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SUMMARY

The fast and accurate prediction of protein flex-
ibility is one of the major challenges in protein
science. Enzyme activity, signal transduction,
and ligand binding are dynamic processes in-
volving essential conformational changes rang-
ing from small side chain fluctuations to reorien-
tations of entire domains. In the present work,
we describe a reimplementation of the CON-
COORD approach, termed tCONCOORD, which
allows a computationally efficient sampling of
conformational transitions of a protein based on
geometrical considerations. Moreover, it allows
for the extraction of the essential degrees of
freedom, which, in general, are the biologically
relevant ones. The method rests on a reliable es-
timate of the stability of interactions observed
in a starting structure, in particular those inter-
actions that change during a conformational
transition. Applications to adenylate kinase, cal-
modulin, aldose reductase, T4-lysozyme, staph-
ylococcal nuclease, and ubiquitin show that ex-
perimentally known conformational transitions
are faithfully predicted.

INTRODUCTION

Regardless of whether a protein functions as an enzyme,

molecular motor, transport protein, or receptor, its func-

tion is often coupled to motion. These motions range

from side chain fluctuations to reorientations of domains

and partial unfolding and refolding. An understanding of

protein function is thus strongly coupled to insight into dy-

namics and flexibility. X-ray crystallography, which is still

the major source of structural information of proteins, pro-

vides mainly static pictures of one conformation, even

though a number of proteins have been resolved in differ-

ent conformations, providing insights into protein flexibil-

ity directly from experimental data (Gerstein and Krebs,

1998). Structures resolved by NMR spectroscopy are usu-

ally published as an ensemble of conformations that fulfill

the experimentally determined restraints and provide more
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information about protein flexibility. However, the method

is still restricted to proteins of limited size.

Knowledge about protein structures in different confor-

mational substates, either from experimental data or sim-

ulation, has been proven to enhance protein-protein dock-

ing (Bonvin, 2006; Mustard and Ritchie, 2005; Ehrlich et al.,

2005) and structure-based drug design (SBDD) (Knegtel

et al., 1997; Carlson, 2002; Meagher and Carlson, 2004;

McGovern and Shoichet, 2003; Teague, 2003). However,

proteins often undergo conformational changes upon li-

gand binding. Therefore, molecular docking or the deriva-

tion of pharmacophore models from a single receptor

structure often leads to unsatisfying results, either by ex-

cluding known binders due to overdefinition of the binding

site when using a holo structure, or by not identifying the

correct binding pose when using an apo structure or pro-

tein model (McGovern and Shoichet, 2003).

Among the computational approaches used to tackle

protein flexibility, molecular dynamics (MD) simulations

are predominantly employed. However, despite the enor-

mous increase in computer power and advances in algo-

rithm techniques and parallelization, MD simulations are

computationally expensive; moreover, high-energy bar-

riers are often not overcome within accessible time. In or-

der to alleviate the resulting sampling problem, several

advanced simulation methods based on MD, including

replica-exchange molecular dynamics (REMD) (Sugita

and Okamoto, 1999), conformational flooding (Grubmuel-

ler, 1995; Lange et al., 2006), and targeted molecular dy-

namics (TMD) (Schlitter et al., 1994; van der Vaart and

Karplus, 2005), have been developed and successfully

applied to numerous problems within the field of protein

research. However, even these methods are not routinely

applicable to the efficient sampling of conformational tran-

sitions. Computationally more efficient, but less accurate,

methods are based on Gaussian network models (Bahar

et al., 1998; Haliloglu et al., 1997), normal mode analysis

(Go et al., 1983; Brooks and Karplus, 1983; Krebs et al.,

2002; Alexandrov et al., 2005), or graph theoretical ap-

proaches (Jacobs et al., 2001).

A different approach is the CONCOORD method (de

Groot et al., 1997), which is based on geometrical consid-

erations for the prediction of protein flexibility. A given

input structure is analyzed and translated into a geometric

description of the protein. Based on this description, the

structure is rebuilt, commonly several hundreds of times,
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Figure 1. Adenylate Kinase

(A) Crystal structure (PDB code: 1AKE) of adenylate kinase (green) with bound inhibitor AP5A (orange).

