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Abstract: With today’s available computer power, free energy calculations from equilibrium molecular dynamics sim-

ulations “via counting” become feasible for an increasing number of reactions. An example is the dimerization reaction

of transmembrane alpha-helices. If an extended simulation of the two helices covers sufficiently many dimerization and

dissociation events, their binding free energy is readily derived from the fraction of time during which the two helices

are observed in dimeric form. Exactly how the correct value for the free energy is to be calculated, however, is unclear,

and indeed several different and contradictory approaches have been used. In particular, results obtained via Boltzmann

statistics differ from those determined via the law of mass action. Here, we develop a theory that resolves this discrepancy.

We show that for simulation systems containing two molecules, the dimerization free energy is given by a formula of the

form !G ∝ ln(P1/P0). Our theory is also applicable to high concentrations that typically have to be used in molecular

dynamics simulations to keep the simulation system small, where the textbook dilute approximations fail. It also covers

simulations with an arbitrary number of monomers and dimers and provides rigorous error estimates. Comparison with

test simulations of a simple Lennard Jones system with various particle numbers as well as with reference free energy

values obtained from radial distribution functions show full agreement for both binding free energies and dimerization

statistics.

© 2011 Wiley Periodicals, Inc. J Comput Chem 32: 1919–1928, 2011
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Introduction

The computation of free energy differences is the aim of many

molecular simulation studies. As a thermodynamic state function,

the free energy provides insights into the molecular driving forces

for the studied process, and often enables a direct and quanti-

tative comparison to experiments. However, in many cases, it is

not trivial to obtain free energy differences from simulations of

large condensed-phase systems, because it requires proper and

extensive sampling of the underlying thermodynamic ensemble, for

example through Monte Carlo (MC) or molecular dynamics (MD)

techniques.

A number of MD-based simulation protocols for calculating

free energy differences has been devised. Thermodynamic inte-

gration and free energy perturbation approaches, based on an

alchemical transformation of one group of atoms into another, are

frequently used.1–4 Also nonequilibrium methods have been suc-

cessfully applied to calculate free energies of molecular systems.5–10

To study the energetics of self-assembly processes, such as the bind-

ing of two (or more) molecules, the umbrella sampling technique11

is often applied, in which harmonic (umbrella) potentials drive the

system along a pre-defined reaction coordinate, for example the

distance between the molecules.

Today, the increasing available computer power and ongoing

development of efficient algorithms and coarse-grain force fields
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enables longer simulations of large systems, thus opening the way

to a straightforward alternative: To carry out an extended equilibrium

MD simulation and obtain the free energy difference from directly

counting the fractions of simulation time spent in the respective

states. Such an approach has been applied to, for example, the dimer-

ization of chirally related organic molecules,12 folding / unfolding

of small peptides,13, 14 dimerization of methane molecules15 as well

as of charged16 and hydrophobic17 amino acid pairs in water, and a

dimer of transmembrane helices in a lipid bilayer.18

However, contradicting approaches and formulae have been

employed to calculate free energy differences. In particular, as fur-

ther explained in the Theory section, directly using the ratio of

the observed Boltzmann probabilities13, 14, 16, 17, 19 yields different

results compared to approaches adopting the law of mass action

to simulations of two dimerizing molecules.12, 15, 18 For example, if

the system is found in a dimerized state during a fraction P1 of the

total simulation time, and in a monomeric state during a fraction

P0 = 1 − P1, the free energy difference would in the first case be

given by an equation of the form !G ∝ ln(P1/P0), whereas in the

latter case, it is ∝ ln(P1/P2
0). Which of the two approaches is cor-

rect? Furthermore, it is not trivial to provide a generalized formalism

as well as reliable error estimates for simulations with more than

two molecules, which may provide better sampling.

Here, we develop a rigorous theory for dimerization reac-

tions involving an arbitrary number of molecules, including only

two, and derive how dimerization free energies can be calculated

from simulations by direct counting. First, we will use thermo-

dynamic arguments to show that an equation of the form !G ∝

ln(P1/P0) is the correct formula for simulations of two dimerizing

molecules. Second, we present a general statistical mechanical treat-

ment of dimer association/dissociation reactions of any number of

molecules, and demonstrate how the law of mass action is recovered.

Third, we discuss how the counter-intuitive disagreement between

the Boltzmann treatment and the naive application of the law of

mass action is resolved by careful consideration of the respective

ensembles. We finally test our theoretical results against MD sim-

ulations, and compare free energies obtained from direct counting

with those from radial distribution functions.

