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Protein Thermostability Calculations Using Alchemical Free Energy
Simulations
Daniel Seeliger and Bert L. de Groot*
Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
ABSTRACT Thermal stability of proteins is crucial for both biotechnological and therapeutic applications. Rational protein
engineering therefore frequently aims at increasing thermal stability by introducing stabilizing mutations. The accurate prediction
of the thermodynamic consequences caused by mutations, however, is highly challenging as thermal stability changes are
caused by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchem-
ical free energy simulations, such as free energy perturbation or thermodynamic integration, to calculate free energy differences
with relatively high accuracy. In this article, we present an automated protocol for setting up alchemical free energy calculations
for mutations of naturally occurring amino acids (except for proline) that allows an unprecedented, automated screening of large
mutant libraries. To validate the developed protocol, we calculated thermodynamic stability differences for 109 mutations in the
microbial Ribonuclease Barnase. The obtained quantitative agreement with experimental data illustrates the potential of the
approach in protein engineering and design.
INTRODUCTION
Rational engineering of proteins (1) to optimize a natural

protein for a specific task (e.g., to achieve higher thermal

stability, altered substrate specificity, or solubility) is one

of the most exciting tasks in biotechnology. This is particu-

larly true for enzymes. Two recently published pioneering

articles describe the design of novel enzymes which catalyze

chemical reactions that are not known to be catalyzed by any

naturally occurring enzyme (2,3). Additionally of great

industrial importance is the optimization of enzymes toward

higher efficiency and thermostability, to enable them to be

used as detergents or for the thermostabilization of thera-

peutic proteins (4–9). Most of the successful applications

of rational protein engineering, so far, have been built on

knowledge-based scoring functions (10,11), implicit solvent

models (12,13), or are SVM-based (14); however, molec-

ular-dynamics-based methods utilizing explicit solvent

have come of age and are developing into a high accuracy

alternative with great potential. Although the computational

demand of calculating the free energy difference of a single

point mutation is several orders-of-magnitude larger than

with a knowledge-based scoring function, physics-based

methods do have an advantage. They can be applied for

those cases where a large database is not available for the

derivation of statistical potentials.

Enzymes are interesting catalysts for enantioselective

synthesis in chemical industry (15–20). However, their

natural environment, water, is often a poor solvent for

organic molecules. Many enzymes retain both structure

and some functionality in organic solvents (21,22). Rational

optimization under these conditions, however, is limited,
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with scoring functions based on statistical potentials. Here,

physics-based methods should work with the same accuracy

as in aqueous solution and open the possibility to rational

protein engineering in nonnatural environments.

In a recent review, Potapov et al. (23) compared six estab-

lished protocols and assessed their ability to predict the

thermodynamic consequences of point mutations. Their

work revealed that, although the assessed methods are, on

average, capable of predicting the correct trend, the accuracy

of the best protocol did not exceed a correlation coefficient of

0.6. These findings indicate that the development of more

accurate methods is highly desirable, particularly when

considering that free energy changes resulting from point

mutations are rather small in most cases.

Among the simulation protocols that aim at calculating

free energy differences, perturbation approaches (24–27)

have grown in popularity over the last years. Here, the

Hamiltonian H is coupled to a parameter l which is used

to drive a system from a state A (l ¼ 0), here corresponding

to the Hamiltonian of the wild-type protein, to a state B

(l ¼ 1), corresponding to the Hamiltonian of the mutant.

Free energies can either be computed by using so-called

equilibrium methods such as free energy perturbation (28)

or thermodynamic integration (TI) (29), or by using non-

equilibrium methods such as those based on the work of

Jarzynski (30,31) and Crooks (32). Although the simulation

protocols and analysis methods differ substantially, their

initial setup is identical. While l is switched from 0 to 1

the system must evolve from state A to state B, correspond-

ing, e.g., to an amino acid mutation, thereby changing intra-

molecular and intermolecular interactions. Depending on

the particular type of mutation, atoms must be annihilated

(decoupled from the system), or dummy atoms turned into

real atoms. Hence, a topology for such a simulation has to
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ensure that all bonded and nonbonded interactions are

correctly switched between the two states.

In this article, we present a novel library (to our knowl-

edge) that contains hybrid residues for all amino acid muta-

tions except proline mutations, each of them representing

different amino acids in state A and state B, respectively.

