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ABSTRACT: pH is an important parameter in condensed-phase systems, because it determines the protonation state of titratable
groups and thus influences the structure, dynamics, and function of molecules in solution. In most force field simulation protocols,
however, the protonation state of a system (rather than its pH) is kept fixed and cannot adapt to changes of the local environment.
Here, we present a method, implemented within the MD package GROMACS, for constant pH molecular dynamics simulations in
explicit solvent that is based on the λ-dynamics approach. In the latter, the dynamics of the titration coordinate λ, which interpolates
between the protonated and deprotonated states, is driven by generalized forces between the protonated and deprotonated states.
The hydration free energy, as a function of pH, is included to facilitate constant pH simulations. The protonation states of titratable
groups are allowed to change dynamically during a simulation, thus reproducing average protonation probabilities at a certain pH.
The accuracy of the method is tested against titration curves of single amino acids and a dipeptide in explicit solvent.

1. INTRODUCTION

Together with temperature, pressure, and ionic strength, pH is
one of the key parameters that determine the structure and
dynamics of proteins in solution. Most notably, many proteins
denature at low pH values,1 and aggregation, such as formation of
amyloid fibrils in Alzheimer’s disease2 and insulin aggregation,3 is
pH-dependent. Because the function of a protein depends on its
structure, pH is critical for protein function. Examples of pH-
dependent regulation of protein function are the pH-controlled
gating of membrane channels,4�6 or activation of influenza virus
in host cells.7

pH affects protein structure, because the protonation state of
the ionizable groups of a protein depends on pH, in particular
histidine amino acids for which the proton affinity (pKa) is very
close to the physiological pH. Mainly via its charge, the
protonation state of each ionizable group influences, in turn,
the physicochemical properties of proteins, their structure, and
their function.

Despite its relevance to biomolecular structure and function,
pH and changes of protonation state of titratable groups of a
protein are usually not described in computer simulations. Typi-
cally, a structure with fixed protonation states is used, chosen
according to the most probable protonation arrangement at a
given pH. This choice is often not straightforward, because
hydrogens are usually not resolved in X-ray crystallography and
the acid dissociation constant (Ka) values of the ionizable groups,
in most cases, are not known. Therefore, the protonation state
must be inferred from NMR8 or spectroscopic data,9 or from
electrostatic calculations (e.g., Poisson�Boltzmann (PB)10,11 or
Generalized Born12 approaches). Furthermore, changes in the
protonation state, either due to a change in the environment pH
or in the protein conformation, as well as equilibrium protonation
fluctuations leading to fractional protonation probabilities, are
not taken into account by conventional simulations. As a conse-
quence, the understanding of many biological phenomena, which
involve a redistribution of charge, such as ligand binding reactions

inducing a proton redistribution,13,14 peptide insertion in mem-
branes (e.g., fusion peptides),15,16and pH-dependent conforma-
tional changes,2,6 would greatly benefit from a dynamic description
of the protonation states.

Several attempts have been made to overcome these limita-
tions. The most-accurate way of modeling (de)protonation
events is to describe the system at a quantum mechanics level,
where the electronic structure responds to changes in the local
environment. However, these calculations are very expensive, in
terms of computational cost. This drawback has been partly
overcome in mixed quantum mechanics/molecular mechanics
approaches,17 where only the ionizable groups of the protein are
treated at the quantum level.

Computationally more affordable approaches to describe
proton transfer events are EVB18�21 and QHOP22 methods.
Here, the potential energy surface on which protons move is
parametrized by ab initio calculations, whereas the rest of the
system is described by a molecular mechanics force field.

A complication common to these approaches is that the
equilibrium state is generally reached at time scales that are
much slower than those accessible to molecular dynamics (MD)
simulations. This is particularly true for protein systems, where
typical deprotonation times of ionizable groups in the interior of
a protein are microseconds or slower.23 As a consequence,
enhanced sampling of the transitions between the protonated
and deprotonated state is particularly relevant for simulations of
protein systems. For the aforementioned approaches, however,
there is no obvious way how to enhance proton transfer rates.

A further problem concerns the proper description of the pH
of a solution. The average hydronium concentration in a typical
simulation box can be described by a time average, as well as via
an ensemble average. In the case of a time average, because of the
fact that the concentrations of hydronium considered are low,
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typically pH 7, it might require very long simulation times to
sample the hydronium distribution in the solution. In the case of
the ensemble average, however, unpractically large simulation
boxes would have to be considered, as, for example, for a typical
simulation box of∼30 000 water molecules, one hydronium ion
already corresponds to a pH of ∼2�3, thus increasing the
computational cost of the calculation.

To address these issues in the context of force field simula-
tions, several approaches have been proposed, all of which use a
titration coordinate λ, which describes the protonation state of a
certain ionizable group. For example, values of λ = 0 and λ = 1
correspond to the protonated and deprotonated states of a
titratable group, respectively, as will be used in this work. Two
main categories of approaches can be distinguished depending
on the nature�discrete or continuous�of this titration
coordinate.24

A discrete titration coordinate is typically used by methods
combining MD and Monte Carlo (MC) simulations for the
sampling of the protonation reaction coordinate. At intervals
during the MD simulation, a MC step is performed, in which the
protonation state of a residue is changed. The acceptance
criterion to keep the new protonation state is based on the
protonation free energy of the titratable group, which is com-
puted at every MC step. The major differences between the
approaches in this category concern the way that this free energy
is computed. In the approaches of Baptista and co-workers,25

Dlugosz and Antosiewicz26 and Mongan and Case,12 the con-
tribution of each protonation state to the protonation partition
function is evaluated, and the protonation free energy (and pKa)
is then obtained from the partition function. Because all possible
protonation states of the system have to be considered, the
computational effort formally scales exponentially (2N) with the
number of titratable sites in the system (N). In practice, however,
MC sampling and cutoffs are applied to reduce computational
effort. To estimate the free energy of each state, implicit solvent
Poisson�Boltzmann (PB)25,26 or Generalized Born12 ap-
proaches are used. The use of continuum approximations in
the estimation of protonation free energies has the advantage of
reducing degrees of freedom of the system. However, to describe
more-complex systems, such as membrane proteins, or systems
such as channels for which explicit water molecules are crucial,
continuum solvent models are of limited use.

In contrast, B€urgi et al. suggested to evaluate the protonation
free energy at theMC step by a short thermodynamic integration
(TI) simulation.27 However, the cost of the free-energy calcula-
tion step can become significant, because it has to be evaluated at
each trial. Also, inclusion of interactions between titratable sites is
difficult.

In contrast to MD/MC simulations, in the second category of
approaches, the titration coordinate λ is allowed to change
continuously between the protonated and deprotonated states.
B€orjesson andH€unenberger28,29 developed the “acidostat”meth-
od, where the extent of deprotonation is relaxed to equilibrium
by weak coupling to a proton bath in a way similar to methods for
constant temperature and pressure.30 Equilibrium fluctuations of
the protonation states are not described, and each site thus
experiences the average effect of the others.

In a different approach, introduced by Merz and Pettitt,31 the
continuous λ coordinate is treated as an additional particle of the
system, which is propagated in time, according to the equations
of motion. The potential of the system is coupled to the chemical
potential, which is a function of pH, of the reactants and of the

products. Along the same lines, the successive λ-dynamics
approach32 and λ-adiabatic free-energy dynamics33 treat λ as
a dynamical variable in the Hamiltonian. In particular, the
λ-dynamics approach was applied to constant pH simulations
in implicit solvent by Lee et al.34 and Khandogin and Brooks.35,36

In their approach, the potential energy landscape, which drives
continuous changes of λ, is modulated by the potentials of
isolated model titratable groups, and by the pH. Protons are
not transferred explicitly to bulk water, forming H3O

þ; rather,
similar to the acidostat of B€orjesson and H€unenberger,28,29 the
proton-solvation contribution to the force acting on λ is im-
plicitly taken into account. Because this contribution depends on
pH, by setting the pH parameter in the simulation, the effect of
the proton concentration is included. Coupling between titra-
table sites, described by multiple λ particles, is implicitly taken
into account via the potential energy landscape. In principle,
linear scaling of the calculation with the number of protonatable
sites is achieved. Because of the continuous character of the
titration coordinate, fractional λ values can occur, which corre-
spond to a partially protonated state. To decrease the population
of these unphysical states, a barrier potential is used.34 This is
introduced as a separate parabolic function centered at λ = 0.5.34

Alternatively, ad hoc nonlinear interpolation schemes between
the potentials of the end states sampled by λ have been used to
decrease the population of intermediate λ values, and thus obtain
minima at λ = 0 and λ = 1.33

As seen, most of the approaches for constant pH simulations
both in the first and second category rest on an implicit
description of the solvent. We are not aware of any fully atomistic
description that (i) achieves sampling of the relevant space of the
titration coordinate (i.e., the physically meaningful end states)
and (ii) allows one to control the protonation/deprotonation rate.

In this work, we develop and test a framework to describe
changes in protonation states at constant pH that meets all of
these requirements. Our method extends the λ-dynamics ap-
proach of Brooks and co-workers32,34,35 by introducing a new
coupling scheme to describe chemically coupled titratable sites,
such as those on the side chain of histidine. Both pH and, via the
height of the barrier potential, the protonation rates can be
controlled to either reflect experimental proton transfer rates,
if available, or to enhance sampling of the protonation space.
The method has been implemented within the MD package
GROMACS.37�39

To test our method, the titration behavior of simple systems in
an explicit solvent was analyzed. First, we considered glutamic
acid with neutral termini. To provide a simple example of
interactions that can occur in a protein environment, a small
dipeptide of sequence Glu-Ala was simulated. Because of its
importance in protein systems, imidazole and histidine were
chosen as a test case for chemically coupled titratable sites.
Finally, the effect of different temperature coupling schemes and
different barrier potential heights on deprotonation/protonation
rates was assessed.