Theory

As shown in Figure 1, we consider the dimerization of two molecules

in solution, A and B,

A + B ⇋ AB, (1)

for which the law of mass action reads

Ka =
[AB]c∅

[A][B]
, (2)

with association constant Ka, concentrations [X], and c∅ an agreed

standard concentration, usually 1 mol/L. Equation (2) assumes that

the system is sufficiently diluted, such that concentrations can be

used instead of activities.

Figure 1. Dimerization of two molecules A and B within a given volume

(a). The configuration space (b) is divided into two parts, monomeric

(no dimer, “0”) and dimeric (one dimer, “1”).

Two Particles

For a mixture of ni mol of species i, the Gibbs free energy is related

to the thermodynamic (chemical) potentials through

G =
∑

i

niµi. (3)

Thus, for two molecules,

G1 =
1

NAv

µAB +
Ns

NAv

µs (4)

and

G0 =
1

NAv

µA +
1

NAv

µB +
Ns

NAv

µs (5)

for the dimer and monomer states, 1 and 0, respectively. Here, Ns is

the number of solvent molecules, µs the thermodynamic potential

of the solvent, and NAv is Avogadro’s number. Thus,

NAvG1 = µ
∅

AB + RT ln
1

c∅NAvv
+ Ns ·

[

µ∅

s + RT ln xs,1

]

(6)

and

NAvG0 = µ
∅

A + µ
∅

B + 2RT ln
1

c∅NAvv
+ Ns ·

[

µ∅

s + RT ln xs,0

]

,

(7)
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where R = kBNAv is the gas constant, v is the total volume of the

system, and xs,1 and xs,0 are the mole fractions of the solvent (assum-

ing ideal solution) for the dimer and monomer, respectively. Taking

the difference of eqs. (6) and (7) and neglecting the small difference

between xs,1 and xs,0 yields

NAv(G1 − G0) = µ
∅

AB − µ
∅

A − µ
∅

B + RT ln(c∅NAvv). (8)

We now assume an MD simulation of two molecules A and B, sur-

rounded by solvent molecules in a simulation box. The monomers

can form a dimer according to eq. (1), defined by an unambiguous

definition (for example a distance criterion). The system is observed

to be in its dimeric state during a fraction P1 (“one dimer”) of the

total simulation time and in its monomeric state (“zero dimers”)

during a fraction P0 = 1 − P1. We further assume that the simula-

tion time is long enough for sufficiently many transitions to occur

between the two states, such that the system can be considered to be

in thermodynamic equilibrium. Our aim is to calculate the equilib-

rium constant Ka for the association reaction eq. (1), or, equivalently,

the (standard) association free energy

!G∅ = −kBT ln Ka (9)

from the simulation, that is, from P0 and P1.

To derive an expression for the free energy difference, the con-

figuration space is divided into two parts 0 and 1, representing the

monomeric and dimeric states, respectively (Fig. 1b). For simu-

lations at constant v, T , the probability to be in a defined state is

proportional to exp(−A/kBT), where A is the Helmholtz free energy

of that state. Thus,

P1

P0

= exp

[

−(A1 − A0)

kBT

]

. (10)

To obtain !G, the difference between the Gibbs functions,

G1 − G0 = −kBT ln
P1

P0

+ (p1 − p0)v (11)

is desired. The pv term is small for most reactions in solution and

is therefore disregarded here; however, it can be determined from

the pressures during the simulation if needed. For simpler notation,

all partition functions further below refer to simulation ensembles

at constant v, T .

Combining eqs. (8) and (11) yields the expected Boltzmann rela-

tion between the standard free energy change and the probability

ratio observed in the simulation,

!G∅ = −RT ln
P1

P0

− RT ln(c∅NAvv) = !G − RT ln(c∅NAvv).

(12)

Alternatively, the equilibrium constant can be expressed using

eq. (9),

Ka =
P1

P0

c∅NAvv. (13)

Subsequently, we will omit explicit reference to the standard state;

it can easily be reintroduced via the above eqs. (12) and (13).

