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ABSTRACT: In constant pH molecular dynamics simulations, the
protonation states of titratable sites can respond to changes of the pH and
of their electrostatic environment. Consequently, the number of protons
bound to the biomolecule, and therefore the overall charge of the system,
fluctuates during the simulation. To avoid artifacts associated with a non-
neutral simulation system, we introduce an approach to maintain neutrality of
the simulation box in constant pH molecular dynamics simulations, while
maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in
experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system
constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We
find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the
number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without
compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying
markedly enhanced simulation and sampling efficiency.

■ INTRODUCTION

The structure of biomolecules in solution depend on pH.1−8

The pH determines the protonation state of titratable residues
and therefore the charge distribution of a biomolecule. Because
the charge distribution is critical to the structure and stability of
biomolecules, their enzymatic activity in the case of enzymes, or
their ability to interact with binding partners, e.g., in the case of
proteins acting in signal transduction or as constituents of more
complex biomolecular structures, can all be controlled through
the pH. Consequently, the pH value in cells and cellular
compartments is tightly regulated.9−11

Despite its importance, molecular dynamics (MD) simu-
lations of biomolecules typically do not include the effect of pH
explicitly. Instead, the protonation states of protonatable groups
of biomolecules are kept fixed during the simulation and the
pH is accounted for implicitly by assigning a fixed protonation
state to each protonatable residue, derived either from chemical
intuition, heuristics,12 or more elaborate estimates based on free
energy calculations.13 Therefore, conformational changes or
biological processes triggered by, or accompanied by, changes
of protonation states cannot be modeled realistically. Moreover,
assigning a realistic fixed protonation state is not trivial, as the
proton affinities of residues in a biomolecule, measured by their
pKa values, are often unknown and may greatly differ from the
pKa values of isolated residues in solution. These differences
arise because the proton affinity of a particular residue strongly
depends on interactions with its environment in the

biomolecule, that is, on interactions with constituents of the
environment, such as water molecules or lipids, and with other
residues. Determining proton affinities of residues in large
biomolecules is further complicated by (i) the often strong
mutual coupling of the protonation states of interacting
residues, which may in addition be coupled to their
conformation,14−17 and (ii) the long-range nature of the
electrostatic interaction.
Ideally, one would want to perform biomolecular simulations

at a fixed pH value and allow the protonation of the titratable
residues to adapt dynamically to changes in their environment
during the simulation. Therefore, various approaches have been
developed for including the effect of the pH in molecular
dynamics simulations, such as Metropolis Monte Carlo,18−20

enveloping distribution sampling,21 or λ-dynamics.22−24

In λ-dynamics based approaches, a continuous titration
coordinate is introduced for each titratable residue, which
defines the state of the titratable site. For example, in this work
λ = 0 and λ = 1 correspond to the protonated and deprotonated
states of a titratable group, respectively. The dynamics of λ
evolves on a free energy surface that depends on the intrinsic
proton affinity of the site, its interactions with the environment,
and the pH of the solution. The free energy gradients are
evaluated on-the-fly during the simulation. In such simulations,
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protons are typically not transferred explicitly between the
protein and solvent, but the effect of the proton activity of the
surrounding medium is instead implicitly accounted for by
coupling the system to a proton bath characterized by a
constant chemical potential of the proton.
There are two major advantages of this implicit representa-

tion. The proton chemical potential accounts for the activity of
the proton in the surrounding solution, which is determined by
a complex equilibrium of differently protonated water species
such as the hydroxyl ion, the hydronium ion, the Zundel ion,25

and the Eigen ion.26 In addition, the concentration of the
relevant water species can be very low under physiological
conditions, which would require model systems of computa-
tionally intractable size to include a large enough number of
each relevant water species in an explicit representation. The
implicit representation circumvents the necessity of including
an accurate, explicit model for these complex coupled
interconversion equilibria within the simulation and allows
one to concentrate on the protonation equilibria of the
biomolecule instead.
The disadvantage of the implicit representation is that the

charge of the explicitly represented ionic species of the
biomolecule is not balanced by the same amount of
complementary charge carried by explicitly modeled counter-
ions in the surrounding solution. The total charge of the system
can therefore deviate from neutrality, which has been shown to
cause severe artifacts if infinite periodic boundary conditions
are applied in combination with the Ewald summation.27−29

Because Ewald summation techniques are widely used in the
framework of molecular dynamics simulations in explicit
solvent with periodic boundary conditions, the issue of
neutrality in constant pH MD is particularly relevant.
Several approaches have been proposed for keeping the

charge constant in constant pH MD simulations. In one
approach, the protonation or deprotonation of each titratable
site is coupled to the appearance or disappearance of an ion in
solution to compensate for the difference in the net charge of
the biomolecule. This approach is routinely used to avoid
artifacts associated with a non-neutral simulation box in free
energy calculations involving alchemical transformations that
affect the total charge in the system.30,31 Recently, Wallace and
Shen implemented this approach to prevent charge fluctuations
in constant pH MD simulations.32 The precise chemical
compound used to model the counterion is not important; it
only has to carry the appropriate amount of charge. One could,
for example, use hydronium ions as counterions.33 Protonation
of a site on the biomolecule causes deprotonation of the

coupled site and vice versa. Consequently, the sum of the
charges on the biomolecule and the coupled sites is preserved,
keeping the total charge of the simulation box constant. The
disadvantage of coupling each titratable site of the biomolecule
to a separate counterion is that the number of coupled sites
increases with the number of titratable sites. Furthermore, to
avoid biasing the pKa estimate of the titratable sites, the local
environment around each coupled site must remain identical
during the simulation. In addition, direct interactions between
coupled ions and the biomolecule must be avoided as well. In
practice, therefore, the coupled sites are restrained to positions
that maximize their separation. However, for larger systems
with many titratable sites and thus many coupled sites,
maintaining a sufficiently large separation between these ions
requires large simulation boxes, which increases the computa-
tional effort significantly.
An alternative approach to avoid charge fluctuations of the

system is to constrain the total charge of the biomolecule.34,35

In this way, only a single protonation macrostate, defined as the
number of titratable protons bound to the biomolecule, can be
simulated, but the distribution of these protons over the
titratable sites is allowed to vary. However, whereas the average
charge on the biomolecule is captured in this approach,
fluctuations in the total number of protons bound are
suppressed, which is unphysical. For example, Figure 1 shows
that in the turkey ovomucoid inhibitor typically three or more
protonation macrostates are populated significantly at all but
the extreme pH values, rather than just one. The details of how
this plot was obtained will be discussed later. This example
demonstrates that a single protonation macrostate alone is not
sufficient for a realistic simulation of a biomolecule at constant
pH.
The aim of this work is to extend the approach by Wallace