2. THEORY

To clarify the notation, we will first summarize the thermo-
dynamic integration and λ-dynamics approaches. Subsequently,
we will describe and develop the building blocks of our approach.
First, we will describe how the interval sampled by the titration
coordinate λ is constrained, to describe the protonated and
deprotonated states of the system during the constant pH
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simulation. We will then specify how λ is coupled to a tempera-
ture bath. After introducing the thermodynamic cycle that is used
to couple the protonated and deprotonated states to the appro-
priate reference states, we will develop the constant pH MD
method. Finally, we will generalize the λ-dynamics approach for
multiple protonation sites in a protein.
2.1. Thermodynamic Integration. Thermodynamic integra-

tion (TI)40 is used to calculate the free-energy difference (ΔG)
between a reactant state R and a product state P:

ΔGPR ¼
Z λ¼1

λ¼0
dλ

DHTIðλÞ
Dλ

� �
λ

ð1Þ

Here, HTI is the Hamiltonian of the system, and λ is a coupling
parameter that interpolates between the R (λ = 0) and P (λ = 1)
states, e.g.,

HTIðλÞ ¼ ð1� λÞH0 þ λH1 ð2Þ
To calculate ΔG via eq 1, λ is changed from 0 to 1 during the
simulation, thus forcing the system from its reactant to its
product state. The ensemble average in eq 1 is then taken from
the MD ensemble generated from the Hamiltonian HTI(λ).
For later use, and following the notation of Kong and

Brooks,32 we split the Hamiltonians of the reactant and product
in λ-dependent (~H0 and ~H1) and λ-independent (HEnv) parts:

HTIðλÞ ¼ ð1� λÞ~H0 þ λ~H1 þHEnv ð3Þ

2.2. λ-Dynamics. In the λ-dynamics approach,32 a Hamilto-
nian similar to eq 3 is used. In contrast to TI, λ is defined as an
additional dynamic degree of freedom of the systemwith massm,
coordinate λ, and velocity λ

·
. Accordingly, the Hamiltonian of the

system is now expressed by32

HðλÞ ¼ ð1� λÞ~H0 þ λ~H1 þHEnv þm
2
_λ2 þU�ðλÞ ð4Þ

with a force acting on λ,

Fλ ¼ � DVðλÞ
Dλ

ð5Þ

where V(λ) is the potential energy part of the Hamiltonian in
eq 4:

VðλÞ ¼ ð1� λÞ~V 0 þ λ~V 1 þ VEnv þU�ðλÞ ð6Þ
In eq 4, (m/2)λ

·2 is the kinetic energy term associated with the λ
“particle”. The λ-dependent potential term U*(λ) will serve as a
biasing potential to limit the range of λ; this will be defined
further below.
2.3. Constraining the Interval of λ. Because only λ = 0 and

λ = 1 represent physical states of the system�the protonated and
deprotonated states�we require λ to be close to these values for
most of the simulation time. More specifically, we require that:
(1) the λ space is limited to the interval between the two

physical states;
(2) the average values of λ in the protonated and deproto-

nated states are close to 0 and 1, respectively;
(3) the time spent at intermediate states by the system is

short, i.e., the transitions between the protonated and
deprotonated states are fast;

(4) the residence time at the physical states is sufficiently long
to allow conformational sampling of each state; and

(5) the frequency of transitions can be controlled.

To address condition 1, a projection of an angular coordinate
on the λ space has been proposed in previous applications.33,34,41

Here, we will extend this approach to meet also condition 2.
Following Lee et al.,34 we will address condition 3 by using a
suitably chosen biasing potential. Finally, we will meet conditions
4 and 5 by adjusting the height of the biasing potential, taking
into account the entropic part introduced by the use of the
angular coordinate.
Note that a similar shape of the λ free-energy profile, which

meets conditions 3 and 4, can be achieved also by designing ad
hoc interpolation schemes between the potentials of the proto-
nated and deprotonated states of λ, as previously proposed in the
λ-adiabatic free-energy dynamics approach by Tuckerman and
co-workers.33 By adjusting the temperature of the λ particle,
Tuckerman and co-workers,33 ensured efficient barrier crossing,
also meeting the last condition.
2.3.1. Projection of the Angular θ Coordinate on the λ Space.

In order to constrain the space sampled by λ, we switch to a new
dynamic angular coordinate θ, as shown in Figure 1. By this
modification, the actual dynamics takes place in θ space, and λ is
redefined as the projection of θ on the abscissa (see Figure 1),

λ ¼ r cosðθÞ þ 1
2

ð7Þ

The force acting on θ is

Fθ ¼ � DVðλðθÞÞ
Dθ

¼ r sinðθÞDVðλðθÞÞ
Dλ

ð8Þ

with V being the potential energy of the system, as defined in
eq 6.
In contrast to previous approaches,33,34,41 where r = 1/2, and

to meet condition 2, we chose r = (1/2)þ σ, with an appropriate

Figure 1. (A) Schematic describing the angular coordinate. λ is defined
as a function of the angular θ coordinate, λ = r cos(θ)þ (1/2), with the
radius of the circle being defined as r = (1/2)þσ, andσ a fluctuation size
(see main text). The segments of circumference corresponding to the
intervals a and b close to the end and center of the λ interval,
respectively, are indicated. (B) Entropic free-energy term introduced
by the use of an angular coordinate θ.
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fluctuation size σ. Several values of σwere tested. We have used a
value of σ = 0.05, because, with this value, the average λ at the
physical states was∼0 (protonated state) and∼1 (deprotonated
state).
2.3.2. Biasing Potential. To meet condition 3, a parabolic

biasing potential of the form34

U�ðλÞ ¼ 4hλð1� λÞ ð9Þ
is used. By adjusting its height h, the frequency of the protonation
transitions can be controlled, as required by condition 5.
Note that the choice of the above angular coordinate implies

an entropic contribution to the effective free energy governing
the λ-dynamics. This contribution originates from the higher
density of λ states at the end points of the λ interval, with respect
to the center of the interval, as indicated by the mapping of the
intervals a and b in Figure 1A onto the circumference. The
segment length for a given value of λ is

dλ ¼ dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � λ� 1

2

� �2
s

ð10Þ

resulting in a free-energy contribution of

AðλÞ ¼ � TSðλÞ ¼ RTln

�����dλdθ
�����

¼ 1
2
RTln r2 � λ� 1

2

� �2
" # ð11Þ

where R is the gas constant and T is the temperature. The A(λ)
term in eq 11 stabilizes the end parts of the λ interval by a barrier
of a few kJ mol�1, as shown in Figure 1B. This barrier needs to be
taken into account when adjusting the height h of the biasing
potential.
Note that the free energy A(λ) in Figure 1B, as well as the

corresponding probability distribution, diverges for λ = 0 and λ = 1.
This is, however, not a problem, because, for any finite interval
[λ1 3 3 3 λ2], there is a finite probability for the system to be within
this interval. Similarly, the partition function integral

Z ¼
Z λ¼1

λ¼0
expð�βAðλÞÞ dλ ¼ π ð12Þ

with β = 1/(kBT), over every finite λ interval of the free-energy
curve is also finite.
2.4. λ-Dynamics Thermostat. The temperature of the λ

particle is kept constant by coupling the particle to an external
heath bath. We have considered two coupling schemes, the
Berendsen,30 or weak coupling thermostat, and the Andersen
thermostat.42

It is not clear a priori whether to couple the λ particle to (i) the
same heat bath as the real atoms of the system, or (ii) a separate
heat bath. In the first situation, the temperature is computed from
the total kinetic energy of the real atoms and the λ particle. In the
second, different heat baths are used to couple the λ particle and
real atoms separately, and the kinetic energy of the λ particle is
used to calculate the temperature of the λ subsystem.
Therefore, we have tested the two coupling schemes. For

variant (i), we used the Berendsen thermostat (with a coupling
time of 0.10 ps), whereas, for variant (ii), the λ particle was
coupled to the Andersen thermostat (with a coupling time of
0.15 ps), and the rest of the system to the Berendsen thermostat.

We have used the Andersen thermostat, because the Berendsen
thermostat is not suitable for low-dimensional systems, such as
the λ subsystem.30 At 300 K and with a λ particle mass of 20 u, the
latter coupling scheme generated λ-trajectories that were more
suitable (i.e., sufficiently long residence time at the physical
states, fast transitions) to simulate biomolecular systems (see the
Results section).
2.5. Constant pH MD Simulations with λ-Dynamics. To

describe protonation and deprotonation events of a titratable site
at a given pH, we included, within theHamiltonian in eq 4, (i) the
effect of the external pH bath on protonation and (ii) contribu-
tions to the free energy of protonation due to breakage and
formation of chemical bonds, which are not described by the
force field. These two free-energy contributions will be described
by an additional term Vchem(λ), which will shift the protonation
equilibria by a certain free energy (ΔGchem).
To determine ΔGchem, we considered the equilibrium be-

tween a protonated (AH) and a deprotonated acid (A�), in a
(solvated) protein (see Figure 2, top) and in water (see Figure 2,
bottom). We will use the latter as a reference state. This state is
chosen such that a measured deprotonation free energy is
available, and the reference compound AH is chemically similar
for the reference and protein states, generally a solvated amino
acid. Note that no Hþ or H3O

þ species appears on the right side
of the equilibria in Figure 2, since, here, we consider the free-
energy difference between the protonated and deprotonated
forms of the titratable site. Below, we will describe how the pH
dependency of this free energy is taken into account.
The free energies for the top (prot) and bottom (ref) reactions

of Figure 2 are split into a contribution ΔGFF (obtained via a
force field calculation) and ΔGchem (contributions (i) and (ii)
from pH bath and bond breakage and formation, respectively).
Because of the choice of the reference state, ΔGchem is not
expected to differ significantly between the top and bottom
reactions in Figure 2.18,43,44 Thus, the dominant contribution to
the difference in the free energies of these two reactions is due to
the different environment of the titratable site in the protein and
in water. This contribution essentially depends on the long-range
interactions of the titratable group, which are described by the
force-field free-energy terms ΔGprot

FF and ΔGref
FF.