Generalization for Many Particles

We now assume an equilibrium between N molecules, NA of which

are of type A, and NB = N − NA of which are of type B. We

further assume that particles of the same type do not dimerize, and

that polymerization does not occur. For example, for N = 4 and

NA = NB = 2, the relevant states are

A + A + B + B ⇋ AB + A + B ⇋ AB + AB. (14)

Generalizing eqs. (12) and (13), we aim at relating the statistics

of observed dimers AB in the MD simulation to the (macroscopic)

association constant Ka and free energy !G for the dimerization

reaction eq. (1). As in Figure 1, the configuration space of the N

molecules within the (3-dimensional) volume v is divided into (3N-

dimensional) subvolumes V0 (only monomers), V1 (1 dimer, N − 2

monomers), . . ., Vm (m dimers, N − 2m monomers).

From the respective Helmholtz free energies, eq. (10), the

probability of finding the system in a fully monomeric state reads

P0 =
Z0

Z
=

∫

V0
e−U/kBT dV

∫

V
e−U/kBT dV

, (15)

and that of finding exactly m ≤ min(NA, NB) dimers is

Pm =
Zm

Z
=

∫

Vm
e−U/kBT dV

∫

V
e−U/kBT dV

, (16)

with configurational partition functions Zm, integrated over those

regions of configuration space with m dimers and N−2m monomers,

interaction potential U, and partition function Z =
∑min(NA ,NB)

m=0 Zm.

We note that the kinetic part of the partition functions can always

be factored out and therefore cancels in the above equations. From

these probabilities, the average number 〈m〉 of dimers is readily

obtained,

〈m〉 =
1

Z

min(NA ,NB)
∑

m=1

mZm. (17)

Neglecting the interaction energy of distant (unbound) particles,

the above partition functions can be expressed in terms of an excess

free energy per dimer (with respect to the ideal gas term),

G∗ = kBT ln〈eU/kBT 〉V1
, (18)
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which is independent of the box volume. With this abbreviation, one

obtains

Z0 =

∫

V0

e−U/kBT dV = V0 (19)

and

Z1 =

∫

V1

e−U/kBT dV = V1e−G∗/kBT . (20)

Assuming additive interaction potentials, the partition function for

m dimers then reads

Zm =

∫

Vm

e−U/kBT dV = Vme−mG∗/kBT , (21)

which reduces the problem to estimating the configuration space

volumes Vm.

To determine the configuration space volume V0 for which the

system consists of only monomers, note that the first molecule can

be placed anywhere within the simulation box volume v. For the

second molecule, only those positions are allowed for which it does

not form a dimer with the first molecule, which yields the reduced

volume v − vD. Here, vD denotes the dimerization volume. Further,

molecules A and B are assumed to occupy the same volume, that

is, the dimerization volume vD equals the volume excluded by the

repulsive interaction between AA or BB, respectively. For the third

molecule, similarly, only a volume v − 2vD remains, etc.

With x = vD/v, one thus obtains to second order in the particle

concentrations [A] + [B] = N/(NAvv),

V0 = v(v − vD)(v − 2vD) · · · · · (v − (N − 1)vD) = vN

N−1
∏

j=1

(1 − jx).

(22)

For the configuration space volume Vm of all states of m dimers

and N − 2m monomers, from similar but somewhat more involved

reasoning

Vm = vN m!

(

NA

m

)(

NB

m

)

xm

m−1
∏

j=1

(1 − jy)

N−2m−1
∏

j=0

(1 − my − jx)

(23)

follows, where vAB is the (average) volume excluded by each dimer

AB (Fig. 2b), and y = vAB/v. To see why eq. (23) holds true, first

place m molecules to form a monomeric state, which yields the

first product term as in eq. (22). Next, place further m molecules to

form m dimers, such that each of these molecules is restricted to a

volume vD, thus yielding the xm-term. Finally, place N −2m further

monomers within the remaining volume fraction vN (1 − my), with

each monomer further reducing the available volume fraction by x.

To verify the combinatorics note that this procedure yields only one

out of all possible ways to select m molecules from the NA molecules

Figure 2. Definition of (a) dimerization volume vD and (b) average

dimer exclusion volume vAB for the special case of spherical particles.

If the center of particle B falls within the dimerization volume (gray)

centered at particle A, the two particles are considered a dimer. The

average volume of two combined overlapping dimerization volumes

defines the dimer exclusion volume, within which a third particle is not

considered monomeric.

of type A and from the NB molecules B, hence the two binomials.

Finally, having selected m molecules of each type for dimerization,

there are m! ways of joining those into m dimers.