(B) Superimposition of several X-ray structures in different conformations, indicating the induced fit motion.

(C and D) Principal components analysis. Experimental structures (black circles) and three simulation ensembles (blue, red, and green circles) are

projected onto the first two eigenvectors. The blue ensemble was generated with CONCOORD, and the red one was generated with tCONCOORD.

tCONCOORD correctly predicts the induced fit motion and samples open conformations when they are started from the closed conformation with the

ligand removed. If the ligand remains in the input structure, the conformational space is restricted to conformations around the closed state (green).
leading to an ensemble that can be analyzed, and essen-

tial degrees of freedom (Amadei et al., 1993), often repre-

senting the biological, relevant motions in proteins, may

be extracted. Whereas the original implementation of

CONCOORD was developed to predict conformational

ensembles around a known structure, in this work we

present a major extension termed tCONCOORD (Seeliger

and de Groot, 2007a) that allows for the prediction of con-

formational transitions of proteins. tCONCOORD has

been completely parameterized based on experimental

data, from which, for example, a novel set of protein-spe-

cific atomic radii has been derived (Seeliger and de Groot,

2007b) to ensure optimal geometry. Moreover, the con-

straint definition has been calibrated to also allow for the

prediction of large-scale conformational transitions. An

integral part of tCONCOORD is a newly developed ap-

proach for estimating hydrogen-bond stability via a thor-

ough analysis of the environment. Its incorporation into

the constraint definition significantly enhances the predic-

tion quality of conformational transitions. We show simu-

lation results for adenylate kinase, calmodulin, aldose
Structure 15, 1482–14
reductase, T4-lysozyme, ubiquitin, and staphylococcal

nuclease to assess the prediction quality for different ap-

plications ranging from flexible to rigid protein structures,

including large conformational transitions. Additionally,

the influence of ligands on conformational flexibility is

investigated.

RESULTS

Adenylate Kinase
Adenylate kinase displays a distinct induced fit motion

upon binding to its substrate (ATP/AMP) or an inhibitor

(see Figure 1B). Structures in different conformations have

been resolved (Müller and Schulz, 1992; Müller et al.,

1996; Schlauderer and Schulz, 1996; Schlauderer et al.,

1996), contributing significantly to the understanding of

the catalytic mechanism of this class of enzymes. We car-

ried out two tCONCOORD simulations by using the closed

conformation of adenylate kinase (Protein Data Bank

[PDB] code: 1AKE, see Figure 1A) as input. In one simula-

tion, the ligand (AP5A) was removed.
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Figures 1C and 1D show the result of a principal compo-

nents analysis (PCA) applied to the experimental struc-

tures. The first eigenvector (x axis) corresponds to the in-

duced fit motion indicated by the red arrow in Figure 1B.

Every dot in the plots represents a single structure. The

red dots represent the ensemble that has been generated

with tCONCOORD by using the closed conformation of

adenylate kinase without ligand as input. The blue dots

in Figure 1C represent an ensemble that has been gener-

ated by using CONCOORD (version 1.2), with the same

input. As can be seen, the CONCOORD ensemble (blue)

basically samples the conformational space around the

input structure, leaving out open conformations. The

tCONCOORD ensemble (red) behaves differently. It al-

most completely samples the conformational space that

is covered by the experimental structures, thereby clearly

producing open conformations (high x values). The exper-

imental structures were reached with a deviation of 2.4,

2.6, and 3.1 Å Ca-rmsd for 1DVR, 1AK2, and 4AKE,

respectively. For comparison, for the CONCOORD cluster

these RMSD values are much higher with 3.4, 4.4, and

5.9 Å. In SBDD, the reverse problem, predicting induced-fit

structures from an open conformation, often needs to be

addressed. A tCONCOORD run with an open conforma-

tion (PDB code: 4AKE) as input produces structures that

approach the closed conformations with rmsds of 2.5, 2.9,

and 3.3 Å for 1DVR, 1AK2, and 1AKE, respectively. Thus,

conformations close to the experimentally determined

ligand-bound states are present within the ensemble that

was generated by using the apo structure (PDB code:

4AKE) as input.