Accordingly,

ΔGchem
prot � ΔGchem

ref ¼ ln 10ð ÞRTðpKa, ref � pHÞ �ΔGFF
ref

ð13Þ

where pKa,ref is themeasured pKa of the reference titratable site in
the reference state. The pH term describes the pH dependency of

Figure 2. Equilibria between the protonated (AH) and deprotonated
(A�) forms of a titratable site in a protein and in the reference state in
water.ΔGprot

FF andΔGref
FF are obtained from a molecular dynamics (MD)

simulation, whereasΔGprot
chem andΔGref

chem include contributions from the
environmental pH and from bonded terms, which are missing in the
force field. We assume ΔGprot

chem ≈ ΔGref
chem.
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the equilibria in Figure 2, thus accounting for the missing proton
in Figure 2.
The last contribution in eq 13, ΔGref

FF, is obtained from a
thermodynamic integration calculation (reference free-energy
simulation), which is performed prior to starting the constant
pH simulation,

ΔGFF
ref ¼ GFF

ref ðλ ¼ 1Þ � GFF
ref ðλ ¼ 0Þ

¼
Z λ¼1

λ¼0

DHref ðλÞ
Dλ

� �
λ

dλ ð14Þ

where Href(λ) is the Hamiltonian of the reference system.
Having determinedΔGchem for the protein state, the following

potential Vchem(λ) serves to implement the desired free-energy
difference in the λ-dynamics calculations:

V chemðλÞ ¼ λ ln 10ð ÞRTðpKa, ref � pHÞ �Δ~G FF
ref ðλÞ ð15Þ

with Δ~Gref
FF(λ) as a polynomial fit to Gref

FF(λ), which is typically
close to a parabola.45,46

Note the use of Δ~Gref
FF(λ) to describe the ΔGref

FF(λ) contribu-
tion, instead of a linear function of λ (analogously to the first term
in eq 15). By this choice, the free-energy profile of the reference
state (Gref

FF(λ)) is effectively subtracted (except for fluctuations)
from the one of the protein state (Gprot

FF (λ)). In the simplest case
of a constant pH simulation of an amino acid in water, in which
case Gref

FF(λ) and Gprot
FF (λ) are the same, Δ~Gref

FF(λ) will, therefore,
remove the barrier in the energy landscape between the proto-
nated and deprotonated states of the titratable site. Therefore,
the barrier is given and controlled directly by the height of the
biasing potential, which thus can be adjusted to achieve the
desired transition rates. In the less trivial case of a protein
simulation, Δ~Gref

FF(λ) will not remove the barrier completely,
but still the remaining perturbation can be assumed to be small
also in the general case.
2.5.1. Reference Thermodynamic Cycle. If a measured pKa is

available only for a compound that is similar, but not identical, to
that considered in the reference state, a thermodynamic cycle can
be used to calculate and correct for the free-energy difference due
to this modification. In Figure 3, the free-energy difference of the
reference state (ΔGref) is given by

ΔGref ¼ ΔGexp þ ðΔGtransf
AH �ΔGtransf

A� Þ ð16Þ
where ΔGAH

transf and ΔGA�
transf indicate the free-energy differ-

ences for the transformation of the protonated and deprotonated
forms of the reference state into the corresponding compounds
of the experimentally known state (exp), respectively. The terms
*AH and *A� in Figure 3 denote compounds chemically similar
to those in the reference state.

After calculation of ΔGAH
transf and ΔGA�

transf by conventional
TI, these two free-energy differences are included in eq 4, similar
to Vchem(λ) in eq 15:

V transf ðλÞ ¼ λðΔGtransf
AH �ΔGtransf

A� Þ ð17Þ
This approach will be used further below to parametrize the λ-

dynamics simulation of histidine.
2.6. Generalization to Multiple Titratable Groups. The

above formulation of the λ-dynamics approach for constant pH
simulations is extended to multiple titratable groups by assigning
a separate λ-coordinate to each titratable group in the pro-
tein.34,35 In order to illustrate the approach, we first will consider
the case of two titratable sites on a protein and derive the
Hamiltonian for this system. We will then distinguish the case of
two sites, which are (i) chemically uncoupled and (ii) chemically
coupled. In the first case of uncoupled sites, interactions between
titratable sites are mainly governed by electrostatics. In terms of
the force field, these sites interact only via nonbonded interactions,
which are described by the Coulomb and Lennard-Jones potential
energies. For this reason, the Hamiltonian for uncoupled sites can
be extended in a straightforward manner to any number N of
uncoupled titratable sites in a protein,34,35 and formally linear
scaling with the number of sites is achieved. As this approach will
be used later on, we will review it below. For chemically coupled
sites, this straightforward approach is not applicable. In this case,
the chemical character, which is described in the force field by a set
of parameters, such as atomic charges, bonds, and angles, of the
titratable sites depends on the protonation states of the respective
other coupled sites. Because of this dependency, cross terms occur
in the expression for the potential energies, which have to be taken
into account explicitly, and the contributions of interacting atoms
cannot be rearranged as conveniently as those for uncoupled sites.
Therefore, unavoidably, in this case, the number of calculations
scales exponentially with the number of sites, rather than linearly.
Here, we will discuss the example of histidine, where the two
deprotonation sites on the side chain are chemically coupled. Note
that, in this case, since only two sites are coupled, the calculations
still scale linearly. We will also discuss how this description of
histidine differs from the treatment of Khandogin and Brooks.35

2.6.1. Constant pH λ-Dynamics of Two Titratable Sites on a
Protein. We start by considering the case of two titratable sites
on a protein. Each of the two sites i and j is described by a
λ-coordinate, λi and λj, respectively. At λ = 0, the site is
protonated; at λ = 1, the site is deprotonated. Independent of
whether the two titratable groups are uncoupled or coupled, four
protonation states are relevant. In Figure 4, these four states for
histidine are denoted as 00 (both sites i and j protonated), 10

Figure 3. Thermodynamic cycle for the calculation of the reference
free-energy difference ΔGref. AH and A� are transformed to chemically
similar compounds *AH and *A�, respectively, for which the free-energy
difference has been experimentally measured (ΔGexp).

Figure 4. Four protonation states of the histidine side chain: λ1 and λ2
are the titration coordinates of the Nε and Nδ deprotonation sites,
respectively. λ1 = λ2 = 0 (00) corresponds to the fully protonated and
positively charged histidine; λ1 = 0, λ2 = 1 (01) and λ1 = 1, λ2 = 0 (10)
correspond to the neutral histidine; and λ1 = λ2 = 1 (11) corresponds to
the negatively charged fully deprotonated histidine.
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(site i deprotonated and site j protonated), 01 (site i protonated
and site j deprotonated), and 11 (both sites i and j deprotonated).
Applying eq 4 in a first step to each group i and j separately, and

combining the two resulting Hamiltonians again, according to
eq 4 in a second step, yields

Hðλi, λjÞ ¼ ð1� λiÞ½ð1� λjÞ~H00 þ λj ~H01� þ λi½ð1� λjÞ~H10

þ λj ~H11� þHEnv þ mi

2

� �
_λ2i þ

mj

2

� �
_λ2j

þU�ðλiÞ þU�ðλjÞ ð18Þ
where the first four Hamiltonians on the right side of the
equation describe the titratable sites of the protein in the four
protonation states in Figure 4, and U*(λ) is the biasing potential
discussed earlier in section 2.3.2.
Similarly, the potential energy of the system described by the

Hamiltonian H(λi,λj) in eq 18 is given as

Vðλi, λjÞ ¼ ð1� λiÞ½ð1� λjÞV00 þ λjV01�
þ λi½ð1� λjÞV10 þ λjV11� þ VEnv

þU�ðλiÞ þU�ðλjÞ ð19Þ
where the first four potential energies V on the right side of the
equation describe the interactions of the titratable sites in their
respective states (see Figure 4), with forces acting on λi and λj,
respectively:

� DVðλi, λjÞ
Dλi

¼ � ½ð1� λjÞðV10 � V00Þ þ λjðV11 � V01Þ�

� dU�ðλiÞ
dλi

ð20Þ

and

� DVðλi, λjÞ
Dλj

¼ � ½ð1� λiÞðV01 � V00Þ þ λiðV11 � V10Þ�

� dU�ðλjÞ
dλj

ð21Þ

As can be seen for the case of two interacting titratable sites,
the force acting on each site depends on the protonation state of
the respective other site, which also holds true for the general
case of N interacting sites. This interdependence entails an
exponential scaling.
2.6.2. Chemically Uncoupled Titratable Sites. If the two

titratable sites are chemically uncoupled, however, the computa-
tional complexity is dramatically reduced. Uncoupled sites
interact only via long-range (nonbonded) interactions. Below,
we will show how these interactions (Coulombic and van der
Waals) are efficiently described, achieving linear scaling of the
calculations.
Coulombic Interactions. For two uncoupled titratable sites i

and j, the Coulombic potential energy (Vc) for two interacting
atoms simplifies (from eq 19) to

V cðλi, λjÞ ¼ 1
4πE

½ð1� λiÞqi0 þ λiq
i
1�½ð1� λjÞqj0 þ λjq

j
1� ð22Þ

where q0 and q1 are the atomic charges in the protonated (λ = 0)
and deprotonated (λ = 1) states, respectively, of the correspond-
ing atoms, r is the distance between the two atoms, and ɛ is the
permittivity. Note that eq 22 involves only two states, compared
to the four states of eq 19.

Accordingly, the force acting on λi is

� DVcðλi, λjÞ
Dλi

¼ � ½Vcðλi ¼ 1, λjÞ � V cðλi ¼ 0, λjÞ� ð23Þ

where the Coulombic energies Vc(λi = 0, λj) = [1/(4πɛ)]q0
i

[(1� λj)q0
j þ λjq1

j ] andVc(λi = 1, λj) = [1/(4πɛ)]q1
i [(1� λj)q0

j þ
λjq1

j ] are evaluated at λj.
Equation 23 is extended in a straightforward manner to N

uncoupled interacting sites:

� DV cðλ1, :::, λi � 1, λi, λiþ1, :::, λNÞ
Dλi

¼ � ½V cðλ1, :::, λi � 1, λi ¼ 1, λiþ1, :::, λNÞ
� V cðλ1, :::, λi � 1, λi ¼ 0, λiþ1, :::, λNÞ� ð24Þ

and linear scaling of the calculation with the number of interact-
ing uncoupled sites is achieved.
van der Waals Interactions. The remaining long-range

interactions are somewhat less straightforward. We consider
the usual case where the van der Waals energies, together with
the Pauli repulsion, are described by a Lennard-Jones potential
VLJ:

VLJ ¼ A
r12

� B
r6

ð25Þ
where r is the distance between the two atoms, and A and B are
two parameters, which depend on the pairs of interacting atoms i
and j,

A ¼ ðAiAjÞ1=2 ð26Þ
and similarly for B.
For two uncoupled titratable sites i and j, the Lennard-Jones

potential energy for two interacting atoms is (here, we treat only
the r12 part; the r6 part is very similar)

V 12
LJ ðλi, λjÞ ¼ ð1� λiÞ½ð1� λjÞA00 þ λjA01� þ λi½ð1� λjÞA10 þ λjA11�

r12

ð27Þ
where the indices of the A parameter indicate the protonation
states of the two titratable sites (see Figure 4).
Similar to the Coulombic energy, eq 27 is rearranged in terms

of the protonated (λ = 0) and deprotonated (λ = 1) values of the
Ai and Aj Lennard-Jones parameters,