and Shen32,33 by combining the use of coupled sites32,33 with a
constraint to overcome the disadvantages mentioned above,
namely, the introduction of as many coupled sites as there are
titratable sites in the system on the one hand and the artificial
restriction to a single protonation macrostate on the other
hand. The development of the combined approach was
motivated by the expectation that the fluctuations of the
overall charge of a biomolecule are typically much smaller than
the total number of titratable sites of that biomolecule. Indeed,
as shown in Figure 1, the number of macrostates populated at
any given pH value is much smaller than the number of
titratable sites in the ovomucoid inhibitor. The remaining
protonation macrostates are rarely visited and can thus be

Figure 1. pH-dependent probability distributions of the protonation macrostates of the turkey ovomucoid inhibitor third domain (PDB 2GKR). The
total number of protons bound is indicated on each curve. The number of titratable sites for this protein is 18.
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neglected. Therefore, a few coupled sites would be sufficient to
compensate for realistic charge fluctuations of a biomolecule.
Accordingly, we introduce only a small number of additional

titratable sites, which we term “buffer sites”, or buffers, in the
simulation box and couple these to the overall protonation of
the biomolecule with a charge constraint. To avoid affecting the
pKas of the titratable sites in the biomolecule, the free energy of
deprotonation of the buffer is zero at all pH values. Because in
this approach fluctuations of the total charge of the biomolecule
are compensated for by opposite fluctuations of the total charge
of the buffer sites in the solvent, the biomolecule’s macrostate
can fluctuate. Introducing additional titratable sites to the
system increases the number of ways protons can be distributed
over these sites. Therefore, a single titration coordinate is used
for all buffers simultaneously to avoid entropic artifacts. In our
approach, the buffer sites effectively act as a proton buffer,
without the necessity of modeling the complex coupled
equilibria of the numerous protonated species in a real proton
buffer.

■ THEORY

The constant pH MD approach36 is first briefly summarized.
Subsequently, the constraint equations, which are used to keep
the total charge constant during the simulation, are presented.
The proton buffer is then introduced, and the size of the proton
buffer, i.e., the number of sites required to compensate for the
fluctuations of the charge of the biomolecule, is discussed.
Constant pH Molecular Dynamics with the λ-

Dynamics Approach. λ-Dynamics Approach briefly introdu-
ces the λ-dynamics method. Chemical Free Energy Contribu-
tion summarizes how the pH and the contributions to the
deprotonation free energy due to the breakage and formation of
chemical bonds, which are not described by classical force
fields, are included in the Hamiltonian of the system. In
Constraining the Interval of λ we present a biasing potential
energy function for constant pH λ-dynamics that is better
suited for simulations with a net charge constraint than the
circular coordinate used in previous work.36

λ-Dynamics Approach. In the λ-dynamics approach,37,38 the
Hamiltonian of the system is expressed as

λ λ λ λ λ λ= − + + ̇ + + ΔλH H H m U G( ) (1 )
1
2

( ) ( )i i i i i iR P
2 chem

i i i

(1)

where λi is an additional degree of freedom for titrating site i,
which interpolates the system between the reactant Ri (λi = 0)
state with site i protonated and product Pi (λi = 1) state with
site i deprotonated. The λ coordinate can be perceived as the
coordinate of a particle moving between different chemical

states. In eq 1, mλ is the mass and λ ̇
λm1

2
2
is the kinetic energy of

this “λ particle”. The λ-dependent potential term U(λ) will
serve as a biasing potential to limit the range of λ, and the term
ΔGchem(λ) is explained below.
Chemical Free Energy Contribution. To realistically

describe protonation and deprotonation events at a given pH
value, the effect of pH and the contributions from bond
breaking and formation to the deprotonation free energy are
described by an additional term, which shifts the protonation
equilibrium by a certain free energy ΔGchem.
To determine ΔGchem, the equilibrium between a protonated

and deprotonated acid in water is considered. ΔGchem is then
determined as

λ λΔ = − − ΔG RT K G( ) (ln 10) (p pH) ( )chem
a

FF
(2)

where the first term on the right side of eq 2 is the usually
experimentally determined free energy of deprotonation of a
suitable model compound in solution, and the second term is
the corresponding free energy difference obtained from a force
field simulation. The pH-dependent term in eq 2 incorporates
the dependency of the deprotonation free energy on the proton
activity of the surrounding solution.

Constraining the Interval of λ. To restrict the λ space to the
interval between the two physical states λ = 0 and λ = 1, two
possibilities are considered, (i) the projection of an auxiliary,
angular coordinate23,36,39,40 and (ii) a linear coordinate in
combination with a biasing potential. The advantage of the
angular coordinate is that it does not require any additional
potential. The disadvantage is that it is difficult to control the
height of the barrier between the two physical states due to the
entropic contribution intrinsic to this projection.36 The angular
coordinate has the further disadvantage that it can lead to
singularities in the constraint equations that are given below
(eqs 6−8). The disadvantage of the linear coordinate is that it
requires a stiff potential at the edge of the λ interval. The
advantage is that the biasing potential can be used to control
the barrier between the two physical states.
To avoid issues with singularities in the constraint equations,

we have chosen to use a linear coordinate in combination with
a biasing potential. The shape of the biasing potential is chosen
such that (i) the λ values are restricted to the interval [0,1], (ii)
the average λ values in the protonated and deprotonated states
are close to “0” and “1″, (iii) the ratio between time spent at
intermediate states and time spent at the 0 and 1 states is small,
and (iv) the transition rate between the 0 and 1 states is
tunable.
The following functional form of the biasing potential, which

we indicate as Udwp(λ) because of the double well shape (Figure
2),

λ λ λ

λ

λ λ

= − − − − + − +

+ − −

+ − + + + − −
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2
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2
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2

(3)

fulfills requirements i−iv. Figure 2 illustrates the Udwp(λ) for
various values of the barrier height. Because sampling of the λ
coordinate can be controlled by adjusting the height of this