The conformational flexibility changes significantly if

the ligand remains in the input structure. Figure 1D shows

a comparison of an ensemble with the ligand present in

the input structure (green dots) with the previously dis-

cussed ensemble, generated without ligand (red dots).

As can be seen, the presence of the ligand leads to a

reduction of the conformational space that is sampled

by the protein, and open conformations are not sampled

anymore.

Calmodulin
The structure and dynamics of calmodulin have been

studied extensively by X-ray crystallography and NMR.

In its activated (Ca2+-bound) conformation (Chattopad-

hyaya et al., 1992), calmodulin exposes hydrophobic

residues to the solvent, enabling binding to a target, either

a protein or an inhibitior. The binding process itself re-

quires a large conformational change involving the unfold-

ing of the central helix in order to allow for rotation of the

C-terminal domain to form the binding site (Cook et al.,

1994) (Figures 2A and 2B).

A tCONCOORD simulation of this particularly challeng-

ing test case has been carried out. The instability of a num-

ber of hydrogen bonds in the central helix of the activated

form (PDB code: 1CLL) was correctly identified (see Fig-

ure 2C) and incorporated into the constraint definition.

The resulting ensemble (Figure 2E, left) can be described

as two freely rotating domains connected by a linker.
1484 Structure 15, 1482–1492, November 2007 ª2007 Elsevier
These results are in good agreement with NMR studies

of calmodulin (Elshorst et al., 1999) (Figure 2E, right). In

Figure 2F, the projections of the tCONCOORD ensemble

(green cloud), the NMR ensemble (red dots), the X-ray

structures of the activated form (orange dot), and the li-

gand-bound conformation (blue dot) onto the first three

eigenvectors of a PCA are shown. The tCONCOORD en-

semble represents an extended sampling of the conforma-

tional space, comprising all experimentally determined

structures.

The rmsd between the activated conformation of cal-

modulin and the bound conformation is 14.6 Å. The clos-

est match of a structure from the ensemble, generated

with tCONCOORD, to the experimentally known ligand

bound conformation is as low as 2.8 Å (Figure 2D). This

is an example of a case in which a ligand-bound confor-

mation of the protein is predicted by using only the struc-

turally completely different unbound state as input. The

possibility of such predictions is of obvious interest for

applications in the field of SBDD.

Aldose Reductase
Aldose reductase (AR) is believed to play an important role

in diabetes and therefore is a potential drug target (Brown-

lee, 2001; Steuber et al., 2006). It adopts a TIM barrel fold

and uses NADPH as a cofactor to reduce various alde-

hydes. AR has been crystallized with different inhibitors.

A remarkable fact concerning these inhibitors is that

they have very different structures, sizes, and molecular

weights (Steuber et al., 2006). AR is able to bind these

structurally different inhibitors because of a very flexible

binding site.

Figure 3 shows the structure of AR (PDB code: 2FZD)

with bound cofactor (red) and the inhibitor Tolrestat (or-

ange). The regions that are responsible for the formation

of a hydrophobic subpocket are labeled with A and C.

The B loop is responsible for binding the cofactor. In order

to study the influence of both the ligand and the cofactor

on the conformational flexibility of AR, tCONCOORD

simulations were carried out for the entire complex (AR+

NADP+Tolrestat), the complex with removed inhibitor

(AR+NADP), and free AR. To compare the flexibility of

the different systems, a PCA was applied to the combined

ensembles of all three runs. Subsequently, the ensembles

for each system were projected onto the eigenvectors

with the largest eigenvalues.

Eigenvectors 1 and 2 mainly correspond to movements

of the A loop in AR, as indicated in Figure 4 (right panel).