V 12
LJ ðλi, λjÞ ¼ ½ð1� λiÞðAi

0Þ1=2 þ λiðAi
1Þ1=2�½ð1� λjÞðAj

0Þ1=2 þ λjðAj
1Þ1=2�

r12

ð28Þ
with force acting on λi

� DV 12
LJ ðλi, λjÞ
Dλi

¼ � ½V 12
LJ ðλi ¼ 1, λjÞ � V 12

LJ ðλi ¼ 0, λjÞ� ð29Þ

The potentials VLJ
12(λi = 1, λj) and VLJ

12(λi = 0, λj) are obtained by
evaluating the second term in square brackets on the right side of
eq 28 prior to starting the force calculation, analogous to the
calculation of the Coulombic forces. As a more technical remark,
note that, in GROMACS,39 the Lennard-Jones parameters are
not accessible in a straightforward manner in the MD source
code. Therefore, instead of interpolating linearly between (A0

j)1/2

and (A1
j)1/2, we define the atom type (a) of the j atom, which is
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used to determine A0
j and A1

j, prior to calculating the force, by

ajðλjÞ ¼ a0 λj e 0:5
a1 λj > 0:5

(
ð30Þ

This yields, effectively, an approximation to the second term in
square brackets on the right side of eq 28. Note that, in the
GROMOS96 force field,47 only the A term of the atoms of the
carboxylic group changes upon deprotonation. Since, in the
Lennard-Jones potential (eq 25), the A (the repulsion) term decays
with 1/r12, the approximation in eq 30 is not expected to introduce
significant artifacts.
2.6.3. Chemically Coupled Titratable Sites. We move now to

the situation of chemically coupled sites. To illustrate this case,
Figure 4 shows the four protonation states of histidine, where λ1
and λ2 denote the titration coordinates of the Nε and Nδ sites,
respectively. In contrast to the chemically uncoupled situation,
here, the protonation state of one site (e.g., Nδ) does affect
the charge of the other site (Nɛ). Depending on the chemistry,
other force-field parameters also may be affected. This pre-
vents further simplification of eq 18, which leaves us with four
Hamiltonians (~H00, ~H01, ~H10, and ~H11) and four states for the
atomic charges (q00, q01, q10, and q11). Therefore, the calcula-
tions will scale exponentially with the number of coupled sites,
as each combination of the protonation states of the sites must
be evaluated.
We note that this description of histidine differs from that

of Khandogin and Brooks,35 in that each of the two titratable
sites on the side chain is described by a titration coordinate, and
the coupling between the two sites is taken into account
explicitly. Accordingly, our treatment also describes the doubly
deprotonated, negatively charged form of histidine, which is
not included in the model of Khandogin and Brooks,35 where
only three states are considered. Furthermore, our treatment is
readily generalized to more than two chemically coupled
titratable sites.
Chemically Coupled Reference States. The chemical cou-

pling between titratable sites also must be taken into account for
the reference states in a constant pH simulation. For example,
when λ2 changes from 0 to 1 in histidine, the reference
deprotonation reaction of the titratable site described by λ1
changes from the bottom (00 H 10) to the top (01 H 11)
deprotonation equilibrium in Figure 4.
To account for this dependency, we define Vchem(λ1, λ2) (see

for comparison Vchem(λ) in eq 15), e.g., for group λ1, as

V chemðλ1, λ2Þ ¼ λ1 ln 10ð ÞRTðpK�
a, ref ðλ2Þ � pHÞ �Δ~G FF

ref ðλ1, λ2Þ
ð31Þ

where

pK
�
a, ref ðλ2Þ ¼ ð1� λ2ÞpKa, ref ð00 h 10Þ þ λ2pKa, ref ð01 h 11Þ

ð32Þ
and Δ~Gref

FF(λ1, λ2) is a polynomial fit to Gref
FF(λ1, λ2), which is the

force-field free-energy profile for the reference deprotonations.
To determine Δ~Gref

FF(λ1, λ2), several reference free-energy simu-
lations at different values of λ2 are performed (see the Methods
section).
Similarly to the reference state, the reference thermodynamic

cycle (in section 2.5.1) of chemically coupled titratable sites will
depend on the protonation state of the respective other sites. For

the example of histidine, eq 17 becomes, e.g., for group λ1,

V transf ðλ1, λ2Þ ¼ λ1½ð1� λ2ÞðΔGAHHþ �ΔGAHÞ
þ λ2ðΔGAH �ΔGA�Þ� ð33Þ

withΔGAHHþ,ΔGAH, andΔGA� being the transfer free energies
of the double protonated (00), singly protonated (10 or 01), and
fully deprotonated (11) forms of histidine (see Figure 4).

3. METHODS

3.1. pKa Calculations. To estimate the pKa of a titratable
compound, constant pH simulations of the compound at differ-
ent pH values were performed, similar to a titration experiment.
From each simulation, the fraction (S) of deprotonated acid was
calculated, and the Henderson�Hasselbalch equation was fitted
to the obtained titration curve,

Sdeprot ¼ 1

10ðpKa � pHÞ þ 1
ð34Þ

which, for N noninteracting titratable sites, takes the form

Sdeprot ¼ ∑
N

i

1

10ðpKa, i � pHÞ þ 1
ð35Þ

In one case, where the fit was not satisfactory, theHill equation
has been used,

Sdeprot ¼ 1

10nðpKa � pHÞ þ 1
ð36Þ

where n is the Hill coefficient, which accounts for the degree
of cooperativity (n > 1) or anticooperativity (n < 1) of the
system.48,49

The fraction of deprotonated acid S in a constant pH simula-
tion was calculated from the titration coordinate λ during the
simulation, where all steps with λ < 0.1 were recorded as
protonated and those with λ > 0.9 as deprotonated. The error
in the calculated S was estimated via a Bayesian approach from
the number of transitions observed during the simulations
between the protonated and deprotonated states (see the
Supporting Information).
In contrast to a conventional titration experiment, in a constant

pH simulation, the titration coordinates of each titratable site in
the compound are accessible. Therefore, both the macroscopic
(or apparent) pKa values of the entire compound, and the
microscopic pKa values of each site, can be estimated.
For a compound with two titratable sites, such as histidine, the

equilibrium constant for the deprotonation of the first proton
(Ka,I) is related to the equilibrium constants for the deprotona-
tions at sites Nɛ and Nδ (Ka,1

0 and Ka,2
0 , respectively) by

Ka, I ¼ K
0
a, 1 þ K

0
a, 2 ð37Þ

from which follows

pKa, I ¼ � log10ð10�pK
0
a, 1 þ 10�pK

0
a, 2Þ ð38Þ

with pKa,I the (macroscopic) pKa value for the deprotonation of
the first proton of histidine, and pKa,1

0 and pKa,2
0 the (microscopic)

pKa value for the deprotonation of the first proton of histidine at
sites Nɛ and Nδ, respectively.
Similarly, the equilibrium constant for the deprotonation of

the second proton of histidine (Ka,II) is related to the equilibrium
constants for the deprotonations at sites Nɛ and Nδ (Ka,1

00 and
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Ka,2
00 , respectively) by

Ka, II ¼ 1
1

K 00
a, 1

þ 1

K 00
a, 2

ð39Þ

from which follows

pKa, II ¼ log10ð10pK
00
a, 1 þ 10pK

00
a, 2Þ ð40Þ

where pKa,II is the secondmacroscopic pKa value of histidine, and
pKa,1

00 and pKa,2
00 the microscopic pKa values for the deprotonation

of the second proton at sites Nɛ and Nδ, respectively.
In all cases, the error in the calculated pKa has been deter-

mined from the standard deviation of a set of four or five pKa

obtained from different fragments of the simulations.
3.2. Constant pH MD Simulations. The constant pH MD

simulation method, as described above, was implemented in the
GROMACS MD package (version 3.3).37�39

As test cases, constant pH simulations were carried out for four
compounds: glutamic acid (Glu) with neutral termini, a dipep-
tide of sequence glutamic acid-alanine (Glu-Ala), imidazole, and
a capped histidine (acetyl-NH-CHR-CO-methylamide with R
the side chain of histidine). Glu, Glu-Ala, and histidine (His)
were described with the GROMOS96 53A6 force field.50 Force-
field parameters of imidazole were adapted from histidine
(atomic charges are listed in Table s1 in the Supporting
Information). For the fully deprotonated form of histidine, no
force-field parameters are available in GROMOS96.50 Charges
for this protonation state were thus taken from imidazole and,
therefore, are not very accurate. However, in the pH interval
considered here (pH 4�10), the doubly deprotonated state
should never be visited, because the pKa value for the second
deprotonation of histidine is far beyond than the pH interval.1

Thus, we do not expect a large influence of the charges on the
protonation populations.
Each compound was placed in a dodecahedral box, which was

subsequently filled with ∼4200�5200 SPC (simple point
charge) water molecules.51 Interactions between atoms within
1.0 nm were evaluated at every step of the simulation, while
interactions with atoms beyond 1.0 nm were evaluated every five
steps. The Lennard-Jones long-range cutoff was set to 1.6 nm.
The ParticleMesh Ewald (PME)52,53 was used for the long-range
electrostatic interactions, with a grid spacing of 0.12 nm and an
interpolation order of 4. Constant pressure and temperature
were maintained by weakly coupling the system to an external
bath at 1 bar and 300 K, using the Berendsen barostat and
thermostat30 with coupling times of 1.0 and 0.1 ps, respectively.
A leapfrog integrator was used with an integration time step of
2 fs. The bond distances and bond angles of water were constrained
using the SETTLE algorithm.54 All other bond distances were
constrained using the LINCS algorithm.55 Prior to the simula-
tions, the potential energy of each system was minimized using a
steepest descent approach. A 50-ps MD simulation with position
restraints (with a force constant of 1000 kJ mol�1 nm�2) on the
amino acid/peptide atoms was then performed to relax the water
molecules. Finally, a 5-ns simulation was performed to equilibrate
each system before starting the constant pH MD simulations.
Deprotonation of a site was achieved by transforming the

titratable hydrogen into a dummy atom, which is topologically
bound to the acid, but has no interactions with the rest of
the system. Charges and atom types of the ionizable groups
were changed accordingly, from their force-field values in the

protonated state (λ = 0) to the deprotonated state (λ = 1).
Bonded terms (bonds, angles, and torsions) were maintained in
the protonated state. For glutamic acid and C-terminal, this
effectively yields an approximate description of the deprotonated
state. For N-terminal, imidazole, and histidine, instead, the
bonded terms do not differ in the protonated and deprotonated
states of the GROMOS9650 force field. For glutamic acid in
explicit solvent, the free energy of deprotonation was calculated,
as described in the next section for the reference free-energy
simulations, with and without change in the bonded terms.
The difference was less than 2 kJ mol�1 (see Table s2 in the
Supporting Information).
To compare constant pH simulations performed with two

different force fields, the titration curve of Glu with neutral
termini was calculated also with OPLSA56 and TIP4P57 water
molecules, and the titration curves for a tripeptide Ala-Glu-Ala
were calculated with GROMOS9650 and OPLSA57 in SPC51

water. When OPLSA57 was used to describe the system, in
addition to the bonded terms, atom types also were mantained in
their protonated state.
The temperature of the λ degree of freedom was set to 300 K.

