compilers. Liblap is the library for
the linear assignment solving algorithm [6], while libgmx contains
the GROMACS routines needed for fitting and in- and output of the
trajectory as well as all structure files.

4. Description of the individual software components

The distribution consists of g_permute.c itself (main program)
and further lap.c (code for linear assignment problem) and mem-
ory.c (memory handling of matrices and vectors), the latter two
are to be compiled into the shared library liblap.

5. Installation instructions

(1) install gromacs-3.3.1 (shell script “instGMX331.sh” supplied).
(2) cd into ‘liblap’ and edit the Makefile.

F. Reinhard et al. / Computer Physics Communications 180 (2009) 455–458 457
(A) (B)

Fig. 1. Panel A shows the relabeling step for one pair of water molecules. In panel B the compacting of the configuration space density is illustrated for the 2D case.

(A) (B)

Fig. 2. Overlay of 200 frames of a MD trajectory containing 216 water molecules in a cubic box. Shown are only the oxygen atoms. Each atom is assigned one unique color
for all frames. A: Original trajectory, B: relabeled trajectory. The relabeling algorithm constrains each atom to a region near its reference position, leading to the clustering of
colors in B. Figure prepared and rendered with PYMOL [8].
• set the environment variable “PREFIX” to the directory,
where you want the final library to be installed (the default
PREFIX=../../g_permute-1.1 will create a directory g_permute-
1.1 in the same directory where the tar archive was decom-
pressed to and install liblap.so to../../g_permute-1.1/lib.
Make sure the path set here is in your “LD_LIBRARY_PATH”
when running g_permute.

• specify “GMXDIR”, “GMXLIB” and “GMXINC” to point to your
GROMACS installation. Furthermore, make sure you have
compiled GROMACS with shared libraries enabled (i.e. with
‘configure-enable-shared’ or use the supplied script).

• type ‘make’, then ‘make install’.
(3) cd into ‘src’ and edit the Makefile as in../liblap.

type ‘make’ followed by ‘make install’.
‘make install’ with the default settings will install g_permute
to../../g_permute-1.1/bin.
6. Test run description

6.1. Data input

g_permute takes a maximum of four input arguments, three
filenames and one numerical argument.

-f the input trajectory.
-n an index file.
-r the reference structure (use this to override the default of us-

ing the first frame as a reference. If -com is set the default is
to use COM coordinates calculated from first frame in trajec-
tory).

-m the number of atoms per molecule to be permuted.

6.2. Optional switches

g_permute takes up to five optional switches, where the
switches -b and -e are to be used for frames selection, while -com

458 F. Reinhard et al. / Computer Physics Communications 180 (2009) 455–458
and -rm_pbc affect the distance calculation itself. The switch -dt
reduces the number of frames to include only those where time
t modulo the timestep of the trajectory dt is equal the time indi-
cated.

-com center of mass (COM) mode instead of default picking of
first atom (oxygen in case of water).

-rm_pbc calculate distance using periodic boundary conditions,
default is off.

-b Begin at the specified frame in ps.
-e End at the specified frame in ps.

-dt Only consider frames when time t MOD dt == first time
(ps), otherwise disregard frame.

6.3. Data output

Output is written to a file specified by -o, there are two op-
tional output files containing COM coordinates, either permuted or
in original order.

-o the output trajectory.
-oref trajectory containing COM coordinates in original order

(optional).
-orefp trajectory containing the permuted COM coordinates (op-

tional).

6.4. Index file [index.ndx] for permuting TIP4P water trajectories

In an index file the indices of the atoms in one group are listed
below line with the [] tags, the first group here are the oxygen
atoms, the second group includes all water atoms.

[oxygen_atoms]
1 5 9 13 etc.
[water_atoms]
1 2 3 4 5 6 etc.
6.5. Example run

The simplest command to permute TIP4P water (see Fig. 2) in
a GROMACS-based trajectory is:

g_permute -m 4 -s start_struc.pdb -f traj.xtc
-o permute.xtc -n index.ndx

g_permute then reads in the topologies of the system from
start_struc.pdb and the trajectory from traj.xtc, referring to the
groups listed in index.ndx as described above. The permuted trajec-
tory will be written to permute.xtc. Note that the output trajectory
can also be written directly to a multi-model pdb file.

Similarly, when permuting lipids containing 46 atoms per
molecule:

g_permute -m 46 -s start_struc.pdb -f traj.xtc
-o permute.xtc -n index.ndx

The index file in this case would contain two groups, one, e.g.,
resembling the atoms in the head group of the lipid and a second
listing all atoms of the lipids.

Acknowledgements

We thank Stephanus Fengler for valuable discussions. This work
was supported by the Human Frontier Science Program (Grant
RGP 53/2004) and the Volkswagen foundation (Grant numbers:
I/80436, I/80585).

References

[1] P. Ball, Chem. Rev. 108 (2008) 74.
[2] J. Schlitter, Chem. Phys. Lett. 215 (1993) 617.
[3] R.M. Levy, A.R. Srinivasan, W.K. Olson, J.A. McCammon, Biopolymers 23 (1984)

1099.
[4] F. Reinhard, H. Grubmüller, J. Chem. Phys. 126 (2007) 014102.
[5] R.E. Burkard, Discrete Appl. Math. 123 (2002) 257.
[6] R. Jonker, A. Volgenant, Computing 38 (1987) 325.
[7] MagicLogic, http://www.magiclogic.com/assignment.html.
[8] W. DeLano, DeLano Scientific LLC, Palo Alto, CA, USA, http://www.pymol.org,

2008.

http://www.magiclogic.com/assignment.html
http://www.pymol.org

	g_permute: Permutation-reduced phase space density compaction
	Introduction
	Theoretical background
	Overview of the software structure
	Description of the individual software components
	Installation instructions
	Test run description
	Data input
	Optional switches
	Data output
	Index file [index.ndx] for permuting TIP4P water trajectories
	Example run

	Acknowledgements
	References