The projection of the ensembles onto these eigenvectors

(Figure 4, left panel) reveals the same flexibility along these

eigenvectors for the free AR (s1
free = 5.15 nm, s2

free =

4.34 nm) and the AR with bound cofactor (s1
holo =

5.07 nm, s2
holo = 4.25 nm). In the third system, in which

Tolrestat is also bound, the flexibility is reduced signifi-

cantly due to interaction of the ligand with the A and C

loops (s1
tol = 3.13 nm, s2

tol = 3.28 nm).

Figure 5 compares the motions along eigenvectors 3

and 4. The motions corresponding to eigenvector 3 pre-

dominantly represent a movement of loop B, which is
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Figure 2. Calmodulin

(A) The activated form of calmodulin (PDB

code: 1CLL) used as input for tCONCOORD.

(B) The structure of calmodulin bound to Tri-

fluoroperazine (TFP). The rmsd between these

two structures is 14.6 Å.

(C) The result of the hydrogen-bond analysis of

tCONCOORD. Red sticks represent hydrogen

bonds with high solvation probabilities and

are not regarded as constraints in the tCON-

COORD simulation.

(D) The superimposition of the ligand-bound

conformation (green) and the closest match

of a structure from the tCONCOORD ensemble

(red) with an rmsd of 2.8 Å.

(E) A tCONCOORD ensemble and an NMR

ensemble (PDB code: 1CFF) fitted onto the

C-terminal domain.

(F) The projection onto the three eigenvectors

with the largest eigenvalues of a PCA. The

tCONCOORD ensemble is shown as a green

cloud, and the NMR ensemble is shown as

red dots. The orange dot represents the X-ray

structure of the open (activated) conformation,

and the blue dot represents the closed (ligand-

bound) state.
involved in binding the cofactor. Here, we observe high

flexibility for the free AR (s3
free = 3.41 nm), whereas the

fluctuation for the holo form (s3
holo = 2.76 nm) and the en-

tire complex (s3
tol = 2.96 nm) along this mode is compara-

ble. Eigenvector 4 again reveals a clear difference be-

tween the holo form and the complete complex systems.

As the main component of this mode is a movement of

the C loop, flexibility of this region is dramatically reduced

by Tolrestat (s4
tol = 1.30 nm), whereas free AR and holo AR

display comparable and somewhat higher flexibility along

this eigenvector (s4
free = 2.01 nm, s4

holo = 2.10 nm).

T4-Lysozyme
Bacteriophage T4-lysozyme (T4L) is one of the rare cases

in which conformational flexibility can be directly esti-

mated from X-ray structures (de Groot et al., 1998). It has

been crystallized in many different conformational states,

shedding light on the dynamical behavior. The main col-

lective motion is a hinge-bending mode that is necessary

for entrance and release of the substrate. This mode is

described by the first eigenvector of a PCA, carried out

on the experimental data.

In order to predict open conformations by using the

closed conformation as input for tCONCOORD, the cor-

rect detection of unstable hydrogen bonds is mandatory.
Structure 15, 1482–14
As can be seen in Figure 6, a hydrogen bond that is formed

between Glu22 and Arg137 in the closed conformation

(PDB code: 2LZM, left structure) is not present in the

open conformation (PDB code: 149L, right structure), and

the distance from the Cd of Glu22 to Cz of Arg137 changes

from 3.8 Å to more than 18 Å. The hydrogen-bond analysis

method of tCONCOORD correctly predicts the instability

of this hydrogen bond, as indicated in the picture in the

central upper panel of Figure 6. The blue sticks represent

stable hydrogen bonds, whereas red sticks mark those

that display high probabilities of water attack. These hy-

drogen bonds are not defined as constraints.

Figure 6 also shows the projection of the experimental

data, a tCONCOORD ensemble, and three MD trajecto-

ries, which have started from different conformational

states, onto the first two eigenvectors.

It can be seen that the tCONCOORD ensemble, started

from a closed state (PDB code: 2LZM), also samples open

conformations. A closer look at the MD trajectories reveals

that the longest trajectory (cyan, 184 ns) does not sample

open conformations at all, whereas the shorter simulations

(red and green) cover more of the conformational space.