Unless indicated otherwise, each λ particle was coupled to a
separate heat bath via the Andersen thermostat42 with a coupling
parameter of 6 ps�1. A fixed barrier height of 3.0 kJ mol�1 was
used for the biasing potential.
The mass of λ was set to 20 u. With this value of the mass, the

calculations yielded suitable λ-trajectories (i.e., small ratio be-
tween transition time and residence time) for the simulated
systems (see the Results section). At the same time, the mass of λ
is in the same range as that for the other atoms in the system.
Finally, we note that during the change of the protonation

state in the constant pH simulations, the overall charge of the
system is (eventually) changed. In this situation, artifacts can
arise due to the use of Ewald and related methods to describe
electrostatic interactions. In particular, these artifacts are re-
lated to the periodic boundary conditions and the background
charge that is used to neutralize the system.58,59 However, for
small compounds in a high dielectric medium (water), such as
those investigated here, these effects are expected to be
negligible.28,58

3.3. Reference States and Reference Free-Energy Simula-
tions.Constant pH simulations require a reference state for each
of the simulated titratable sites. The measured and calculated
(force field) deprotonation free energies of this reference state
were used to include the effect of the pH bath, and the effect of
the breakage and formation of chemical bonds in the simulation
(see eq 13).
Table 1 lists the titratable sites and their reference states, as

well as themeasured pKa values obtained from the literature1,60�62

and force-field deprotonation free energies (ΔGref
FF). Note that two

measured pKa values and ΔGref
FF are reported for imidazole. These

correspond to the microscopic pKa values for the first and second
deprotonation reaction of imidazole, respectively (the second
microscopic pKa value is obtained using eq 40, with the second
macroscopic pKa value being approximated from histidine, for
which there are experimental data1). The first and second micro-
scopic pKa values of the Nδ and Nɛ sites are identical, because of
the symmetry of the imidazole molecule.
For the Ala-Glu-Ala tripeptide, which was added to the

compounds set to compare the GROMOS9650 and OPLSA57

force fields, the reference states were chosen as follows: acetyl-Glu-
methylamide (pKa,ref = 4.25,

60ΔGref
FF(GROMOS) =� 225.6 kJmol�1,
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ΔGref
FF(OPLSA) = � 370.5 kJ mol�1), di-Ala-methylamide (pKa,ref =

8.0,61 ΔGref
FF(GROMOS) = 331.7 kJ mol�1, ΔGref

FF(OPLSA) = 219.0
J mol�1), and acetyl-di-Ala (pKa,ref = 3.5,61 ΔGref

FF(GROMOS) =
�230.7 kJ mol�1,ΔGref

FF(OPLSA) =�338.2 kJ mol�1), for titratable
sites Glu, N-terminus, and C-terminus, respectively.
The force-field deprotonation free energies for the reference

states ΔGref
FF were determined via conventional thermodynamic

integration (see eq 14) as follows. Each reference compound was
placed in a dodecahedral box filled with SPC51 water molecules.
The reference free-energy simulations consisted of 5-ns MD,
during which λ was continuously increased from 0 to 1, thus
deprotonating the reference compound, as described above for
the constant pH simulations. The size and shape of the box in the
reference and constant pH simulations was identical. Using the
same simulation conditions in the reference and constant pH
simulations, differences due to approximations of the force field
and of the interaction potentials are minimized.28

Δ~Gref
FF(λ) (eq 15) was derived from a least-squares fit to ∂H/∂λ

obtained from the reference free-energy simulation. Since the
deprotonation reaction in explicit water showed a nonlinear
∂H/∂λ profile,28 a third-order polynomial was used. Coefficients
of these polynomials are given in Table s3 in the Supporting
Information.
The two titration coordinates λ1 and λ2 of imidazole (Figure 4)

are chemically coupled and, therefore, deserved particular atten-
tion. Here, the reference state changes as a function of the
protonation state of the respective other site. Thus, ΔGref

FF(λ1,
λ2), and, accordingly,Δ~Gref

FF(λ1, λ2), are a function of both, λ1 and
λ2 (see eq 31). For this reason, reference free-energy simulations
of one titratable site (e.g., the site described by λ1) were carried out
for λ2 = 0, 0.1, ..., 0.9, 1. For each of these 11 simulations, a third-
order polynomial in λ1 was fitted to its ∂H/∂λ1 profile, in amanner
similar to the case of chemically uncoupled sites. To describe the
dependency from λ2, third-order polynomials in λ2 were subse-
quently fitted to the coefficients of these polynomials, and vice
versa for the titratable site described by λ2. These two sets of
polynomials served to calculate continuous forces for the two
degrees of freedom λ1 and λ2.
3.3.1. Histidine Reference State. As the reference state for the

constant pH simulations of histidine, we chose imidazole, such
that contributions from the backbone to the proton affinities of
the side chain Nɛ and Nδ titratable sites were present in the
constant pH simulations, but not in the reference free-energy
simulations. Because the force-field parameters of imidazole and
histidine differed, imidazole was transformed to a modified
imidazole molecule described with histidine force-field para-
meters, using the thermodynamic cycle in Figure 3. The transfer
free energies along the thermodynamic cycle were then used to
redefine the reference state, according to eq 16. Since Nɛ and Nδ

are chemically coupled, the transfer potential Vtransf(λ1, λ2) was
defined according to eq 33, which accounts for the dependency
of the transfer free energies from the protonation state of the

respective other site. The transfer free energies were calculated
via free-energy simulations (thermodynamic integration, eq 1).
In a first step, the bond lengths and angles were changed from
their force-field values in imidazole to those in histidine. In
a second step, Lennard-Jones parameters, and, in a last step,
charges (see Table 1s in the Supporting Information) were
modified. Each free-energy simulation consisted of 18 indepen-
dent simulations with λ values between 0 and 1. At each λ value,
100 ps of equilibration were followed by 300 ps of data collection.
The integration was carried out numerically using the trapezoidal
method. The error in Æ∂H/∂λæλ was estimated using block
averaging.63,64

3.4. λ Probability Distribution and Free-Energy Profile. In
order to calculate the probability distribution p(λ) during the
constant pH simulation, the λ interval was divided in 10 bins
[λ1, .., λi, ..., λ10], and p(λ) at bin i was obtained as

pðλiÞ ¼ ni
N

ð41Þ

where ni is the time of the simulation during which λ visited bin i
and N is the total simulation time.
The probability distribution of λ, which is given by the

entropic term introduced by the use of the circular coordinate,
was calculated as

pðλiÞ ¼
Z λiþ1

λi

pðλÞ dλ ð42Þ

with

pðλÞ ¼ exp½�βAðλÞ�
Z

ð43Þ

and A(λ) and Z being obtained from eqs 11 and 12, respectively.
p(λi) was then used to obtain a free-energy profile as a function of
the λ titration coordinate, with the free energyG(λ) at bin i being
given by

GðλiÞ ¼ � RT ln pðλiÞ ð44Þ

4. RESULTS

To test the accuracy of the constant pH MD simulation
method described above, we have calculated the titration curves
of four compounds: glutamic acid, a Glu-Ala dipeptide, imida-
zole, and histidine. The effects of the choice of the barrier height
of the biasing potential, the temperature coupling scheme, and
the force field, on the simulation were also investigated.
4.1. Glutamic Acid. First, we asked if the constant pH MD

simulation method is able to accurately reproduce the titration
curve of glutamic acid. To this end, glutamic acid with neutral
amino and carboxyl termini (�NH2 and�COOH, respectively)
was solvated in water, and four constant pH simulations of 5 ns

Table 1. Reference States, Reference pKa Values, and ΔGref
FF Values

titratable site reference state reference pKa (ln 10)RT (pKa,ref) (kJ mol�1) ΔGref
FF (kJ mol�1)

Glu Glu (neutral termini) 4.2560 24.4 �220.8

N-terminus di-Ala (neutral C-terminus) 8.061 45.9 332.8

C-terminus di-Ala (neutral N-terminus) 3.561 20.1 �231.3

imidazole (Nδ)
a imidazole (Nδ) 7.28,62 14.41 41.8, 82.7 155.4, �211.7

a For imidazole, only Nδ is reported ; values for Nɛ are the same.
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each (0.5-ns equilibration time and 4.5-ns data collection time)
were carried out for 11 pH values between 1.0 and 7.0. Figure 5
shows the fractions of deprotonated acid (in equivalents) as a
function of pH (i.e., the titration curve) for each of the four sets of
simulations (colored dots), and their average (black dots), the
latter together with error bars, which were determined from the
statistics of the observed transitions, as described in the Methods
section and the Supporting Information. As can be seen, the scatter
of the four simulations agrees with the error estimate of the
average. Note that, at the end points of the titration curve, values
slightly below 0 or above 1 are observed, which is due to the use of
a radius of r = 0.55 for the circle covered by the angular coordinate
θ (see the Theory section). We chose r = 0.55 to get 0 and 1, on
average, at the protonated (λ < 0.1) and deprotonated states (λ >
0.9), respectively. Because of statistical fluctuations, however,
slightly negative values and values above 1 occur. However, this
is much better than averages of Æλæ = 0.05 or Æλæ = 0.95 for r = 0.5.
From a fit of the Henderson�Hasselbalch equation (eq 34) to

the average deprotonation (the dashed line in Figure 5), the pKa

value was estimated to be 4.21 ( 0.14, which is consistent with
the measured pKa value of 4.25.