Note that with the convention that products for which the final

value of the running index is smaller than the starting value equal

unity (i.e.,
∏0

j=1 = 1), eq. (23) reduces to eq. (22) for m = 0.

Equations (22) and (23) are independent of the shapes of the vol-

umes. However, vD and vAB (and thus x and y) may in general be hard

to determine. For spherical particles, a useful estimate is obtained

by assuming a constant (average) interaction energy between the

particles (Fig. 2). In this case, the distance distribution between

overlapping spheres is p(r) ∝ r2, yielding an average overlap of

vD/8 and, hence, y = x · 15/8. For the general case, it is impor-

tant to realize that by choosing a criterion to define the dimer state,

for example a distance cut-off, one implicitly determines the dimer

volume, vD. It is thus also possible to determine Vm numerically,

without prior knowledge of vD or vAB by placing N non-interacting

particles in a volume through a Monte Carlo run, as is demonstrated

in section “Molecular Dynamics Simulations”.

Limiting Cases

It is noteworthy to consider the case of moderately large N and low

concentrations (i.e., NvD ≪ v and, therefore, x < y ≪ 1). In this

case, using
(

N

m

)

≈ Nm/m! and expanding the logarithm of the result

to first order, eq. (23) simplifies to

Vm ≈ vN (NANBvD/v)m

m!
e− 1

2
N2vD/v. (24)

Combining eq. (24) with eqs. (16) and (21), after proper normaliza-

tion, a Poisson distribution follows for the probabilities of finding

m dimers:

Pm =
λme−λ

m!
, (25)

with

λ = NANB

vD

v
e−G∗/kBT . (26)

Journal of Computational Chemistry DOI 10.1002/jcc



Determining Equilibrium Constants for Dimerization Reactions from MD Simulations 1923

For very large N , eq. (23) can be approximated by a Gaussian

function in m of width m1/2 and with a maximum at m = mmax given

by

mmax

(NA − mmax)(NB − mmax)
=

vD

v
e−G∗/kBT . (27)

Because the relative width of this function tends to zero for large

m, and with [A] = (NA − m)/(NAvv), [B] = (NB − m)/(NAvv), and

[AB] = m/(NAvv), the law of mass action is readily recovered,

Ka =
[AB]

[A][B]
= vDNAve−G∗/kBT . (28)

Ka from Counting and Error Estimate

The above framework enables to determine Ka from the number of

dimers and monomers observed during a simulation.

For N = 2, eqs. (17) and (21), and using eqs. (22) and (23), yield

n1

n0

≈
P1

P0

=
V1

V0

e−G∗/kBT =
1

v/vD − 1
e−G∗/kBT , (29)

or

G∗ = −kBT ln

[

n1

n0

(

v

vD

− 1

)]

, (30)

where n1 and n0 are the number of snapshots from the trajectory

containing one dimer or two monomers, respectively. As can be seen,

for simulation volumes v that are small compared to the molecular

volumes vD, an estimate for the latter is required. The association

constant is then obtained by combining eqs. (28) and (30),

Ka = NAv

n1

n0

(v − vD). (31)

For the general case of N particles, proceeding along similar

lines, eq. (17) serves to relate the average number of dimers 〈m〉 to

G∗. Hence, G∗ can be obtained from the dimer frequencies observed

in a simulation of few particles — either via the second order

approximations eqs. (22) and (23), or via numerical integration, for

example, through Monte Carlo approaches, as demonstrated further

below.

Moreover, simulations with N > 3 provide an independent

approach to calculate G∗: For the number nm of snapshots from

the trajectory containing m dimers, eqs. (17) and (21) yield

nm

n0

≈
Pm

P0

=
Vm

V0

e−mG∗/kBT . (32)

Therefore, the quantity

gm = kBT ln
n0Vm

nmV0

(33)

should satisfy gm = mG∗, that is, be proportional to m. Plotting gm

as a function of m thus provides the excess free energy per dimer

G∗ as the slope, and the plot yields a straight line only for properly

chosen vD.

Finally, error estimates are readily obtained from a Bayesian

approach by considering the conditional probability

P(G∗′|n0, n1, n2, . . .) ∝ P(n0, n1, n2, . . . |G∗′) · P(G∗′) (34)

≈ P(n0, n1, n2, . . . |G∗′) · 1 =

min(NA ,NB)
∏

m=0

[

Vme−mG∗′/kBT

∑

k Vke−kG∗′/kBT

]ñm

.