Figure 2. Double well potential with barrier heights 5, 10, 15, and 20
kJ mol−1 and outer walls 50 kJ mol−1.
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potential, we refer to this potential as adaptive biasing potential.
In Appendix A, we describe in detail the motivation for the
form of the potential in eq 3 and the procedure for optimizing
the parameters.
Constraining the Total Charge of the System. The

charge of a biomolecule with Nsites titratable sites depends on
the total number of protons bound to those sites. The total
number N+ of protons bound is, using the convention for which
a site is protonated at λ = 0 and deprotonated at λ = 1,

∑ λ= −+N (1 )
i

N

i

sites

(4)

Therefore, by constraining the sum over λi to a value c

∑ λ = c
i

N

i

sites

(5)

the overall charge of the biomolecule remains constant during
the simulation. Note that c does not need to be equal to zero,
because a net charge can also be compensated for by adding
normal counterions. The constraint equation that must be
fulfilled during the simulation is

∑σ λ λ λ λ= − c( , , ..., )N
i

N

i1 2 sites

sites

(6)

This requires a constraint force acting on the λ coordinates
given by

ζ σ
λ

= − ∂
∂

λGi
i (7)

where ζ is a Lagrange multiplier that needs to be determined.
Here, we use the SHAKE algorithm to calculate ζ iteratively41

ζ σ λ= + Δ
∑ Δ

t t
t m

( ( ))
/

u

i i
2

(8)

with λu(t + Δt) the vector of λi’s at the unconstrained step. A
detailed derivation of eq 8 is given in Appendix B. In our
simulations the SHAKE algorithm converged within a few
iterations.
Buffer Sites. The number of protons, and hence the charge,

of a biomolecule with several titratable sites is typically not
constant but fluctuates around an average protonation
macrostate, as shown in Figure 3. A protonation macrostate is
defined by the total number of titratable protons bound to a
biomolecule, irrespective of the sites to which these protons are
bound. Each macrostate is composed of several microstates, each
of which has the same number of protons, but differs in the
distribution of these protons over the titratable sites of the
biomolecule.
Application of the constraint (eq 6) to the titratable sites of

the biomolecule alone forces the biomolecule to sample a single
macrostate only, which is not correct. To enable sampling all
relevant macrostates, while keeping the total charge of the
simulation box constant, we introduce additional titratable sites
in the solvent, which we call buffer sites or buffers. These buffer
sites are included in the constraint and can thus accept or
donate protons to compensate for changes in the macroscopic
protonation state of the protein. Thus, with the buffer sites, the
charge on the biomolecule can fluctuate, while the charge of the
total system, which now also includes these buffers, remains

constant. In analogy to a real buffer, our buffer sites consist of a
mixture of a weak acid and its conjugate base. This is achieved
by setting the free energy of deprotonation of the buffer sites to
zero for all pH values; i.e., the free energies of the acid and its
conjugate base are the same, independent of the pH (pKa = pH
in eq 2). Thus, in the absence of a charge constraint, a 1:1
mixture of acidic and basic forms of the buffers would be
obtained.
Simply including the buffers into the constraint equation,

however, introduces an entropic bias in the macrostate
probabilities of the biomolecule, because it changes the number
of ways in which the macrostates can be realized. The
probability pj of protonation macrostate j of a biomolecule
with Nsites protonatable sites is given by the sum of the
Boltzmann weights of all microstates with j protons:

∑ λ λ λ
=

Ξ
−

′ ⎛
⎝
⎜⎜

⎞
⎠⎟p

E
k T

1
exp

( , , ..., )
j

n1 2

B (9)

where the prime indicates that the sum runs over all
protonation microstates, which have the same number j of

protons bound, i.e., ∑i
Nsites

(1 − λi) = j (recall that λi = 0
corresponds to site i protonated), and Ξ is the semigrand
canonical partition function for the titratable protons.
We define the symbol ωj as the number of ways a macrostate

with j protons and Nsites can be realized:

ω = !
! − !

N
j N j( )j

sites

sites
(10)

If we introduce Nbuffer buffers and impose that the total number
of protons present in the complete system is Nsites, there are m
= Nsites − j protons bound to the buffer. Because there are
Nbuffer!/m!(Nbuffer − m)! ways to distribute these m protons
over the Nbuffer buffers, the total number of ways in which
macrostate j of the biomolecule can be realized has increased:

Figure 3. Protonation macrostate probabilities (A, C) and
corresponding free energies (B, D) for a hypothetical biomolecule
with Nsites = 4 (A, B) and Nsites = 40 (C, D) protonatable sites with
identical pKa = pH. Only the part of the distributions highlighted in
gray is significantly populated. The dotted line indicates a free energy
difference of 1 kBT.
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ω* = !
! − !

!
! − !

N
j N j

N
m N m( ) ( )j

sites

sites

buffer

buffer
(11)

where the asterisk (*) indicates that the system consist of the
biomolecule and the buffers. Thus, the number of microstates
that contribute to a protonation macrostate of the biomolecule
is Nbuffer!/m!(Nbuffer − m)! times larger and adds an artificial
contribution (ΔG*) to the true free energy. Furthermore, since
this contribution is different for each macrostate, straightfor-
ward application of the charge constraint in combination with
Nbuffer buffer sites introduces an entropic contribution to the
free energy of a macrostate j of

Δ * = − !
! − !

⎛
⎝⎜

⎞
⎠⎟G RT

N
m N m

ln
( )j

buffer

buffer
(12)

despite the zero free energy of protonating the buffers. Here, m
= Nbuffer − j, as before.
To avoid this bias in the macrostate distribution, we

introduce a single protonation coordinate for all buffer sites
simultaneously. With this approach, there is only one way of
distributing the m protons over the Nbuffer buffers and eq 11
reduces to eq 10. The m protons are “smeared out” evenly over
all buffers. Although it may appear unphysical to have particles
with noninteger charges in the simulation box, we consider the
potential effects on the sampling of the biomolecule less severe
than (i) the aforementioned entropic artifacts, (ii) suppressing
macrostate fluctuations, or (iii) simulating with a net charge.27

Typically, to minimize any bias, the buffers are restrained to
positions far from the system of interest.
With a single titration coordinate (λbuffer) for the Nbuffer buffer

sites, the constraint equation becomes

∑σ λ λ λ λ λ λ= + −N c( , , ..., , )N
i

N

i1 2
buffer buffer buffer

sites

sites

(13)

Accordingly, the expression for ζ in eq 7 becomes

ζ σ λ= + Δ

∑ Δ + Δλ

t t

t m N t m

( ( ))