The phase space density produced by the MD simulations

indicates an energy barrier between the closed and the

open conformations that is not overcome in the simulation
92, November 2007 ª2007 Elsevier Ltd All rights reserved 1485

www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov


Structure

Sampling of Conformational Transitions in Proteins
represented by the cyan circles. The tCONCOORD sam-

pling, however, is not affected by energy barriers and sam-

ples most of the space covered by the MD trajectories.

Figure 3. Aldose Reductase

The loops labeled A and C form parts of the Tolrestat-binding site.

Loop B interacts with the cofactor.
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Although the tCONCOORD ensemble samples both open

and closed conformations, it does not completely sample

the conformational space sampled by the MD simulations

that started from open conformations. This is due to the

fact that tCONCOORD defines constraints from a single in-

put structure, in this particular case a closed conformation.

If unstable interactions are not entirely detected in the con-

straint definition process, this can lead to an exclusion of

regions of the conformational space.

The tCONCOORD ensemble furthermore samples re-

gions of the conformational space that are not visited by

the MD simulations and the experimental structures.

This could be either due to an energy barrier that is too

high to be overcome by MD simulations within the acces-

sible timescale, or to the energy of this region of the con-

formational space being too high to be part of the relevant

conformational space.

Rigid and Flexible Regions in Proteins
Functional studies on protein structures benefit signifi-

cantly from information about the flexibility and rigidity of

protein parts. The calculation of root-mean-square flu-

ctuations (rmsf) from tCONCOORD ensembles can provide

valuable hints regarding these properties. To test the reli-

ability of flexibility predictions, we chose two test cases

with completely different structure and flexibility proper-

ties, which have been experimentally determined. As the

first test case, we chose ubiquitin, a small 70 residue pro-

tein of which 46 X-ray structures are available in the PDB
Figure 4. Projection of tCONCOORD Ensembles of Aldose Reductase onto Eigenvectors 1 and 2 of a Principal Components

Analysis

The structures on the right represent the predominant motions along these vectors. On the left, the two-dimensional projection of three different

ensembles is shown. The green dots represent the ensemble of the entire complex, the red dots represent the holo form, and the black dots represent

the apo form. The projection shows the reduced flexibility of the binding site in the presence of Tolrestat. Binding of NADP, however, has no effect on

these modes.
Ltd All rights reserved
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Figure 5. Projection of tCONCOORD Ensembles of Aldose Reductase onto Eigenvectors 3 and 4 of a Principal Components

Analysis

The structures on the right represent the predominant motions along these vectors. On the left, the two-dimensional projection of three different

ensembles is shown. The green dots represent the ensemble of the entire complex, the red dots represent the holo form, and the black dots represent

the apo form. The projection shows increased flexibility along eigenvector 3 if NADP is removed, because loop B is predominantly involved in this

motion. Eigenvector 4 mainly represents a movement of loop C, which leads to decreased flexibility for the ensemble with Tolrestat bound.
(see the Supplemental Data available with this article on-

line). The rmsf determined from the X-ray structures (Fig-

ure 7, red curve) shows that the protein is relatively rigid,

and that the only noteworthy flexibility is at the C terminus

and a loop. The rmsf calculated from the tCONCOORD

ensemble generated by using PDB code 1UBI (Love

et al., 1997) as input (Figure 7, black curve) represents

the same flexibility properties as the experimental data. Al-

though the flexibility level of the tCONCOORD ensemble is

constantly above the X-ray ensemble, the overall picture of

a rigid protein with a flexible C terminus is reproduced (cor-

relation coefficient of 0.95). For comparison, the rmsf of an

ensemble generated with an elastic network model (Suhre

and Sanejouand, 2004a, 2004b) is shown (Figure 7, green

curve). This fast and efficient method is routinely employed

to predict protein flexibility and reproduces the experi-

mental fluctuations only slightly worse than tCONCOORD

(correlation coefficient of 0.9). However, the structures

from the tCONCOORD ensemble all have reasonable ge-

ometry (bond lengths, angles, dihedrals, and interatomic

distances), which is not always the case for single struc-

tures derived from elastic network models.