This protocol allows us to set up mutation free energy calcu-

lations in an automated way, thereby enabling the use of

perturbation-based methods for screening of large mutation

databases, and hence, computational protein engineering.

To validate the approach, we calculated folding free energy

differences for 109 point mutations in the microbial Ribonu-

clease Barnase, and compare the results with experimentally

determined values.
METHODS

Construction of hybrid residues

We have compiled a database of hybrid residues that contain all possible

mutations involving naturally occurring amino acids, except for proline.

For residues with alternating protonation states, we treated each protonation

state as a separate residue, which leads to a total number of 24 residues and,

hence, a database of 552 hybrid residues (see Fig. 1). The database consists

of coordinates for each hybrid residue and force-field parameters of the

AMBER99sb force field (33) for both states. To enable an automated setup

of free energy calculations, we developed two Python-scripts based on

the PYMACS package (http://wwwuser.gwdg.de/~dseelig/pymacs.html)

which 1), replace residues in a structure file by appropriate hybrid residues

from the database; and 2), modify GROMACS topology files to ensure the

correct force field parameters for each state. The scripts have been exten-

sively tested for all possible mutations, and they allow the straightforward

setup of free energy simulations.

Free energy calculations

To test our mutation library, we calculated folding free energy differences

for 109 point mutations at 64 different positions in the well-studied

microbial Ribonuclease Barnase (Protein DataBank No. 1bni, 110 residues).

All simulations were carried out with GROMACS-4.0 (34,35), the

AMBER99sb force field (33), and the TIP3P water model (36). As simula-
FIGURE 1 Hybrid residues. A database of hybrid residues has been

compiled. A script replaces one or more residues in a structure file by hybrid

residues that represent one amino acid in state A and another amino acid in

state B.
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tion protocol, we chose nonequilibrium fast-growth thermodynamic integra-

tion (FGTI) runs. Therefore, for each mutation, equilibrium ensembles at

l¼ 0 and at l¼ 1 are required. The simulation system consists of the protein

solvated in a dodecahedron box with z7400 water molecules and NaCl was

added to achieve a 150 mM solution. Both the A- and B-states were sampled

for 10 ns using a stochastic dynamics integrator at 298 K and constant

pressure of 1 atm using the Parrinello-Rahman barostat (37). Electrostatic

interactions were calculated at every step with the particle-mesh Ewald

method (38), and short-range repulsive and attractive dispersion interactions

simultaneously described by a Lennard-Jones potential with a cutoff of

1.1 nm and a switching function that was used between 1.0 and 1.1 nm.

Dispersion correction for energy and pressure was applied. The SETTLE

(39) algorithm was used to constrain bonds and angles of water molecules,

and LINCS (40) was used for all other bonds, allowing a time step of 2 fs.

From these ensembles, 100 snapshots from the last 8 ns were taken and

short simulations were performed in which l was changed from zero to

one, or from one to zero, respectively. For the fast-growth TI simulations,

we used a double-precision version of GROMACS-4.0 with a leap-frog

integrator and a velocity-rescaling thermostat (41). Energy calculations,

timestep, and pressure coupling was analogous to the equilibration runs.

To account for atomic overlaps occurring close to l ¼ 0 and l ¼ 1,

soft-core potentials were used for both electrostatics and Lennard-Jones

interactions as implemented in GROMACS-4.0 with a ¼ 0.3, s ¼ 0.25,

and a soft-core power of 1. The complete switching from l ¼ 0 to l ¼ 1

was done within 50 ps (note that we did not separate the electrostatic and

Lennard-Jones part) and derivatives of the Hamiltonian with respect to l

were recorded at every step. Free energies were calculated from the work

distributions obtained from integration according to

W ¼
Z l¼ 1

l¼ 0

dHl

dl
dl

and calculating the intersection of the forward and backward work distribu-

tions according to the Crooks-Gaussian-intersection method as described in

Goette and Grubmüller (42). Folding free energy differences were calculated

from the difference of the free energies between the reference (unfolded)

simulations and the free energies computed for the mutations in the folded

protein according to the thermodynamic cycle shown in Fig. 2.