/ /

u

i
N 2 buffer2 2

buffer
sites

(14)

with mbuffer the fictitious mass of λbuffer.
Buffer Size. With Nsites titratable sites, a biomolecule can in

principle sample Nsites + 1 protonation macrostates, each with a
different total charge. Therefore, to sample the complete range
of macrostates, also Nsites buffers would be required. At this
point it may seem therefore that our buffer approach offers no
major advantages with respect to the co-ions approach of Shen
and co-worker,32 which introduces Nsites additional sites.
However, as we will show below, the number of macrostates
available to a biomolecule at any pH is typically much lower
than the number of titratable sites, even if their pKa values are
identical. Therefore, in contrast to the co-ions approach, the
number of buffers (Nbuffer) can be chosen much smaller than
the number of titratable sites on the biomolecule (Nsites),
without compromising accuracy.
To illustrate this point, Figure 3 shows the macrostate

distribution of a hypothetical biomolecule with Nsites non-
interacting titratable sites, all with the same pKa. The
distribution of macrostates for such system is determined by
the number of microstates ωj that contribute to a given
macrostate j (eq 10). Figure 3 shows two examples with 4 and

40 titratable sites, respectively. In both systems, the
distributions peak at the center because the number of
realizations is the highest if the number of protons is half the
number of sites. The relative width of the distributions
decreases with increasing Nsites. Assuming that protonation
macrostates with a small population can be neglected (white
area of the distributions in Figure 3), we conclude that, in our
hypothetical system, the number of buffer sites required for
keeping the charge constant while sampling the most relevant
macrostates of the biomolecule is only a fraction of Nsites. We
note furthermore that because the pKa values of titratable sites
in real biomolecules are usually not identical, the number of
buffers required can be reduced even further, as we will show
later for a representative set of proteins.
In the simple example above, we saw that the number of

buffers required is related to the width of the macrostate
distribution. A robust measure for the width of an arbitrarily
shaped probability distribution can be derived from the Reńyi−
Süßmann entropy.42−44 This measure can be addressed as an
effective configuration space volume denoted by Ω̃.44 Here, Ω̃
quantifies the number of protonation macrostates effectively
sampled by a protein

Ω̃ =
∑ p

1

j j
2

(15)

where the sum runs over the probabilities p of all protonation
macrostates j.
An upper limit for the necessary number of buffer sites of a

system is obtained by considering the hypothetical system of
Nsites protonatable sites each of which is equally likely to be
protonated or deprotonated. The probability distribution of
protonation macrostates for this hypothetical system is given by
a binomial distribution with success probability 0.5 and number
of trials Nsites, which approaches45

πΩ̃ = Ω̃ =
→∞

Nlim
N

max sites
sites (16)

for large Nsites. Thus, the higher the number of titratable sites of
the biomolecule, the smaller the number of buffer sites per
titratable site needed to properly describe all charge and
protonation fluctuations.

■ METHODS

The charge constraint with proton buffer approach for
preserving charge neutrality in constant pH MD was
implemented in the GROMACS molecular dynamics package
(version 3.3).46−48 This code is available for download from
http://www.mpibpc.mpg.de/grubmueller/constpH.
To test the validity of our approach, we used a model system

consisting of four noninteracting acetic acid molecules in
explicit water. Although this system is simpler than typical
biomolecules, we preferred it as a suitable test system, because
(a) the results can be compared to results obtained analytically
and (b) any potential artifacts of our method can be well
separated from sampling or force field issues that other systems
might have. To that end, all interactions between the acetic
acids and the buffer sites, either directly via the Coulomb
potential or indirectly via water polarization, were excluded.
This was achieved by truncating the Coulomb interactions
beyond a cutoff and by freezing the water molecules that are
outside the cutoff spheres of the acetic acids and the buffers.
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Acetic acid was described with the GROMOS96 53A649

force field parameters for the carboxylic group of glutamic acid.
The buffer sites were described as hydronium ions with
parameters listed in Table S1 of the Supporting Information.
The acetates and buffer sites were placed in a rectangular box of
dimensions 8 × 8 × 4 nm3, which was filled with 8,698 SPC50

water molecules. The acetic acid molecules and buffer sites
were restrained at the heavy atom positions with a force
constant of 1,000 kJ mol−1 nm−2 and were positioned in the
simulation box at a distance of more than 2.7 nm from each
other. Water molecules at a distance larger than 1.0 nm from
the titratable sites were frozen. To validate the biasing potential
(eq 3), constant pH MD simulations of a single buffer site were
performed in a cubic box of 4 × 4 × 4 nm3. In all simulations,
the Coulomb and Lennard-Jones cutoffs were set to 1.0 nm,
and interactions between atoms within the cutoff were
evaluated at every step of the simulation. To correct for the
neglect of electrostatic interactions beyond the cutoff, a
reaction field correction with infinite dielectric constant was
employed.51 Periodic boundary conditions were applied.
Constant temperature was maintained by using the Berendsen
thermostat52 at 300 K with coupling time of 0.5 ps. A leapfrog
integrator was used with an integration time step of 2 fs. The
bond distances and bond angles of water were constrained
using the SETTLE algorithm.53 All other bond distances were
constrained using the LINCS algorithm.54 To equilibrate the
system prior to the constant pH MD simulations, the potential
energy of the system was first minimized using a steepest
descent approach, followed by a 500 ps MD simulation.
The mass and temperature of all λ particles were set to 20 u

and 300 K, respectively. Each λ particle was coupled separately
to a heat bath via the Andersen55 thermostat with a coupling
parameter of 6 ps−1. The barrier height of the biasing potential
Udwp (eq 3) was chosenas typical for the application of our
methodas a trade-off between “localization” of λ at 0 and 1,
respectively, and sufficient sampling. Here, a height of 7 kJ
mol−1 was chosen, unless stated otherwise. The barrier height
of the biasing potential describing the single titration
coordinate λbuffer, which deprotonates the buffer sites
collectively, however, was set to zero. This is because fractional
values of λbuffer should not be penalized by the potential, as they
compensate for protonation macrostates of the acetic acids. To
prevent sampling beyond the [0,1] interval, the walls of the
adaptive biasing potential Udwp were set to 200 kJ mol−1. The
complete set of parameters for the biasing potentials are listed
in Table S2 of the Supporting Information.
Prior to the constant pH MD simulations, the free energies