As a second test case, we chose staphylococcal nucle-

ase, of which an NMR ensemble (Wang et al., 1997) (PDB

code: 1JOR) provides information on the flexibility of the

protein. The rmsf calculated from the NMR ensemble (Fig-

ure 8, red curve) renders mainly one loop around residue

42 very flexible. Furthermore, the loops around residues
Structure 15, 1482–149
80 and 110 show increased flexibility. The rmsf calculated

from a tCONCOORD ensemble (Figure 8, black curve), by

using an X-ray structure (PDB code: 1EY4) (Chen et al.,

2000) as input, qualitatively yields the same picture. The

most flexible regions detected by the tCONCOORD

ensemble are in good agreement with the experimental

data (correlation coefficient of 0.8) and, again, are slightly

better than those predicted by the elastic network

model (green curve, correlation coefficient of 0.78). The

tCONCOORD ensemble predicts higher flexibility for

some parts of the protein than observed in the NMR en-

semble. This might be due either to interactions that

tCONCOORD underestimates, or toanoverly tight represen-

tation of the NMR data, which is sometimes caused by

imposing time- and ensemble-averaged experimental prop-

erties onto single structures during refinement (Spronk et al.,

2003; Bonvin and Brünger, 1995; Cuniasse et al., 1997).

DISCUSSION

We report a novel, to our knowledge, approach to accu-

rately predict large conformational transitions in proteins

and its application to selected systems with biological

relevance. The method rests on a thorough analysis of

the interactions in proteins and their translation into con-

straints. In particular, hydrogen bonds are investigated,

and their stability is estimated by analyzing their sur-

roundings in respect to hydrophobic protection. Using
2, November 2007 ª2007 Elsevier Ltd All rights reserved 1487
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Figure 6. T4-Lysozyme

The upper left panel shows the structure of

the closed conformation of T4-lysozyme (PDB

code: 2LZM). This structure has been used as

input for tCONCOORD. The picture in the mid-

dle shows the hydrogen-bond stability analysis

carried out by tCONCOORD. Red-marked hy-

drogen bonds, like the bond between GLU22

and ARG137, are predicted to be unstable.

The picture on the right shows the structure

of an open conformation of T4-lysozyme (PDB

code: 149L). Indeed, in this conformation, this

hydrogen bond is not present anymore. The

lower panel shows the result of a principal

components analysis applied to the experi-

mental structures. The experimental structures

(black), the tCONCOORD ensemble (blue), and

three MD trajectories (cyan, red, and green) are

projected on the first two eigenvectors.
the predefined constraints, structures are built from ran-

dom starting conditions by iteratively correcting atomic

coordinates. The resulting ensemble covers the confor-

mational space that is available within those constraints,

regardless of potential energy barriers between different
conformations, which usually preclude efficient sampling

with other methods.

Information about conformational transitions is often

a prerequisite for understanding protein function. With

tCONCOORD, we provide an efficient simulation approach
Figure 7. Root-Mean-Square Fluctua-

tion in Ubiquitin
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Figure 8. Root-Mean-Square Fluctua-

tion in Staphylococcal Nuclease
to predict protein conformational transitions. The resulting

ensemble can be used to study the essential degrees of

freedom of a protein, to identify flexible and rigid parts in

a structure, or to obtain different starting points for other

simulation protocols. Furthermore, incorporation of protein

flexibility by tCONCOORD ensembles, e.g., in docking

protocols, is expected to enhance the efforts of SBDD.