(35)

Here, a uniform a priori probability P(G∗′) for the dimer interac-

tion free energy is assumed, and ñm = nm · !t/tc is the effective

(i.e., statistically independent) number of snapshots containing

m = 0, 1, 2, . . . dimers. Several methods to determine this number

are available, which critically determines the obtained error esti-

mate, for example, correlation analysis,20–22 block averaging,23, 24

and bootstrap analysis.25, 26 For the test simulations presented below,

the statistically independent number of snapshots is estimated from

the average time tc between collisions relative to the time spacing

!t of snapshots in the trajectory.

This probability distribution serves to calculate G∗ and an

estimate of its statistical uncertainty σG∗ via

G∗ =

∫ ∞

−∞

G∗′P(G∗′|n0, n1, n2, . . .)dG∗′ (36)

and

σ 2
G∗ =

∫ ∞

−∞

(G∗′ − G∗)2P(G∗′|n0, n1, n2, . . .)dG∗′. (37)

An example python program is provided in the Appendix.

Resolving the Seeming Contradiction

We have shown above that for dilute systems of two dimerizing

molecules, the Boltzmann approach, !G ∝ ln P1/P0 [eqs. (12)

and (13)], yields correct free energies, whereas direct application

of the law of mass action provides wrong results. Nevertheless,

as the above results show, the law of mass action can be derived

from the Boltzmann approach and is in this sense compatible — as

must be. What, then, is wrong with the expression !G ∝ ln P1/P2
0

suggested by the law of mass action? As we will show in the fol-

lowing, both approaches are in fact correct; however, to apply the

law of mass action to simulations of, for example, only two dimer-

izing molecules requires a careful consideration of the relevant

thermodynamic ensembles.

To demonstrate this, we again consider a two-particle MD sys-

tem, and define the concentrations [A], [B], and [AB] from the

respective probabilities,

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 3. Two different ensembles are considered. Using dimerization

frequencies obtained from an MD simulation of two molecules in a peri-

odic box implicitly assumes an ensemble (a) consisting of replicas of

the (microscopic) simulation system. Accordingly, the molecules cannot

interact across the boxes [the configurations in (a) represent snapshots at

different time points, not periodic boxes]. Straightforward application

of the law of mass action, in contrast, refers to a macroscopic sys-

tem of molecules (b), which can all form dimers with each other. As

a consequence, the two ensembles generate different monomer/dimer

ratios.

[A] =
NAP0

veff NAv

, (38)

[B] =
NBP0

veff NAv

, (39)

and

[AB] =
NABP1

veff NAv

, (40)

where, for our two-particle system, N = 2, NA = NB = NAB =

1, and veff is an appropriate effective volume. Inserting these

concentrations into the law of mass action yields the puzzling result

Ka =
[AB]c∅

[A][B]
=

P1

P2
0

c∅NAvveff . (41)

Note, however, that it has not yet been defined how veff relates to

the volume v of the simulation box. In contrast to what is saliently

assumed by the above application of the law of mass action in

eq. (41), the MD ensemble does not represent a (macroscopic) vol-

ume veff = v · N/2 containing N interacting molecules (Fig. 3b).

Rather, it is an ensemble of N/2 simulation systems (Fig. 3a), that

is, N/2 separate (periodic) boxes, each of volume v and contain-

ing two molecules. The crucial difference is that molecules from

different boxes can never dimerize and, thus, the association rate,

k+, differs for the two ensembles. Since the dissociation rate, k−, is

unaffected, and Ka ∝ k+/k−, the equilibrium concentrations also

differ for the two ensembles. In particular, the time-averaged frac-

tion P0 of molecules in the monomeric state obtained from the MD

simulation is, generally, not equal to the ensemble fraction expected

for the macroscopic volume.

The two different ensembles can be reconciled by compensating

for the fact that for each molecule within the N/2 MD boxes, a

dimerization partner is available only during a fraction P0 of the

time. This is achieved by decreasing the effective volume by this

factor, i.e., veff := P0vN/2 (note that properly correcting P0 instead

of veff yields the same results). Inserting this expression into eq. (41)

recovers eq. (13), thus resolving the apparent contradiction.