60

For the chemists, we note that, in a titration experiment, the
pH is usually measured as a function of the volume of a strong
base (or acid) solution added to the analyte solution. In contrast,
in the constant pH simulations, pH is a fixed parameter, whereas
the equivalents of analyte (i.e., how much of the analyte supplies
or reacts with one mole of hydrogen ions) is the quantity to be
estimated. Therefore, the titration curves in Figure 5 are to be
read as inverted titration curves, with respect to a typical experi-
mental titration curve.
Figures 6A�C illustrate the effect of different barrier heights

of the biasing potential (see eq 9). As expected, an increase of the
barrier height by 1 kBT (∼ 2.5 kJ mol�1) reduces the number of
transitions by a factor of ∼2.5�3. Therefore, by adjusting the
biasing potential, the transition rate can be optimized to ensure
sufficient sampling of the physical end states. At the same time,
the fraction of intermediate states remains small (between 30%
with a barrier of 3 kJ mol�1, and 10% with a barrier of 7.5 kJ
mol�1). Overall, by adjusting the barrier, the statistical error of
the constant pH simulation can be minimized.
Note that the effective barrier between the protonated and

deprotonated states has a contribution from the entropic barrier

introduced by the use of an angular coordinate to perform the
actual λ-dynamics (see the Theory section, Figure 1 and eq 11).
This can be seen in Figure 7, which shows the free-energy profile
as a function of the titration coordinate λ from an 18-ns constant
pH simulation of glutamic acid in explicit solvent at pH 4.25 and
with the barrier height of the biasing potential 3 kJ mol�1

(continuous line). The free energy at λ = 0.5 is ∼7 kJ mol�1

more positive than that at λ = 0 and λ = 1. When the biasing
potential is subtracted from the simulation free-energy profile, we
obtain the dotted line in Figure 1, which shows a residual barrier
of ∼4 kJ mol�1. This compares with the entropic barrier term
introduced by the use of the angular coordinate θ (broken dotted
line in Figure 7).
To investigate the effect of the chosen temperature coupling

scheme on sampling of the protonation states during the con-
stant pH simulations, the following two variants were considered.
In variant (i), the λ particle was coupled to a separate heat bath
via the Andersen thermostat,42 and the rest of the system was
coupled to the Berendsen thermostat, whereas in variant (ii), all
degrees of freedom were coupled to a common heat bath via the
Berendsen thermostat.30 Figures 6A and 6D compare typical
λ-trajectories for the two variants. As can be seen, the number of
transitions for the Berendsen variant is ∼3�4 times larger than
that for the Andersen method. Accordingly, the average resi-
dence time is ∼3�4 times shorter for the Berendsen simulation
(∼60 ps), compared to that for the Andersen simulation (∼200
ps). The probability distributions of λwith the two variants of the
temperature coupling scheme are very similar (see right plot of
Figure 6D). Figure 6E shows typical short-time (50 ps) traces of
both simulations, with λ(t) shown in the top row, and respec-
tive velocities of the underlying angular coordinate (vθ) at the
bottom. As can be seen, the λ-trajectories are similar, with the
Berendsen variant showing somewhat larger oscillations at the
end states. The velocities, in contrast, look very different, with
a marked proportion of high-frequency fluctuations for the
Andersen thermostat, which are absent for the Berendsen
thermostat. Figure 6F quantifies this behavior, in terms of the
distribution of angular distances covered by the circular coordi-
nate θ between successive velocity reversals. These distances are,
on average, shorter for the Andersen thermostat (0.08 radians),
as compared to the Berendsen thermostat (0.57 radians). In
particular, the long tail for the Berendsen thermostat (up to 6
radians) shows that inertia-driven full circle motions do occur,
which implies correlated transitions. This effect reduces the
statistical accuracy and is not seen for the Andersen thermostat.
Overall, the Andersen temperature coupling scheme seems to

provide a better tradeoff between residence times and the
number of uncorrelated transitions. In particular, the λ-trajec-
tories obtained with the Andersen variant showed a sufficiently
long residence time at the physical end states, allowing the
system to respond to the new protonation state. Because these
features are crucial for constant pH simulations, the Andersen
temperature coupling scheme has been used for all subsequent
simulations.
4.2. Glu-Ala Dipeptide. The second system that we consid-

ered was the dipeptide Glu-Ala. This system has three inter-
acting titratable sites—glutamic acid (Glu), amino terminus
(N-terminus), and carboxyl terminus (C-terminus)—and, there-
fore, was chosen to test if our method is capable of describing pKa

shifts due to these interactions.
Constant pH simulations were carried out for 14 pH values

between 1.0 and 11.0. Each trajectory covered a 20-ns simulation

Figure 5. Calculated titration curve of glutamic acid with neutral
termini. The deprotonation of glutamic acid (in equivalents, eq) is
plotted as a function of pH. At each pH, four simulations of 4.5 ns each
were performed. Data from each of these simulations (colored dots),
and from the average of the four simulations (black filled dots), are
shown. Error bars denote estimates from the statistics of the observed
transitions. The dashed line is a Henderson�Hasselbalch fit to the
average data.
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timewith a 2-ns equilibration time and an 18-ns data collection time.
Figure 8 shows the obtained titration curve (left graph), inwhich the
cumulative deprotonation (in equivalents) of all three titratable
sites is plotted as a function of pH, together with the individual
contributions of the three sites (see right side of Figure 8).

Apparent pKa values were estimated from a fit of a sum of three
Henderson�Hasselbalch equations (eq 35) to the cumulative
titration curve (Table 2). Similarly, the pKa values of each of the
titratable sites (site-specific pKa values) were obtained by fitting
the Henderson�Hasselbalch equation to the individual titration
curves (see Table 2). Note that the apparent pKa values are listed in
Table 2, next to each titratable site, only for the sake of clarity, because
they are defined in terms of deprotonation of the entire dipeptide.
The apparent and site-specific pKa values are similar for the

N-terminus, whereas, for Glu and for the C-terminus, there is a
difference of 0.28 and �0.22 pKa units, respectively (see
Table 2). The Henderson�Hasselbalch curve fitted the calcu-
lated deprotonation equivalents of the N-terminus and Glu (see
top and center right of Figure 8) well, whereas the titration
curve of the C-terminus (see bottom right of Figure 8) deviated
slightly from the Henderson�Hasselbalch curve. In particular,
the slope of the titration curve is shallower, as is indicative of
interactions between titratable sites.48,49 Since the N-terminus
was constantly protonated below pH 7 (see top right in
Figure 8), the interacting titratable sites were the C-terminus
and Glu, which had similar pKa values (∼3). A fit of the Hill
equation (eq 36) to the C-terminus titration curve (dashed
magenta line in Figure 8, lower graph) recovers the pKa value of
2.98 already obtained for the Henderson�Hasselbalch fit, and

Figure 6. Dynamics of the deprotonation variable λ of glutamic acid for different barrier heights of the biasing potential and different temperature
coupling schemes of λ: (A, B, C) λ is plotted over time during constant pH simulations at pH 4.25 for three different barrier heights ((A) 3.0 kJ mol�1,
(B) 5.0 kJ mol�1, and (C) 7.5 kJ mol�1) of the biasing potential using the Andersen temperature coupling scheme. (D) In the left-hand side of the panel,
λ is shown during a constant pH simulation at pH 4.25 for a barrier height of 3.0 kJ mol�1, using Berendsen temperature coupling; on the right-hand side
of the panel, the λ-distributions of this simulation and of simulation (see panel A) are superimposed. (E) Variable λ and respective velocity
vθ (in radians/ps) during 50 ps of simulation with Andersen and Berendsen temperature coupling schemes. (F) Distributions of the angular distances
(in radians) covered between velocity reversals by the θ-variable, during the simulations depicted in panels A and D.

Figure 7. Relative free-energy profile as a function of the titration
coordinate λ from the 18-ns constant pH MD simulation of glutamic
acid in explicit solvent at pH 4.25 (continuous line). The biasing barrier
potential (barrier height = 3 kJ mol�1) is subtracted from the simulation
free-energy profile to yield the dotted line. The broken dotted line is
the relative free-energy profile that is due to the circle entropy (�TS(λ);
see text).
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it provides a better description of the titration behavior. The
obtained Hill coefficient of n = 0.82 indicates a certain degree of
anticooperativity in the binding/unbinding of the proton. This
is expected, as both the deprotonated C-terminus and Glu are
negatively charged, and the release of a proton from one site will
increase the affinity of the respective other site.
To quantify the interaction between the C-terminus and Glu

in terms of a free energy, we determined the shift in the pKa

values of these two groups, which is due to the change in the
protonation state of the respective other group. For that purpose,
we selected, for each titratable site from the trajectories, those
frames where the respective other site (C-terminus or Glu) was
protonated or deprotonated. In the former case (trajectories
where the opposite site was always protonated), we obtained the
titration curve for the deprotonation of a site given the respective
other was protonated (first microscopic titration curve), whereas
in the latter (trajectories where the opposite site was always
deprotonated), we obtained the titration curve given the other
site was deprotonated (secondmicroscopic titration curve). From
a fit of the Henderson�Hasselbalch equation to the first and
second microscopic titration curves, we obtained the microscopic
pKa values (pKa

0 and pKa
00, respectively). For the C-terminus,

pKa
0 = 2.89 and pKa

00 = 3.05, and for Glu, pKa
0 = 2.95 and

pKa
00 = 3.11, which show a difference of 0.16 pKa units between

the first and second microscopic pKa values for both the
C-terminus and the Glu. Thus, the affinity of the two titratable
sites for the proton increased upon deprotonation of the other
site by ∼1 kJ mol�1, which is of the same order as a simple
estimate of the interaction energy (at the average distance of
0.6 nm, see below) from the Coulombic law (∼3 kJ mol�1).
As the C-terminus and Glu became charged, the average

distance between these two groups increased. In particular, this
distance changed gradually from 0.55 nm to 0.60 nm between pH
1 (when both groups were protonated) and pH 6 (when both
groups were negatively charged), and then more markedly from
0.60 to 0.74 nm between pH 8 and pH 11, when the N-terminus
was mostly deprotonated, and the system had a net charge of�2.
As can be seen from Table 2 when comparing the site-specific

and reference pKa values, in all three cases, a shift in the pKa value
was observed, favoring the charged form of the titratable sites in
the dipeptide. In particular, the pKa of the N-terminus increased
by almost 1 pKa unit, whereas the pKa of the Glu and C-terminus
decreased by 1.2 and 0.5 pKa units, respectively. The more-
pronounced shifts in the pKa value of the N-terminus and Glu
suggest that these two groups interact favorably in their charged
states. The average distance between the nitrogen of the N-ter-
minus and the oxygens of the carboxyl group of Glu decreased
from 0.47 nm to 0.43 nm between pH 2 and pH 6 and, beyond
pH 8, increased again to 0.47 nm. The N-terminus and Glu were
at the closest distance of 0.43 nm between pH 6 and pH 8, when
both groups were mainly in their charged states. No significant
salt-bridge formation was observed between these two groups
(<15% of simulation time). On average, the distance between the
C-terminus and N-terminus was larger, and almost constant,
between pH 1 and pH 8 (between 0.58 nm and 0.59 nm).
4.3. Force-Field Comparison: GROMOS96 and OPLSA. To

assess the sensitivity of the constant pH MD approach to the
chosen force field, we calculated the titration curve and pKa value
of glutamic acid (with neutral termini) with a second force field.
In particular, theOPLSA56 and TIP4P57 explicit water model was
used. In addition, we calculated titration curves and pKa values
for a tripeptide of sequence Ala-Glu-Ala with GROMOS9650 and
OPLSA,56 both with an SPC51 explicit water model.
For glutamic acid with neutral termini, both force fields

yielded very similar titration curves, with pKa values very close
to the reference pKa value, as can be seen in Table 3 and in Figure
s1 in the Supporting Information. This is expected, because the
constant pH simulation is parametrized via the measured pKa

value of the reference state, which, in these simulations, was
glutamic acid, such that any possible force-field bias should cancel.
For the Ala-Glu-Ala tripeptide, at each of 15 pH values

between 1 and 11, four constant pH simulations were performed
for a total of 30 ns per pH value. Slight differences between the
titration curves obtained with the two force fields are seen. In
particular, the Glu and C-terminus titration curves differed most
significantly (see Figure s2 in the Supporting Information). As
can be seen in Table 3, the site-specific pKa of the C-terminus is
shifted by�0.4 pKa units, with respect to the reference pKa value
in the GROMOS96 simulations, whereas it is shifted slightly by
0.1 pKa unit in the OPLSA simulations. For Glu, the site-specific
pKa value is shifted by 0.2, with respect to the reference state, in
the GROMOS96 constant pH simulations, whereas it is shifted
by �0.2 pKa units in the OPLSA simulations. Overall, the force-
field sensitivity seems to be small.
4.4. Imidazole. The titratable sites considered above in the

dipeptide simulations interacted only via electrostatics. The

Table 2. Calculated pKa values of the Glu-Ala di-peptide

titratable site apparent pKa site-specific pKa reference pKa
a

N-terminus 8.66 ( 0.13 8.79 ( 0.10 8.061

Glu 3.33 ( 0.08 3.05 ( 0.08 4.2560

C-terminus 2.76 ( 0.07 2.98 ( 0.07 3.561

aMeasured pKa values of the isolated titratable sites (reference pKa

values) are listed for the sake of comparison.