EXPERIMENTAL PROCEDURES

Structure Analysis

Interactions in protein structures are rigorously analyzed and trans-

lated into a set of geometrical constraints that can be compared to

a construction plan of the protein. This set consists of topological con-

straints (e.g., bonds, angles, planarities) and noncovalent constraints

like hydrogen bonds, salt bridges, and hydrophobic clusters. During

the analysis of experimentally known conformational transitions, it

was found that they routinely involve opening of one or more hydrogen

bonds. tCONCOORD therefore attempts to predict unstable hydrogen

bonds by estimating the solvation probability. This approach is based

on the work of Fernandez et al. (Fernandez et al., 2002a, 2002b, 2004;

Fernandez and Berry, 2002), who showed that keeping a hydrogen

bond ‘‘dry’’ is a prerequisite for its stability, and that protein folding

is associated with a systematic desolvation of hydrogen bonds by sur-

rounding hydrophobic groups. Thus, analyzing the neighborhood of

a particular hydrogen bond should provide hints for the probability of

a water molecule attacking it, which is directly correlated to the open-

ing probability.

To this end, we have analyzed 35 large-scale molecular dynamics

trajectories from different proteins (Table 1) and calculated for each

protein atom type i (a total of 167 atom types, hydrogen atoms were

not taken into account) the radial distribution function (RDF) for

water-oxygen (Owat). Integrating the weighted RDFs according to

Pi = !0
d Ri � Owat(r) dr (with d = 6 Å) yields a value that may serve as a

solvation parameter and allows for the estimation of the probability

of finding a water molecule within a certain distance to the particular

atom. Because these values were obtained by analyzing a very limited

number of trajectories, an accurate statistical error estimation is diffi-

cult. Additionally, there is a systematic error, resulting from the low

number of different folds and sequences taken into account for this

work. However, previous studies on hydrophobic protection showed
Structure 15, 1482–14
that even more simple approaches, such as counting hydrophobic

residues around a hydrogen bond, provide valuable hints for predicting

unstable hydrogen bonds (Fernandez et al., 2002a, 2002b, 2004;

Fernandez and Berry, 2002).

The obtained solvation parameters are used to evaluate the sur-

roundings of a particular hydrogen bond. We consider all atoms within

Table 1. Molecular Dynamics Trajectories that Were
Used for the Derivation of Solvation Parameters

PDB Code

Simulation

Time, ns PDB Code

Simulation

Time, ns

1TUX 110 1RAT 110

1PGS 110 1UBI 110

1CNV 110 1UNE 110

135L 110 1VCC 110

153L 110 1WBA 110

1A3D 110 1A3H 110

1AST 110 4ICB 110

1BJ7 110 1CLM 110

1BM8 110 1CSP 198

1CPN 110 1EXR 77

1DSL 110 1EZM 110

1GBG 110 2CHE 113

1HYP 174 1MLA 110

2APR 110 4AKE 110

1CHD 110 1HKA 110

1AAJ 110 1KOE 110

1ELT 110 1OSA 110

1GBS 110

All simulations were carried out by using the GROMACS suite

and the OPLS-AA force field with TIP4P water.
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Figure 9. Hydrogen Bond Solvation

(A) Distribution of solvation scores in a subset of 290 protein structures from the Protein Data Bank.

(B) All hydrogen bonds in the human prion protein (PDB code: 1QM0). Blue sticks represent backbone-backbone hydrogen bonds, orange sticks

represent backbone-side chain hydrogen bonds, and green sticks represent side chain-side chain hydrogen bonds.

(C) Detection of unstable hydrogen bonds with tCONCOORD by using a threshold of 2.2. Red sticks represent hydrogen bonds that are not turned into

constraints.

(D) The same picture calculated with a threshold of 2.1. The number of unstable hydrogen bonds is larger than in (C).
two intersecting spheres, with radii of 6 Å, one centered at the hydro-

gen and the other one centered at the acceptor atom, for the nearest

neighbors of a hydrogen bond, thereby excluding atoms that are less

than three bonds away from the hydrogen or acceptor atom. Using the

solvation parameters from these nearest neighbors, we calculate a

solvation score, S, according to

S =
1

N

XN

i = 0

Pi ; N : Number of neighbors; (1)

which denotes the average of the solvation parameters of the neigh-

boring atoms. This score is high if the neighborhood mostly consists

of hydrophilic groups.