Molecular Dynamics Simulations

We carried out equilibrium MD simulations to demonstrate how the

above framework can be applied to obtain association constants from

simulations. Our simulation systems comprised of N van der Waals

particles in a box, with N ranging from 2 to 64. N/2 of the particles

were considered to be of type A and N/2 of type B, respectively

(for uneven N , there was one excess A particle). The systems were

simulated within periodic boundary conditions at constant volume

using the Gromacs (v. 4.0.5) simulation package.27 The temperature

was kept constant using stochastic temperature coupling with an

inverse friction coefficient of 5 ps. The neighbor list was updated at

every integration time step, which was set to 50 fs. Test simulations

with 10 fs and 20 fs integration time steps yielded identical results

within the statistical errors. The particles had a mass of 72 amu and

were interacting through a Lennard-Jones 6-12 potential

VLJ(r) = 4ǫ

(

(σ

r

)12

−

(σ

r

)6
)

, (42)

with σ = 0.47 nm and ǫ = 4 kJ mol−1. The potential was smoothly

shifted to zero between 0.9 and 1.2 nm. For each N , we studied three

different concentrations, corresponding to a volume per particle of

v/N = 27, 54, and 108 nm3, respectively. Using these volumes,

and at the simulation temperature of 298 K, the systems are in the

gaseous state.

To obtain comparable statistics for a given computational cost for

the different systems, each simulation was carried out for 64/N µs

of simulation time. For example, the simulation system with N = 2

particles was simulated for 32 µs, whereas the simulation time for

the system with N = 64 particles was 1 µs. These simulation times

are long enough to have sufficiently many (i.e., thousands) of dimer

association / dissociation events.

To obtain Ka from the simulations, the number of particles A

within a distance rc of any particle B was counted along the trajectory

using the g_mindist tool of Gromacs. Subsequently, the obtained

set of contacts was filtered for higher-order oligomers, which were

discarded in order to not erroneously count them as dimers (the aver-

age number of particles in higher order oligomers was less than 1%,

even at the highest concentration used). The dimer cut-off distance

rc = 0.7 nm was chosen such that the dimer peak observed in the

radial distribution function is included. We did not investigate the

dependence of Ka on the chosen dimer cut-off rc,28, 29 as our aim

here was to compare different approaches for the calculation of Ka

using the same cut-off.

Using the final (filtered) set of dimer contacts, G∗ and its sta-

tistical uncertainty σG∗ were calculated using the above Bayesian

approach [eq. (36) and eq. (37); see Appendix for an example

python program]. To estimate the configuration space volumes,

we used both the analytic approximation [eq. (23)] and a Monte

Carlo approach (see below), which is numerically exact. Finally,

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 4. Association constant Ka obtained from counting the snap-

shots containing m dimers and N − 2m monomers in equilibrium MD

simulations of a van der Waals gas. Systems with N = 2, 3, 4, 5, 6,

7, 12, 32, and 64 particles were simulated at volumes v/N = 27, 54,

and 108 nm3, respectively (black, red, and green curves, respectively);

statistical errors were estimated using Bayesian statistics. The solid hor-

izontal line gives Ka as obtained from integrating over the bound and

unbound parts of the radial distribution function [eq. (44)]; here, the sta-

tistical error (dashed lines) is the difference between the Ka’s obtained

from separately analyzing the two halves of the trajectory.

the equilibrium constant was calculated from G∗ using the standard

state form of eq. (28),

Ka =
vD

v∅
e−G∗/kBT , (43)

where v∅ = (c∅NAv)
−1 is the (molecular) standard volume

(1.66 nm3) and vD = 4/3 π r3
c (Fig. 2). A uniform distribution

P(G∗′) was used as a prior. To estimate the number of statistically

independent snapshots, we calculated the average time between par-

ticle collisions according to tc = σ−1
c c̄−1/2 v/N , with collision cross

section σc = π (2σLJ)
2 and mean velocity c̄. We obtained tc ≈ 25,

50, and 100 ps for the systems with v/N = 27, 54, and 108 nm3,

respectively.

Results and Discussion

Figure 4 summarizes the results obtained for the three different par-

ticle concentrations studied. The association constant Ka should be

independent of the number of particles and of the volume of the sim-

ulation box. Figure 4 shows that this is indeed the case: Averaged

over all particle numbers N , the obtained association constants (±

std. dev.) are 1.730 ± 0.014, 1.748 ± 0.009, and 1.752 ± 0.011 for

v/N = 27, 54, and 108 nm3, respectively. Furthermore, the statis-

tical errors (bars in Fig. 4) turn out to be independent of N , due to

the comparable simulation times of 64/N µs per system.