of deprotonation of each acetic acid molecule and of the buffer
sites were calculated by means of thermodynamic integration
(TI). These free energies are required for the force field
correction (ΔGFF(λ) in eq 2). For each acetic acid a separate TI
simulation was performed, in which the topology was linearly
interpolated between the protonated and deprotonated state.
To obtain the correction potential (eq 2) of the buffers, we

interpolated the topology linearly from the state with all buffers
protonated to the state with all buffers deprotonated. Because
the buffers are essentially identical, we could have computed
the free energy of deprotonation of a single buffer as well.
However, due to small variations in the local environment of
the buffers in our test system, the ΔGFF(λi) are not exactly
identical either. To avoid that these differences obscure our test
calculations, we computed the correction potential for the
collective deprotonation of all four buffers instead. For a real

application both approaches for obtaining ΔGFF should yield
similar results.
Each TI run consisted of 11 simulations of 10 ns each, at

fixed values of λ along the interval [0,1]. During the simulations
the ∂H/∂λ was recorded, and the resulting ∂H/∂λ curve was
integrated to yield a free energy profile of the deprotonation
reaction (ΔGFF(λ)). Fourth order polynomials were fitted to
the free energy profiles and used as ΔGFF(λi) in eq 2. These fits
were refined further by means of Boltzmann inversion. The
details of these fits and their refinement are included as
Supporting Information (Table S3 and Table S4). The
reference pKa of acetic acid was 4, whereas for the buffer
sites pKa = pH by construction. In total 100 constant pH MD
simulations of 5 ns each were performed for our test system at
pH = 4. The first 0.2 ns of these runs were used for
equilibration and discarded from data analysis.
A titration curve of the four acetic acids was obtained by

performing constant pH MD simulations at different pH values
(pH = 1, 2, 3, 4, 5, 6, and 7). At each pH value 20 runs of 5 ns
each were performed. The first 0.2 ns of each run was omitted
from the data analysis. The average λ at each pH value was then
plotted as a function of pH. Because the acetic acids are
equivalent, the average was computed as

∑λ λ⟨ ⟩ = ⟨ ⟩
N

1

i

N

isites

sites

(17)

The pKa value was estimated from a fit of the calculated
titration curve to the Henderson−Hasselbalch equation.36

The statistical error of the average λ was calculated as
described previously.36 The error bars in the titration curve plot
were obtained by propagating the error of the four averages of
the acetic acid λ values at each pH point.
The protonation macrostate probability distributions of a

representative set of proteins were computed with Wang−
Landau Monte Carlo simulations56,57 using a continuum
electrostatics model for reasons of computational efficiency.
These simulations were performed with a modified version of
the MEAD software package58 and the GMCT simulation
software59 as described previously.17,60

■ RESULTS AND DISCUSSION
First, to verify our theoretical result that the number of buffer
sites required to compensate the charge fluctuations of the
biomolecule is much smaller than the number of titratable sites,
we calculated the number of accessible macrostates for a series
of proteins at pH = 7. Next, we tested if the adaptive biasing
potential Udwp(λ) is capable of constraining the protonation
ensemble mostly at λ = 0 (protonated) and λ = 1
(deprotonated), respectively, while at the same time permitting
sufficiently many transitions for accurate sampling. Third, we
verified for a system with four noninteracting acetic acids in
explicit water that our approach of using a charge constraint in
combination with a variable number of buffers preserves not
only the total charge of the system but also the relative free
energies of the accessible macrostates. Finally, we varied the
pKa values of the four acetic acids to mimic more closely a real
biomolecule.

Macroscopic Protonation States in Proteins. To
estimate how many macroscopic states are actually relevant at
a given pH value, we computed the macrostate distributions for
a representative set of 17 protein systems by means of
Poisson−Boltzmann based Monte Carlo simulations. Figure 4
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shows for each protein the number of protonation macrostates
effectively sampled by the protein (Ω̃, eq 15) at pH = 7, the
number of titratable sites (Nsites), and the ratio Ω̃/Ω̃max, where
Ω̃max is the theoretical upper limit for the number of thermally
accessible protonation macrostates (eq 16). For each system
considered, the number Ω̃ of macrostates populated at pH = 7
is much smaller than the Nsites number of titratable sites.
Furthermore, the ratio Ω̃/Ω̃max is significantly smaller than one
for all proteins investigated, suggesting that our approximation
for Ω̃max (eq 16) provides an excellent conservative estimate for
the maximum number of buffers required in a constant pH MD
simulation of a biomolecule with Nsites titratable sites. Because
the ratio Ω̃/Ω̃max never exceeds 1/3, the number of sites may be
further reduced in practice without compromising the macro-
state sampling.
For the ovomucoid inhibitor system, we also investigated the

distribution of macrostates as a function of pH. Figure 1 shows
these distributions. For all pH values, the number of macro
states populated is much smaller than the number of titratable
sites (Nsites = 18), again confirming the theoretical upper limit,
eq 16.
Constraining the Interval of λ with an Adaptive

Biasing Potential. The adaptive biasing potential (Figure 2,
eq 3) was tested in simulations of a single titratable site
(hydronium) in explicit solvent, with which we also investigated
the effect of the barrier height of this potential on the transition
rate and distribution probabilities between the protonation
states of the site.
Figure 5 shows the effect of the barrier height (4, 7, and 10 kJ

mol−1) on the sampling of λ. Increasing the barrier height
increases the residence time at the end states. Accordingly, the
transition rate decreases with a factor of about 2 when the
barrier is increased from 4 to 7 kJ mol−1 and of about 2.5 when
the barrier is increased from 7 to 10 kJ mol−1. Note that the
relation between the rate and the barrier is not perfectly

exponential ( − =Δ( )exp 3.3E
k T

TST

B
), as predicted by Arrhenius

or Eyring theory,61,62 because of the curvature of the biasing
potential. Indeed, taking into account the biasing potential
explicitly in an analytical evaluation of the partition functions at
the transition state (λ = 0.5) and in the reactant state (λ <

0.5),61 yields rate ratios (1.8 and 2.6, respectively) that are in
very good agreement with our simulations. This aspect of the
biasing potential should be taken into consideration when
optimizing the parameters for a desired transition rate.
The λ distributions (Figure 5) peak at 0 and 1, respectively.