Reference state

The unfolded state of a protein chain is difficult to model, as no single

unfolded conformation exists. In previous work (43), unfolded states have

been approximated with short peptides that turned out to produce reasonable

results. Instead of using the particular sequence around the amino acid of

interest, we chose GXG peptides, where X is the amino acid of interest,

with capped termini as a reference state. This has the advantage that the

reference state of a particular mutation only has to be calculated once, and

then, upon calculating all possible mutations, these can be stored and used
FIGURE 2 Thermodynamic cycle. The unfolded state was modeled with

capped GXG peptides (X ¼ any amino acid). From the thermodynamic

cycle, the folding free energy difference DDG ¼ DG3-DG2 between the

wild-type protein and the mutant can be calculated via DG1–DG4.

http://wwwuser.gwdg.de/~dseelig/pymacs.html
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as a reference database. Except for the size of the simulation system, which

consists of the peptide, a water box with z1000 water molecules, and

150 mM NaCl, the simulation details were the same as described for the

folded state simulations.

RESULTS

Experimentally determined free energy changes were taken

from the ProTherm database (44), and contain urea and

thermal unfolding data taken from the literature (45–60). The

protein stability differences DDG were calculated accord-

ing to DGunfolded-DGfolded, as shown in the thermodynamic

cycle in Fig. 2. Therefore, destabilizing mutations have

a negative DDG. In Fig. 3, a scatter plot of the experimental

values versus the calculated values is shown. As can be

seen, a remarkable correlation of 0.86 and an average absolute

error of 3.31 kJ/mol are obtained. A quantity of 71.6% of

the calculated free energy differences are within 51 kcal/mol

of the experimental values. Experimental and calculated

values are also available in Table S1 of the Supporting

Material.

It should be noted that in their assessment of computa-

tional methods, Potapov et al. (23) also calculated an exper-

imental-versus-experimental correlation for mutations of

which more than one experimental value is available. They

obtained a correlation of 0.86 with an average unsigned error

of 1.84 kJ/mol.

Potapov et al. (23) furthermore showed that the predictive

power of their tested protocols is much better for mutations

into Alanine than for mutations into other amino acids. We

therefore split our dataset into Alanine mutations and non-

Alanine mutations, and assessed the performance difference.

Fig. 4 A shows scatter plots for Alanine mutations, non-

Alanine mutations, and Glycine-mutations. The results

show that the accuracy for Alanine mutations is only slightly

better than for non-Alanine mutations (74.2% vs. 70.5%

within 51 kcal/mol). For mutations into Glycine, the perfor-

mance drops to 60.9%. However, from the calculated dataset

the most destabilizing mutations (DDG < �20 kJ/mol) are

Glycine mutations. Hence, it remains to be determined

whether the method in general performs worse with Glycine
mutations, or with largely destabilizing mutations (which

may also result in conformational changes that are not

adequately sampled within the simulation time).

In addition, the type of secondary structure does not

significantly affect the prediction accuracy. In Fig. 4 B, a

discrimination is presented for residues that are located in

helices and sheets and for those residues with no secondary

assignment according to DSSP (61). The highly destabilizing

Glycine mutations, which are systematically predicted to

be more destabilizing than experimentally observed, are all

located in b-sheets. They therefore contribute significantly

to the poor performance of only 59.1% of predictions

within 51 kcal/mol for b-sheet residues, in contrast to

79% for helical residues and 72% for residues with no

DSSP assignment.

A notable dependence on the predictive power of the

presented method, however, is observed with respect to the

‘‘buriedness’’ of the mutated residue. In the central picture

of Fig. 4 C, the structure of Barnase is shown with color-

coded residues. Residues colored in blue are considered

well packed according to a packing analysis used in

tCONCOORD (62). Residues colored in red are regarded

as loosely packed. This is only a rough classification that

basically separates the protein into core residues and surface

residues. However, it can be seen that the accuracy of calcu-

lated free energy changes is significantly better (78.4%

within 51 kcal/mol) for surface residues than for core resi-

dues (65.5%). These findings are most likely caused by the

enhanced difficulty of finding the correct side-chain place-

ment within the protein core upon mutation, in comparison

to surface residues.

Finally, we assess the dependence of the prediction accu-

racy on the size of amino acids. Therefore, amino acids are

separated into small- and medium-sized types, which are

composed of Glycine, Alanine, Serine, Threonine, Valine,

Histidine, Asparagine, and Cystine, and big amino acids, to

which residues Phenylalanine, Leucine, Isoleucine, Trypto-

phane, Tyrosine, Glutamine, and Methionine were assigned.