In order to incorporate this evaluation method into the constraint def-

inition in tCONCOORD, we calculated the distribution of the introduced

solvation score for all hydrogen bonds in 290 protein structures (Supple-

mental Data) from the Protein Data Bank (PDB) (Berman et al., 2000)

with a resolution higher than 1.6 Å (Figure 9). For the constraint definition
1490 Structure 15, 1482–1492, November 2007 ª2007 Elsev
in tCONCOORD, we use thresholds between 2.1 and 2.2. A threshold of

2.2 means that hydrogen bonds with a score higher than 2.2, and thus

exceeding that of 97% of the hydrogen bonds in the analyzed subset

of the PDB, are considered to be unstable. Hence, they are disregarded

and not translated into constraints.

The conformational space sampled by tCONCOORD is very sensi-

tive to the identification of unstable hydrogen bonds and thus to small

changes of coordinates (see Figure 9). We therefore provide default

values for multiple simulation parameters but enable the user to change

them. Moreover, constraints can be defined and undefined via a graph-

ical user interface in order to study the influence of single interactions

on conformational flexibility.

Structure Generation

tCONCOORD uses the CONCOORD algorithm (de Groot et al., 1997)

for structure generation. Based on the predefined constraints, struc-

tures are built starting from random coordinates by iteratively correct-

ing the coordinates to fulfill the constraints. Distances, angles, planar-

ities, and chiralities are corrected simultaneously until all constraints
ier Ltd All rights reserved
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are fulfilled. Depending on the size of the protein and the number of

constraints, this procedure takes from seconds to hours. For

example, generating an ensemble of 100 structures for staphylococcal

nuclease takes about 5 hr on a single Athlon4600+ cpu.

Because each run starts from random coordinates, each newly gen-

erated structure is completely independent from the previous one. On

the one hand, this means that neither information about the path from

one conformation to the other nor about potential energy barriers

between two conformational states is obtained. On the other hand,

the insensitivity to energy barriers means that, like CONCOORD,

tCONCOORD does not suffer from sampling problems like, for exam-

ple, MD simulations.

Structure Preparation and Ensemble Analysis

The quality of tCONCOORD-generated structures depends on the

quality of the input structure. Therefore, structures should be checked,

either by WHATIF (Vriend, 1990) or PROCHECK (Laskowski et al.,

1993), prior to tCONCOORD simulations. Also, energy minimization

prior to simulation can improve simulation results. The structures

used in this work were either protonated by using the HB2NET module

(Hooft et al., 1996) of WHATIF or the pdb2gmx program from the

GROMACS 3.3.1 (Lindahl et al., 2001) suite. The GROMACS package

has also been used for analyzing the generated structure ensembles.

Supplemental Data

Supplemental Data include the PDB codes of the structures that were

used to derive hydrogen bond statistics and the PDB codes of the 46

X-ray structures of ubiquitin and are available at http://www.structure.

org/cgi/content/full/15/11/1482/DC1/.

ACKNOWLEDGMENTS

We thank Ira Tremmel for carefully reading the manuscript.

Received: July 16, 2007

Revised: September 5, 2007

Accepted: September 17, 2007

Published: November 13, 2007

REFERENCES

Alexandrov, V., Lehnert, U., Echols, N., Milburn, D., Engelman, D., and

Gerstein, M. (2005). Normal modes for predicting protein motions:

a comprehensive database assessment and associated web tool. Pro-

tein Sci. 14, 633–643.

Amadei, A., Linssen, A.B.M., and Berendsen, H.J.C. (1993). Essential

dynamics of proteins. Proteins Struct. Funct. Genet. 17, 412–425.

Bahar, I., Atilgan, A.R., Demirel, M.C., and Erman, B. (1998). Vibrational

dynamics of folded proteins: significance of slow and fast motions in

relation to function and stability. Phys. Rev. Lett. 80, 2733–2736.

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,

Shindyalov, I., and Bourne, P. (2000). The Protein Data Bank. Nucleic

Acids Res. 28, 235–242.
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