Although the biasing potential (Figure 2) is strictly symmetric,
the distributions are not. This asymmetry increases with barrier
height, suggesting insufficient sampling in the 5 ns trajectories
with the higher barriers. The height of the walls that prevent
sampling beyond the physically relevant λ interval only has a
minor effect on the sampling as shown in Figure S1 of the
Supporting Information.

Constant pH MD with a Proton Buffer. We verified that
our approach of combining a constraint on the charge with
buffer sites preserves not only the charge but also the relative
free energies of the protonation macrostates for a model system
containing four acetic acids and four buffers. Three sets of
constant pH MD simulations were performed. In the first set,
no constraint was applied to the sum of the λ deprotonation
coordinates, and the total charge of the simulation box was
allowed to fluctuate. In the second and third sets of simulations,
the charge constraint was applied to the acetic acids and the
buffer sites. The difference between the second and third sets of
constant pH MD simulations is that in the second set the
protonation state of each buffer site was described by an
independent λ coordinate (in total eight λ coordinates were
propagated), whereas in the third set of simulations, a single
collective λbuffer coordinate was used to describe the extent of
deprotonation for the four buffers simultaneously (in total five
λ coordinates were propagated). In all simulations with the
charge constraint, the sum of λ was fixed to four (c = 4, eq 5
and eq 13), which is the same as fixing the sum of protons to
four. This, in combination with simulating at pH = pKa, implies
that there are four protons in the system that can bind to any of
the eight titratable sites with equal probability. We verified that
in all simulations with the charge constraint the total charge was
conserved (Table S5 and Figure S2 in the Supporting
Information).
To test whether the constraint biases the distribution of

protons over the titratable sites of the four acetic acids, the
protonation macrostate free energy profiles of the four acetic
acids from the three sets of simulations were calculated and
compared with the analytical solution (Figure 6). The free
energy profiles as a function of protonation macrostate, which

Figure 4. Thermally accessible macroscopic protonation states for 17
soluble and membrane proteins with different numbers Nsites of
protonatable sites at pH 7.0. For each protein, the bar shows the ratio
Ω̃/Ω̃max, while the value of Ω̃ is reported on top of the bar. Ω̃ is the
number of thermally accessible macroscopic protonation states at pH
7.0, and Ω̃max is an upper limit for the number of thermally accessible
protonation macrostates. Ω̃max is realized in a hypothetical system of
Nsites protonatable sites equally likely to be protonated or
deprotonated. The abbreviated protein name and the PDB code of
the protein structure used in the simulations are stated above each bar.

Figure 5. Dynamics of the deprotonation of a titratable site in explicit
solvent with different barrier heights of the biasing potential.
Trajectories (left) and distributions (right) of the deprotonation
coordinate λ from 5 ns constant pH MD simulations with barrier
heights 4 kJ mol−1 (b = 4), 7 kJ mol−1 (b = 7), and 10 kJ mol−1 (b =
10). The titratable site is protonated at λ = 0 and deprotonated at λ =
1.
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is defined here as the total number of protons bound to the
acetic acids (i.e., np(t) = ∑i=1

i=4 (1 − λi(t))), were obtained
directly from the probability distribution p(np) of np(t) over the
three sets of simulations (i.e., G = −RT ln[p(np)]).
Convergence of the free energies for the simulations without
charge constraint and with charge constraint and collective
buffers is shown in Figure S3 and Figure S4 of Supporting
Information, respectively.
Figure 6A shows that, in all three simulations, macrostates

were sampled in which the number of protons bound to the
acetic acid subsystem varied from 0 to 4, but their relative free
energies were different. Without the charge constraint, the
protonation macrostate free energies agree well with the
reference free energies obtained analytically for four independ-
ent sites (eq 9; yellow symbols in Figure 6). Although in this
simulation the overall charge of the simulation box was not
conserved, the truncation of Coulomb interactions beyond a
cutoff avoided the artifacts associated with a non-neutral
simulation box.27

When the four buffer sites are forced to titrate concertedly by
using a single λbuffer coordinate for all buffer sites simultaneously
(blue curve in Figure 6A), the protonation macrostate free
energies of the acetic acid subsystem agree well with both the
analytical free energies, as well as the free energies obtained
without constraints. Such agreement demonstrates that our
approach for charge conservation in constant pH MD
simulations reproduces the correct macrostate probabilities.

In contrast, when the constraint was applied on eight
otherwise independent titratable sites (red curve in Figure 6A),
the free energies of the macrostates deviated from the analytical
solution. The central macrostate with two protons bound is
overstabilized, while the macrostates with no protons bound
and with four protons are much less populated. As was
discussed in Theory, the use of a constraint in combination
with independent buffer sites introduces an entropic bias in the
relative free energies of the macrostates due to the increase in
the number of ways protons can be distributed over the buffers.
Because this number is the highest for the case in which there
are two protons present on both the acetic acid subsystem and
the buffer sites, the macrostate with two protons on the acetic
acid subsystem is affected most (eq 11; red curve in Figure 6A).
Next, we performed simulations at various pH values and

computed the titration curve of the four acetic acids with and
without a constraint. In the simulations with constraint, the
buffers were modeled with a single collective λbuffer coordinate.
Figure 6B shows that the averaged titration curves for
simulations with and without the constraint are identical within
statistical error, indicating that the proton buffer also does not
bias the system at pH values different from pH = pKa.
To investigate the effect of reducing the number of buffer

sites, we also ran simulations with two instead of four buffers. In
these simulations, the number of protons was constrained to
three, eliminating the least populated macrostates of the acetic
acid subsystem with zero and four protons, respectively.
Although all five possible macrostates were significantly
populated in our model system (Figure 6A), our aim was to
verify whether the relative free energies of the remaining
macrostates with one, two, or three protons remain the same if
fewer buffers are used. Panel C of Figure 6 shows the
protonation macrostate free energies of the acetic acid
subsystem at pH = pKa with four and two buffer sites. Whereas
the macrostates with all acetic acids protonated or deproto-
nated are now excluded, the remaining three macrostates are
sampled with the same weights in both cases. This example
demonstrates that our approach preserves the free energy
differences between the macrostates, despite neglecting the two
least populated macrostates.
Next, to study the performance of our method for the more

realistic case of different pKa values, the reference pKa values of
the four acetic acids were set to 2.5, 3.0, 3.5, and 4.5,
respectively. Three sets of constant pH MD simulations at pH
= 4.0 were performed: without charge constraint; with charge
constraint c = 4 and four buffer sites; with c = 2 and two buffer
sites. Panel D of Figure 6 shows the free energy profiles of the
protonation macrostates in these simulations, along with the
analytical solution. With four buffers, the macrostates are
sampled with the same weights as without constraint. In both
cases, the macrostate without protons bound is not populated.
Decreasing the number of buffers to two, and setting the charge
constraint c = 2, eliminates the two least populated macrostates
(zero and one protons bound) but enables sampling of the
remaining three macrostates with the correct thermodynamic
weights. Note that also in this example our choice for the
constraint and number of buffers caused the elimination of a
macrostate that should not be neglected. Nevertheless, the
agreement with the reference simulations without constraints
shows once more that our approach not only conserves the
charge but also maintains the relative free energies of the
accessible protonation macrostates.