Figure 8. Calculated titration curves of a Glu-Ala dipeptide: (left)
titration curve of the dipeptide and (right) site-specific titration curves of
the N-terminus, Glu, and C-terminus. The fitted Henderson�
Hasselbalch curve (dashed line) and, for the C-terminus, the fitted Hill
curve (dashed magenta line) are also shown. Error bars denote estimates
from the statistics of the observed transitions.
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chemical character of each site of the dipeptide (technically, its
force-field parameters) was independent of the protonation state
of the other sites, and the free energy of deprotonation of one site
was affected only via Coulombic interactions with the other sites.
Now, in contrast, we focus on two examples of “chemical
coupling”, where two titratable sites interact also via chemical
bonds. In this case, the chemical character, and, thus, the pKa

value of a site, is affected by any change in the protonation state of
the respective coupled site. As a first example, we consider the
two chemically coupled titratable sites Nɛ and Nδ of imidazole
(Figure 4). A second example, histidine, is discussed further below.
Constant pH simulations of imidazole were carried out for 22

pH values between pH4 and pH17. Each trajectory covered 20 ns,
with 2 ns of equilibration and 18 ns of data collection. At pH values
of 8�13, a barrier height of 0 kJ mol�1 was used, as discussed
further below. Figure 9 shows the titration curve of imidazole, in
which the cumulative deprotonation of both Nɛ and Nδ titratable
sites is plotted as a function of pH. The first and second appa-
rent pKa values of imidazole were estimated by a Henderson�
Hasselbalch fit as described above, and are listed as Im(Nɛþ Nδ)
in Table 4. The obtained apparent pKa values of 7.00( 0.12 and

14.78( 0.08 agree with the measured pKa values of 6.98 (from ref
62) and 14.7 (from ref 1). Note that the measured value for the
imidazole second apparent pKa value, which was also used for the
reference state, is replaced by the one of the chemically similar
histidine, for which there are experimental data.1

The microscopic pKa values of the Nɛ and Nδ sites (see
Table 4) were estimated from the microscopic titration curves.
These were obtained, similar to the C-terminus and Glu of the
dipeptide, by plotting the fraction of deprotonated acid at one
site, given that the other site was protonated (bottom inset in
Figure 9; black for Nɛ, gray for Nδ), or deprotonated (top inset in
Figure 9; black for Nɛ, gray for Nδ). The first and second
microscopic pKa values were similar for Nɛ (7.29 ( 0.08 and
14.51 ( 0.16) and Nδ (7.28 ( 0.18 and 14.46 ( 0.18). This is
expected, because the two titratable sites of imidazole are
equivalent by symmetry. Consistently, the difference between
the apparent and microscopic pKa values is approximately �
(log10 2) and þ(log10 2) for the first and second deprotonation
reaction, respectively (see eqs 38 and 40, for the case where
pKa,1 = pKa,2). This follows from the fact that the probability of
deprotonating either two of the sites is twice the probability of
deprotonating one of the sites.
Since the affinities of the Nɛ and Nδ titratable sites are identical,

one expects to observe, at every pH value, similar corresponding

Table 3. Calculated pKa Values of a Single Glutamic Amino Acid with Neutral Termini (NH2-Glu-COOH), and Ala-Glu-Ala
Tripeptide with GROMOS9650 and OPLSA,56 in Combination with TIP4P57 and SPC51 Water Molecules

NH2-Glu-COOH

GROMOS96 þ SPC OPLSA þ TIP4P

titratable site pKa pKa reference pKa
a

Glu 4.21 ( 0.14 4.14 ( 0.07 4.2560

Ala-Glu-Ala

GROMOS96 þ SPC OPLSA þ SPC

titratable site apparent pKa site-specific pKa apparent pKa site-specific pKa reference pKa
a

N-terminus 7.93 ( 0.08 8.05 ( 0.08 8.01 ( 0.10 8.15 ( 0.09 8.061

Glu 4.48 ( 0.13 4.46 ( 0.07 4.09 ( 0.18 4.04 ( 0.06 4.2560

C-terminus 3.14 ( 0.12 3.12 ( 0.11 3.55 ( 0.18 3.59 ( 0.07 3.561

aMeasured pKa values of the isolated titratable sites (reference pKa values) are listed for the sake of comparison.

Figure 9. Titration curve of imidazole. The cumulative deprotonation
(in equivalents, eq) of the two titratable sites (Nɛ and Nδ) is plotted as a
function of pH. The dashed line is a fitted Henderson�Hasselbalch
curve. The insets show themicroscopic titration curves of sites Nɛ (black
line) and Nδ (gray line) for the first (bottom graph) and second (top
graph) deprotonation reaction of imidazole. Error bars were determined
from the statistics of the observed transitions.

Table 4. Calculated and Measured pKa Values of Imidazole
(Im) and Histidine (His)

titratable site calculated pKa measured pKa

Imidazole

Im(Nɛ þ Nδ) 7.00 ( 0.12, 14.78 ( 0.08 6.98,62 14.71

Im(Nɛ) 7.29 ( 0.08, 14.51 ( 0.16 7.28,62 14.41

Im(Nδ) 7.28 ( 0.18, 14.46 ( 0.18 7.28,62 14.41

Histidinea

His(Nɛ þ Nδ) 6.56 ( 0.21 6.4262

His(Nɛ) 7.18 ( 0.23 6.9262

His(Nδ) 6.70 ( 0.23 6.5362

a For histidine, only the first deprotonation reaction was investigated.
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average deprotonation levels, which provides an independent test
of the statistical accuracy of the calculations. Accordingly, Figure 10
shows the average deprotonation Æλæ (top left), and the number of
transitions (bottom left) for Nɛ and Nδ, in black and gray,
respectively, as a function of pH. Three ranges can be distin-
guished: (i) pH values close to 5 and 16, with similar Æλæ of the two
sites, and few transitions; (ii) pH values close to 7 and 14, with Æλæ
of Nɛ and Nδ also similar, but many transitions; and (iii) pH
between 8 and 13, with marked differences for the average
deprotonation between the two sites, and again few transitions.
To enhance sampling in this last regime, and, thus, statistical
accuracy, we lowered the barrier height of the biasing potential
from 3 kJ mol�1 to 0 kJ mol�1, which is expected to increase the
observed transitions, and repeated the calculations. As can be seen
in the right side of Figure 10, the difference in average deprotona-
tion is now significantly smaller, as, indeed, more transitions are
observed. This example demonstrates how, by adjusting the barrier
height, the transition frequency can be controlled and, thus, the
accuracy can be enhanced.
Note that, in range (i), close to pH 5 and 16, also few

transitions occur, but the accuracy is much higher than for range
(iii) at pH 8�13. This is due to the fact that, in range (iii),
statistical fluctuations can favor one of the singly deprotonated
forms over the other, whereas in range (i), only one form of
imidazole is (mainly) sampled, fully protonated at pH close to 5,
and fully deprotonated at pH close to 16. Therefore, insufficient
sampling can result in a large inaccuracy in range (iii), as
compared to the more straightforward case of range (i), where
only one form is sampled.
Similar to range (iii), in range (ii), more than one form of

imidazole is significantly sampled (fully protonated and neutral
forms, and fully deprotonated and neutral forms, at pH close to 7
and 14, respectively). In this range, the inaccuracy is also larger
than that observed in range (i). However, in contrast to range
(iii), many more transitions are observed and, thus, sampling is

enhanced. This is due to the fact that the free-energy difference
between the protonated and deprotonated states of λ is small at
pH values close to the pKa value, and the transition barrier is
lower, implying more-frequent transitions.
4.4.1. Histidine. As a second example of chemical coupling, we

considered histidine, which plays a crucial role in many biological
processes, because its pKa value is close to the physiological pH.
Accordingly, its protonation state changes with its local electro-
static environment. Here, we considered only biologically rele-
vant pH values (pH <10), because no accurate force-field
parameters for the negatively charged, fully deprotonated form
of histidine at pH >10 are available.47

In the previous section, we have studied imidazole, which is the
chemical moiety of the histidine side chain. The difference in the
measured pKa values of histidine and imidazole is ∼0.5 pKa

units,62 with histidine having lower affinity for the proton (see
Table 4). Moreover, in histidine, the affinities of the two sites are
not identical, as in imidazole, but differ with respect to each other,
also by∼0.5 pKa units.