As a check for the calculated Ka, Figure 5a shows a plot of

gm versus m. The linear dependence suggested by eq. (33) holds,

and the fit yields G∗ = −0.6951 kBT (Ka = 1.734), in excellent

agreement with Ka = 1.733 ± 0.008 obtained from counting the

number of dimers in the simulation with N = 64, v/N = 27 nm3

(Fig. 4). Figure 5b confirms that for the simulated systems with

moderately large N , the probabilities of finding m dimers follow a

Poisson distribution, as derived above, eq. (25).

As another, independent check for Ka, we integrated over the

bound and unbound parts of the radial distribution function g(r), as

obtained from the simulation with N = 2 particles, according to

Ka =
4πR3

∫ rc

0
r2g(r)dr

3v∅
∫ R

rc
r2g(r)dr

. (44)

The thus obtained equilibrium constant of Ka = 1.74 ± 0.02 (solid

line in Fig. 4) also agrees with the result from counting.

To assess the accuracy of the analytical second-order approxi-

mation for the configuration space volumes Vm, eq. (23), we placed

N = NA + NB non-interacting particles in a periodic 3-dimensional

volume through Monte Carlo (MC) sampling, and counted the num-

ber of snapshots containing m dimers and N − 2m monomers. As

above, a dimer was defined by a distance criterion between any two

Figure 5. (a) Plot of gm over m, obtained from the simulation with N = 64 particles in a box with volume

v/N = 27 nm3. The slope of the linear fit (solid line) yields the same G∗ as obtained from counting. (b) The

bars show the distributions of snapshots containing m dimers for the simulation systems with 12, 32, and

64 particles, respectively (v/N = 27 nm3). They follow the corresponding Poisson distributions, eq. (25),

plotted as lines. The individual distributions are slightly shifted along the m-axis for clarity.
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Figure 6. Comparison of dimer/monomer frequencies as a function

of particle concentration, obtained from the second-order analytical

approximation eq. (23) (dashed lines) and Monte Carlo sampling (solid

lines). Results are shown for N = 2, 3, 4, 5, 6, 7, 12, 32, and 64 (bottom

to top). Statistical errors are shown as side lines.

particles A and B. Trimers and higher-order oligomers were dis-

carded. The volume v and particle number N were systematically

varied.

Figure 6 shows that at low concentrations (NvD/v ≤ 0.1),

eq. (23) is a very good approximation for the ratio of dimer/monomer

configuration space volumes, particularly for small N . For higher

concentrations 0.1 < NvD/v < 0.4, eq. (23) predicts a slightly

too low ratio, whereas for even higher concentrations, the analyt-

ical approximation might slightly overestimate Vm/V0, at least for

N ≤ 7. For N = 2, the results obtained from eq. (23) and from

MC sampling agree along the entire concentration range, because

the analytical formula is exact in this case: The dimer configuration

space volume Vm only contains terms beyond the second order for

N > 2 (the monomer configuration space volume V0 lacks higher

order terms). In summary, from Figure 6 we conclude that for the

diluted systems studied here (0.01 < NvD/v < 0.05), the second

order analytical approximation Eq. (23) yields sufficiently accu-

rate estimates of the configuration space volumes, and no further

concentration-dependent correction is required.

Summary and Conclusions

We presented a derivation of the thermodynamics of dimerization

reactions, and laid out how to calculate equilibrium constants and

corresponding free energies from simulations of a limited num-

ber of dimerizing molecules. Using thermodynamic arguments,

we have shown that naive application of the law of mass action,

eq. (41), yields wrong results in particular for simulations of only

few dimerizing molecules, and that correct results are obtained

via the Boltzmann factor of the ratio of the observed frequencies,

eq. (13). The difference between the two approaches can be signifi-

cant, in particular if P0 ≪ 1 of course, as is the case for the systems

studied in Ref. 12, 18.

We further derived through statistical mechanics the thermody-

namics of dimerization reactions of any number of particles, and a

Bayesian statistics approach to estimate equilibrium constants and

free energies with their statistical errors from simulations. Finally,

we showed that the two approaches can be reconciled by carefully

considering the different underlying thermodynamic ensembles. We

applied our approach to extract equilibrium constants from molec-

ular dynamics simulations of systems containing different numbers

of dimerizing particles.