Figure 6. Protonation macrostates and titration of four acetic acids in
constant pH MD simulations with explicit water. Simulations were
performed without constraint (black), with charge constraint c = 4 and
four independent buffer sites (red), with c = 4 and four collective
buffer sites (i.e., a single titration coordinate for the four buffer sites)
(blue), with c = 3 and two collective buffer sites (magenta), and with c
= 2 and two collective buffer sites (purple). The free energy difference
obtained analytically for four independent protonatable sites is also
reported (yellow triangles). (A and C) Protonation macrostate free
energy profiles at pH = pKa. (B) Averaged titration curves of four
acetic acids. The deprotonation (in equivalents, eq) is plotted as a
function of pH. The lower graph shows the difference between the two
titration curves. (D) Protonation macrostate free energy profiles at pKa
values of 2.5, 3.0, 3.5, 4.5, respectively, and pH = 4.
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In our simple model with only four identical titratable sites
the choice of which macrostates to neglect is obvious. For
realistic biomolecules with more than four titratable sites, this
choice may be more challenging. We showed that at any pH
value most protonation macrostates are not significantly
populated in proteins (Figure 1). To achieve a selective
elimination of the nonrelevant macrostates, suitable values for
the constraint and the number of buffers have to be
determined. Since these parameters are not independent,
some adjustments may be required prior to production runs.
We suggest the following procedure.
First, to determine the number of buffer sites, we suggest to

compute Ω̃max (eq 16), which is an upper limit for the necessary
number of buffer sites. As an initial guess for the constraint,
which determines the number of titratable protons in the
system, we suggest to use the maximum number of protons
bound to the biomolecule at the desired pH. This number can
be estimated from the reference pKa’s of the titratable sites, or
from measured titration curves, if available. If optimal values for
the number of buffer sites and the constraint are chosen,
⟨λbuffer⟩ ≈ 0.5 in the simulation.
If during the simulation, the buffers are mostly protonated

(i.e., λbuffer ≈ 0), there are either too few buffer sites or too
many active protons in the system. In this case, one can
therefore either increase the number of buffer sites, decrease
the number of protons by increasing the constraint value, or
both. The reason why in our implementation one needs to
increase the constraint value in order to decrease the number of
protons is that sites are protonated at λi = 0 and deprotonated
at λi = 1, and the constraint is defined as the sum over λi (eq
13). We suggest to adjust the number of buffer sites and the
constraint value until ⟨λbuffer⟩ is about half on average in a test
simulation.
In contrast, if the buffer sites are deprotonated for most of

the simulation (i.e., λbuffer ≈ 1), there are either too many
buffers or too few active protons in the system. The remedy in
this situation is therefore to either decrease the number of
buffers, or increase the number of protons by decreasing the
constraint, or both. Again, as explained before, a decrease of the
constraint corresponds in our implementation to an increase in
the number of protons present in the system.
Optimizing the number of buffer sites and the constraint

prior to the production runs may require several iterations, in
particular if the titration curve or the pKas of the biomolecule
are not known in advance. However, this initial effort is paid off
quickly, because of a higher computational efficiency with a
minimal number of buffer sites. Since the ratio between the
number of relevant macrostates and the number of titratable
sites decreases rapidly with the total number of titratable sites,
this advantage will even be more pronounced when simulating
large biomolecular systems, for which coupling each site to a
separate and mutually independent buffer particle becomes
computationally intractable.
Because we use a collective λbuffer coordinate for all buffers,

the buffers carry fractional charges. Although clearly unphysical,
these fractional charges are strongly screened in the high
dielectric water and therefore will only have minor effects on
both the protonation and conformational sampling of a
biomolecule. These effects can be further reduced by
restraining each buffer at the largest possible distance from
the biomolecule and the other buffers. In contrast, the artifacts
caused by a net charge in the simulation box would be much
more severe, in particular for membrane systems, or deeply

buried enzyme active sites, in which the net charges can
significantly alter the pKa of residues in contact with the
hydrophobic interior.27

■ CONCLUSIONS
At thermodynamic equilibrium, the total charge of a
biomolecule fluctuates due to continuous protonation changes
of titratable sites with pKas near the solution pH. Constant pH
MD methods were introduced to model the changes in
protonation, but the charge fluctuations may introduce artifacts
that can affect the accuracy of the pKas.

27 To avoid these
artifacts in constant pH MD simulations while maintaining an
accurate statistical ensemble of all protonation fluctuations, we
have developed an approach that uses a charge constraint in
combination with a minimal proton buffer. While the constraint
prevents charge fluctuations of the complete system, which
contains both the biomolecule and the buffer sites, the buffer
sites compensate for charge fluctuations of the biomolecule. We
used a simple test system, consisting of four noninteracting
titratable sites, to demonstrate that with our approach the
thermodynamically accessible protonation macrostates of the
biomolecule are sampled, while the simulation box remains
neutral. A major advantage of our approach is that the number
of buffer sites is adjustable. This, in combination with the
notion that in realistic biomolecules only a small fraction of all
possible protonation macrostates is populated at any pH value,
implies that it is possible to perform realistic charge-neutral
constant pH MD simulations with only a few buffer sites.