62 This situation enabled us to address the
question of whether the constant pH simulation method is
capable of quantitatively describing these differences (i.e., the
effect of the presence of the backbone on the affinities for the
proton of Nɛ and Nδ).
For this purpose, we parametrized the constant pH simulation,

such that contributions to the proton affinities from the histidine
backbone were not present in the reference state simulation, for
which we used imidazole. Because of these contributions, the
calculated pKa value is expected to be equal to the measured pKa

value of histidine, and is expected to differ from themeasured pKa

value of the reference imidazole compound. Prior to starting the
constant pH simulations, however, the contribution to the
affinities from the different force-field parameters of imidazole
and histidine were calculated. The thermodynamic cycle in
Figure 3 served this purpose (i.e., to compute the free energies
of transferring imidazole parameters to histidine parameters for
each of the protonation states). Table 5 shows the free energies
that have been obtained. As can be seen, these are similar to each
other (between�12.59 kJ mol�1 and �14.36 kJ mol�1), except
for the neutral form (01). In this form, Nɛ is protonated, whereas
Nδ, which is two bonds away from the backbone Cβ, is
deprotonated. The free energies in Table 5 were then used to
redefine the reference state (see eq 33) prior to starting the
simulations.
Constant pH simulations of histidine were carried out for 15

pH values between pH 4 and pH 10. Each trajectory covered 20
ns of simulation time with 2 ns of equilibration time and 18 ns of
data collection time. Similar to imidazole, for pH values between
8 and 10, a barrier height of 0 kJ mol�1 was used. Figure 11 shows
the obtained titration curve. The calculated pKa value of 6.56 (
0.21, estimated via a Henderson�Hasselbalch fit (dashed line),
agrees with the measured pKa value of 6.42 (see Table 4). Thus,

Figure 10. Average values (top) and number of transitions (bottom) of
imidazole titration coordinates λN

ɛ
(for site Nɛ, black) and λNδ

(for site
Nδ, gray). Constant pH simulations (of 20 ns) were carried out at each
pH at barrier heights as indicated. Error bars denote estimates from the
statistics of the observed transitions. Ranges (i), (ii), and (iii) are as
referenced in the main text.

Table 5. Free Energies of Transfer (ΔGtransf) of Each
Imidazole Protonation State (see Figure 4) to the
Corresponding Histidine State

protonation state ΔGtransf (kJ mol �1)

00 (þ) �12.59( 0.54

10 (Nδþ) �0.04( 0.61

01 (Nɛþ) �13.68( 0.55

11 (�) �14.36( 0.59
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the ∼0.5 pKa units downward shift in the pKa value of histidine,
with respect to the reference compound (imidazole), was
calculated within the statistical error (see Table 4).
The inset of Figure 11 shows the microscopic titration curves,

which were obtained as described above for imidazole and Glu-
Ala. Henderson�Hasselbalch fits to these curves yielded micro-
scopic pKa curves of 7.18 ( 0.23 for Nɛ and 6.70( 0.23 for Nδ,
which is consistent with a macroscopic pKa value of 6.56 (see
eq 38). The difference of 0.48 pKa units between the two
microscopic pKa values agrees with the measured value of 0.39
pKa units (see Table 4). Thus, in addition to decreasing the
affinity of the two sites, the effect of the histidine backbone
manifests itself with a shift in the pKa of the two titratable sites
with respect to each other, withNɛ having a higher affinity thanNδ.

5. DISCUSSION AND CONCLUSIONS

We have developed a framework to describe changes in
protonation states at constant pH, where the requirements of
(i) sampling of the relevant λ configurational space, with con-
formations being the protonated (λ= 0) and deprotonated (λ= 1)
states, (ii) control of the rate of transition between the two
states, and (iii) fully atomistic description of the system are
fulfilled. The method, which was implemented within the
molecular dynamics (MD) package GROMACS,37�39 is based
on the λ-dynamics approach of Kong and Brooks,32 and it
follows, in the main lines, the constant pH simulation method
by Brooks and co-workers.32,34,35 A new general approach was
developed to treat chemically coupled sites, and it was applied to
describe the proton tautomerism of imidazole and histidine. In
proteins, other examples of chemical coupling are coordinating
residues around metal ions, such as that observed in copper
binding sites65 or zinc binding sites.66

In order to test whether, and under which conditions ,the
above-mentioned requirements are actually fulfilled by our
method, constant pH simulations of four systems, glutamic acid,
Glu-Ala dipeptide, imidazole, and histidine, were carried out. In
the following, we will briefly discuss these results in light of the
aforementioned requirements, and then we will address the
questions of how accurately the calculated average protonation
agreed with the measured pKa values, and whether the method is
capable of describing interacting titratable sites. In particular, two
types of interactions were considered: those between chemically
uncoupled sites, which interact only via electrostatics, and those

between chemically coupled sites, for which a new coupling
scheme was developed.

During the constant pH simulations, the average λ in the
protonated and deprotonated states was found to be very close to
values of 0 or 1, respectively, as required to describe the system in
a physically realistic way. This was achieved by appropriately
increasing the radius that defines the circular degree of freedom
that is used. Similarly, sampling of the intermediate unphysical
states was minimized by introducing suitable biasing potentials,
in addition to the entropic barrier (of a few kJ mol�1) implied by
the angular degree of freedom. It was shown that, for a 3 kJ mol�1

biasing potential barrier height, more than 70% of the simulation
time was spent close to physical states (λ < 0.1 and λ > 0.9).

Adjusting the barrier of the biasing potential also allowed us to
control the transition rate, as demonstrated for glutamic acid and
imidazole. In particular, for imidazole, it was shown how the
accuracy of the calculations at pH values between 8 and 13 was
significantly enhanced by increasing the transition rate, thus
achieving fast sampling of different protonation states.

In all systems investigated, a fully atomistic description was
used, including an explicit solvent. Interestingly, we found that
the average residence time at the protonated and deprotonated
states is more than 2 orders of magnitude larger than that for
comparable systems simulated with the λ-dynamics constant pH
approach developed by Brooks and co-workers34,35 with an
implicit solvent. The choice of the thermostat is critical, as shown
in Figure 6, where the average residence time is three times larger
for the Andersen thermostat, compared to the Berendsen
thermostat. Note that the transitions observed in the simulations
with the Berendsen thermostat were partially correlated, which
reduced the statistical accuracy. However, the thermostat alone
does not seem to explain the differences between simulations in
implicit and explicit solvents. Thus, the explicit description of
water is likely to be crucial as well. We note that the fluctuations
in the effective barrier for a transition are quite large due to the
water dipoles. These effects, which are important for the kinetics
of proton transfer, are not described in implicit water. It would
certainly be interesting to study these in more detail.

For the first test system (glutamic acid), the calculated
titration curve agreed very well with the measured one. Although
this result may seem trivial, as the constant pH simulation was
parametrized via the measured pKa value of glutamic acid (the
reference state), it nevertheless shows that the effect of pH is
taken into account correctly. As expected, an increase of the total
simulation time from 4.5 ns to 18 ns significantly improved
accuracy. By increasing the length of the simulation, on one hand,
the number of transitions increases, and, on the other hand, a
more extensive sampling of the configurational space of the side
chain at a certain protonation state is achieved. Both factors
enhanced the accuracy of the simulation. Note that adjusting the
barrier height of the biasing potential allows one to study the
relaxation effects that are due to the change in protonation state.

To study the interaction between titratable sites, we further
considered the dipeptide Glu-Ala as a test case. Here, we
expected the interactions in the dipeptide to shift the calculated
pKa values, with respect to the values of the individual titratable
sites (the reference states). Indeed, the calculated pKa values
were all shifted to favor the charge states of the titratable sites.
This was more evident for Glu and N-terminus, which moved
closer to each other in the pH range at which they were mainly in
their charged states. The C-terminus and Glu had rather similar
pKa values (∼3), and the individual contributions of these two

Figure 11. Titration curve of histidine. The cumulative deprotonation
(in equivalents, eq) of the two titratable sites (Nɛ and Nδ) is plotted as a
function of pH. The dashed line is the fitted Henderson�Hasselbalch
curve. The inset shows the microscopic titration curves of the Nɛ andNδ

(in black and gray, respectively). Error bars were determined from the
statistics of the observed transitions.
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groups to the deprotonation of the dipeptide were distinguish-
able only in the site-specific titration curves. By analyzing the
microscopic pKa values, the interaction between these two
titratable sites was estimated as∼1 kJ mol�1. The Hill coefficient
of 0.82 for the titration curve of the C-terminus indicated
anticooperativity in the system, in agreement with the micro-
scopic pKa values. We note that, by calculating the microscopic
pKa values, this anticooperativity was quantified here, in terms of
free energy.

For Glu-Ala, the titratable sites interacted only via electro-
statics. In contrast, in imidazole, which was the third system
considered, the titratable sites Nɛ and Nδ interacted chemically,
because the affinity for the proton of one site is a function of the
protonation state of the respective other site. To describe this
type of interaction, a general approach was developed, in which
each site is described by a titration coordinate λ, and coupling
between the sites is explicitly taken into account. Note that this
approach was applied here to describe the tautomerism of
imidazole and histidine, but it can be used to describe chemical
coupling between any two or more sites. Moreover, we showed
that our general approach simplifies to the case of chemically
uncoupled sites when interactions occur only via electrostatics.
The approach of describing each site of a tautomer as a separate
titratable site (or pseudo-site) is not new.67 However, to avoid
the occurrence of the double deprotonated state at pH 7, we do
not introduce an arbitrary energy penalty.67 Instead, the refer-
ence states of the pseudo-sites are coupled, such that they are a
function of the protonation state of the titratable site. For
example, in histidine, the reference pKa value of one of the sites
on the side chain increases from ∼6 to ∼14 as the respective
other site deprotonates. Therefore, at pH 7, a second deprotona-
tion is highly improbable. Alternatively, in the constant pH
approach of Khandogin and Brooks,35 tautomerism of titratable
amino acids is described by considering three states only. In
practice, only one titration coordinate is used, whereas an
additional continuous coordinate controls the interconversion
between the two tautomeric forms.35 We note that, by appro-
priately choosing the protonation states, a three-state description
also is obtained within our approach.

We did not use a tautomeric model for Glu in this work.
However, it is straightforward to apply such a model to Glu as
well, to allow for deprotonation/protonation of both oxygens on
the carboxylic group. In particular, such a description is required
in protein simulations, in which specific intramolecular interac-
tions can significantly increase the barrier for rotation of the
carboxylic group.

The obtained titration curve of imidazole agreed well with the
measured one. To test the model, we simulated over a large pH
range, to also observe the doubly deprotonated state. Although,
at physiological pH, this form is quite unlikely to occur, it cannot
be excluded that, in the presence of particular interactions, it
plays a role as well.

Histidine was considered as a second example of chemically
interacting sites. Here, we investigated the shift of the calculated
proton affinity, with respect to the reference one, because of the
presence of the backbone. For these simulations, the reference
state was transformed to a similar one by means of the thermo-
dynamic cycle shown in Figure 3. In general, the reference state is
chosen such that the chemical character of the titratable site is
similar in the reference and simulated states28 (i.e., that all
differences are described via electrostatics). This implies that
one is restricted to those states for which experimental data are

available. Now we have proposed an approach that allows one
to use a less similar state, therefore, broadening the range of
accessible systems.

Finally, we would like to note that our constant pH approach
will also be useful for determining protonation states from X-ray
structures. A constant pH MD simulation is performed before
the production run is started. During this equilibration phase,
position restraints can be applied to the protein backbone, or
heavy atoms, to keep the atomic coordinates close to the X-ray
data. This procedure might be particularly useful for proteins, in
which internal water molecules play a role in stabilizing proton-
ation states.68
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