One may ask whether there is an optimal system size to obtain

statistically accurate free energies of dimerization from MD sim-

ulations through direct counting, given a certain available amount

of computer time. From our results, we would argue in favor of

simulating systems with N = 2 dimerizing molecules, for the fol-

lowing reasons. First, eq. (23) is exact for the two-particle case, thus

no concentration-dependent correction needs to be applied. Second,

no trimers (or higher order oligomers) can occur, thus simplifying

the analysis. Third, the computer time grows at least linearly with

N , while our results show that simply having a larger number of

molecules in the simulation box does not per se improve the sta-

tistical accuracy as compared to a simulation with two dimerizing

molecules and correspondingly longer sampling time. For example,

it would be better to carry out, for example, four independent simu-

lations with N = 2 molecules instead of one single simulation with

N = 8, as the latter would suffer from non-optimal parallel scaling.

Another question of practical importance is the choice of the

simulation volume. One might argue that a large volume is desir-

able, because in that case concentrations can be used instead of

activities, and second order effects (and thus the dimerization vol-

ume vD) can be neglected. However, such an approach would suffer

from a low statistical accuracy due to the small number of associa-

tions/dissociations. In addition, for simulations with explicit solvent,

one seeks to reduce the number of solvent molecules as much as

possible, since their treatment is computationally usually the most

expensive part of the simulation. This discussion also underscores

the importance of including vD within our theory for obtaining free

energies from counting in MD simulations.

Finally, we would like to discuss the advantages of running

extended equilibrium simulations over biased simulations, such as

umbrella sampling. From the latter, Ka can be calculated from the

obtained potential of mean force Vmf (r) according to eq. (44), with

g(r) = exp(−Vmf (r)/kBT). This approach may seem more straight-

forward. However, it has the disadvantage that the system needs to

be driven along a pre-defined reaction coordinate. This may be, for

example, distances, angles, dihedrals, or (linear) combinations of

these — even curvilinear coordinates may be required in certain

cases. In general, the definition of a proper reaction coordinate may

not always be straightforward and, furthermore, involve the deriva-

tion of Jacobian corrections that can become cumbersome for more

complicated reaction coordinates. In such cases, it appears more

convenient to run an unbiased simulation and choose the parame-

ters to define the different states in an a posteriori manner during

the analysis.
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Appendix

Example python program using Bayes statistics for calculating

G∗ from an MD simulation. The configuration space volumes are

estimated using eq. (23).

from numpy import *

from math import factorial

def VM(na,nb,m,v,vd,y=None):

’’’Returns VM as a function of #particles (na,nb),\

#dimers(m), volume(v), dimer volume(vd), excl.volume(y)’’’

x = vd/(1.0*v)

if y == None: y = 15.*x/8.

n = na + nb

prod=1.0*factorial(m)*v**(1.0*n)

prod=prod*factorial(na)/(factorial(m)*factorial(na-m))

prod=prod*factorial(nb)/(factorial(m)*factorial(nb-m))

prod=prod*x**m

for j in range(1,m):

prod=prod*(1.0-y*j)

for j in range(1,n-2*m):

prod=prod*(1.0-m*y-x*j)

return prod

def bayes(vmarr,nf,na,nb,v,vd):

’’’A probability distribution for Gd is calculated, \

given vmarr (array containing the # monomers,\

single dimers (m=1), double dimers (m=2), etc \

for every sample set, e.g. obtained with g_mindist) \

and nf, the effective nr of samples (dt/tcoll), and na/nb.’’’

# Define the range and resolution of Gd

gdmax = 2.; res=2000

gdarr=2*gdmax*.arange(res)/(1.0*res)-gdmax

#Choose a flat prior

parr=ones(res)/(1.0*res)

for n in range(len(vmarr)):

for i in range(0,res):

norm =0.0

max_M=len(vmarr[n,:])

for k in range(0,max_M):

norm = norm + VM(na,nb,k,v,vd) * exp(-k*gdarr[i])

prod=1.0

for m in range(0,max_M):

VMc=VM(na,nb,m,v,vd)

prod=prod*(VMc*exp(-m*gdarr[i])/norm)**(1.0*nf*vmarr[n,m])

parr[i]=prod*parr[i]

parr = parr/(sum(parr*gdarr))

gd = sum(gdarr * (parr/sum(parr)));

print gd

gdsigma = sum((gdarr -gd)**2 * (parr/sum(parr)));

print ’gd = %.8f +/- %.8f’%(gd,sqrt(gdsigma))
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