■ APPENDIX A
The biasing potential for λ-dynamics simulations must fulfill the
following criteria: (1) λ values in the interval [0,1], (2) average
values of λ in protonated and deprotonated states close to “0”
and “1”, respectively, (3) small ratio between time spent at
intermediate states and time spent at the 0 and 1 states, and (4)
tunable transition rate.
To address condition 1, we have chosen to use a function

Uwall which rises steeply beyond the λ interval, mimicking two
walls

λ λ λ= − + + + − −U w r m r m( ) 0.5 {(1 erf[ ( )]) (1 erf[ ( 1 )])}wall

(18)

with erf being the error function. The parameter w determines
the height of the walls. As will become clear later, the effective
height of the walls of the biasing potential is w = w0 − h/2,
where w0 is the desired height of the walls and h is the height of
the barrier potential. A high value of w has the purpose of
mimicking an infinitely high wall (in this work w = 200 was
used for most of the simulations).
The parameters r and m in eq 18 are chosen to obtain a steep

rise in the potential beyond the [0, 1] interval. To avoid
compromising the molecular dynamics integrator by using too
steep potentials, the steepness is decreased, with increasing
height w of the walls. In practice, we choose a width σ0 = 0.02
and define

= −−e werf [1 2/ ]1
1

(19)

= −−e werf [1 20/ ]10
1

(20)

with erf−1 being the inverse error function, and

σ
=

−
r

e e
2

1 10

0 (21)
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σ=
−
−

m
e e

e e
2

2
0

1 10

1 10 (22)

To address condition 2, namely, enhance the sampling of λ at
the physical states close to 0 and 1, two negative Gaussian
functions are used. Each Gaussian mimics a minimum of the
biasing potential at the desired values of λ0 = 0 and λ1 = 1,
respectively:

λ λ λ= − − − − + − +⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠
⎟⎟U k

b
a

b
a

( ) exp
( 1 )

2
exp

( )
2

min
2

2

2

2

(23)

The depth k of the minima is set initially to half the height of
the desired barrier h, and the parameters a and b are set initially
to a = 0.05 and b = −0.1. The three parameters k, a, and b are
adjusted iteratively until the desired shape of the potential is
reached, as explained below.
The last conditions 3 and 4 are addressed by a third

Gaussian, which mimics a barrier centered at λ = 0.5:

λ λ= − −⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠
⎟⎟U d

s
( ) exp

( 0.5)
2

barrier
2

2
(24)

The parameter d defines the height of the Gaussian function.
This is set to half of the desired barrier height h, because the
overall height of the barrier will depend also on the depth of the
minima. The height h can be changed to control the transition
rates between the protonated and deprotonated states of λ, as
required in condition 4. The width s of Ubarrier(λ) is chosen to
obtain a relatively flat potential at the center of the λ interval.
Here, we have used s = 0.3.
The final expression for the biasing potential, which we

indicate as Udwp(λ) because of the double well shape (Figure 2),
is

λ λ λ λ= + +U U U U( ) ( ) ( ) ( )dwp wall min barrier
(25)

To avoid that, due to overlap between the three functions
Uwall(λ), Umin(λ), and Ubarrier(λ), the potential Udwp(λ) deviates
from the desired shape, the parameters k, a, and b in eq 23 are
adjusted iteratively until convergence is reached. The criteria
for convergence are described in the following.
The parameter b, which shifts the position of the minima in

Umin(λ), is adjusted iteratively:

= +b b x0.01 0 (26)

with

λ λ
λ

=
∑ −
∑ −

λ

λ

<

<x
U

U

exp[ ( )]

exp[ ( )]
0

0.5 dwp

0.5 dwp
(27)

until

< ϵxabs[ ]0 (28)

with ϵ arbitrarily small. Here, we used ϵ = 0.005. Note that in
eq 27 it suffices to consider only half of the λ interval (λ < 0.5)
due to the symmetry of the biasing potential.
The parameter a, which determines the width of the

Gaussian in eq 23, is adjusted iteratively as well:

=
+ σ σ

σ
−a

a
1 0.01 0

0 (29)

with

σ
λ λ

λ
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∑ − −
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until

σ σ
σ
−

< ϵ
⎡
⎣⎢

⎤
⎦⎥abs 0

0 (31)

with σ0 = 0.02, as mentioned earlier.
The parameter k at every iteration is

λ= + +k k h U( /2 min[ ( )])dwp
(32)

where min is the minimum of the considered function.
Setting the initial values of k and d to half the desired barrier

height is a convenient choice for finding the parameters that
describe the desired potential most closely. As a consequence of
this choice, the effective walls of the biasing potential shift by
half the barrier height from their value w in eq 18.

■ APPENDIX B

To fix the total number of protons of a system during a
constant pH molecular dynamics simulation, a constraint is
applied. The constraint equation for a system with Nsites

protonatable sites, each described by a titration coordinate λ,
is defined as

∑σ λ λ λ λ= − c( , , ..., )N
i

N

i1 2

sites

(33)

with constraint force

ζ σ
λ

= − ∂
∂

λGi
i (34)

where ζ is the undetermined Lagrange multiplier.
The constraint force Gi

λ is determined using the SHAKE
algorithm.41 In the leapfrog algorithm, the constrained
equations of motion for λi are integrated as

λ λ
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,

,

(35)

where the superscript c stands for constrained, vi
λ,c is the velocity

of λi, and Fi
λ the force acting on λi.

Under the assumption that the constraint is fulfilled at the
previous time step t, an unconstrained update to t + Δt is
performed, using only the forces Fi

λ. To find the Lagrange
multiplier ζ, the constraint eq 33 is expanded around the
unconstrained λi

u(t + Δt)’s in a Taylor series and truncated after
the first order:

∑

σ λ σ λ

σ
λ

λ λ

+ Δ = + Δ

+ ∂
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+ Δ − + Δ
λ +Δ

t t t t

t t t t

( ( )) ( ( ))

{ ( ) ( )}

c u

i i t t
i
c

i
u
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u

(36)

Upon substituting eq 35, we arrive at
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∑

∑

σ λ σ λ σ
λ

σ λ ζ

+ Δ = + Δ + ∂
∂

Δ

= + Δ − Δ

λ

λ

+Δ

t t t t G t t
m

t t t
m

( ( )) ( ( )) ( )

( ( ))

c u

i i t t
i

i

u

i i

( )

2

2

i
u

(37)

The condition σ(λc) = 0 requires that

ζ σ λ= + Δ
∑ Δ

t t
t m

( ( )
/

u

i i
2

(38)

from which the constraint force Gi
λ(t) is readily obtained for

computing the constrained λi
c(t + Δt) values (eq 35).

Because the Taylor series is truncated, the expression for ζ is
not exact. Therefore, this procedure is repeated, starting from
the new λi’s, until the error in the constraint equation is below a
certain threshold. Typically, ζ converges to machine precision
within a few iterations.
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