Fig. 4 D shows the scatter plots for mutations of small-

medium amino acids into other small-medium amino acids,
FIGURE 3 Folding free energy differences for Barnase

mutations. (Left) Scatter plot of experimental values versus

calculated values. The two thin lines parallel to the diag-

onal line represent deviations of 51 kcal/mol. (Right)

Deviation from experimental values.

Biophysical Journal 98(10) 2309–2316



FIGURE 4 Assessment of calculation accuracy. (A) Alanine, non-Alanine, and Glycine mutations; (B) dependence on secondary structure; (C) dependence

on packing properties; and (D) dependence on size.
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mutations of small-medium amino acids into big amino acids

(or vice versa), and the correlation for mutating big amino

acids into other big amino acids.
Biophysical Journal 98(10) 2309–2316
The results show that mutating a big amino acid into

another big amino acid is the most challenging case. This

is reasonable if one keeps in mind that two big amino acids
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are not necessarily similarly shaped. That is, due to its

planarity, an aromatic residue can occupy a narrow pocket

that is excluded for an aliphatic side chain. Accordingly,

a pocket that tightly fits to an aliphatic side chain is not

capable of accommodating an aromatic side chain without

major rearrangements, and it might not be sampled within

the timescales used for the presented protocol.

Because the computational demand of perturbation-based

free energy calculations is quite substantial, we further as-

sessed the dependence of the accuracy on the total simulation

time. For the data shown above, a total simulation time of

30 ns per mutation was employed (26 ns, if we neglect the

2-ns equilibrations that were not used for the actual calcula-

tions). Ten nanoseconds were used for both of the two

sampling runs at l ¼ 0 and l ¼ 1, and 2 � 100 � 50 ps

used for the FGTI runs. Fig. 5 shows the accuracy as a func-

tion of the total simulation time (the equilibration time was

not taken into account). The ratio of sampling time and the

number of FGTI runs is thereby kept constant. Hence, a total

simulation time of 5 ns corresponds to 1.5-ns sampling for

both states and 2 � 20 � 50 ps ¼ 2 ns for the FGTI runs.

It is remarkable that with only 20% of the computational

effort we already obtain an accuracy of 65% of the predic-

tions within 51 kcal/mol. It can furthermore be seen that

the accuracy increases with the computational effort, but

does not seem to have reached convergence, at a total simu-

lation time of 26 ns per mutation. We therefore expect that

more computational effort would result in a further increase

of the accuracy.
FIGURE 5 Accuracy versus total simulation time. With only 20% of

the computational effort, an accuracy of >65% of the predictions

within 51 kcal/mol is obtained. Convergence of the accuracy is apparently

not reached at 26 ns per mutation.
To test how the protocol performs with charged mutations,

we have added another set of 25 mutations involving a

change in the net charge. The results are shown in the left

graph of Fig. 6. As can be seen, the accuracy and the corre-

lation with the experimental data are significantly worse than

for electrostatically neutral mutations. Only 52% of the

calculated values are within 51 kcal/mol of the experi-

mental value and six of the 25 values (24%) deviate by

>10 kJ/mol. For comparison, for the set of neutral mutations,

only two of 109 mutations (1.8%) deviate by >10 kJ/mol

from the experimental value. A more detailed investigation

shows that the accuracy depends on the location of the

residue that is mutated. The right graph of Fig. 6 shows

that the deviation of the calculated free energy changes

from the experimental value as a function of the relative

solvent-accessible surface area of the residue (relative means

compared to the solvent-accessible surface area of the

residue in an extended chain). As can be seen, free energy

changes of mutations at highly solvent-exposed positions

are well predicted, whereas mutations of partly buried

residues are not.
DISCUSSION

Free energy calculations can be a major step forward in

computational protein design. The results shown here indi-

cate that free energy calculations allow the most accurate

computational protein stability predictions of mutants among

methods available to date. However, the increase in accuracy

does not come for free. For each mutation, we performed

30 ns of simulation time for both the folded state and the

unfolded reference state. Hence, for the 109 mutations pre-

sented here, a total simulation time of >3 ms for both states

was required which, even for a small protein like Barnase,

requires substantial computational resources. In practical

protein design and engineering applications, however, thou-

sands of possible mutations usually need to be scanned. This

implies that free energy calculation cannot be expected to

replace other methods that are based on fast optimization

algorithms (63), rotamer libraries (64), and scoring functions

(10,65,66). Despite these limitations, molecular-dynamics-

based, free energy calculations can certainly be regarded as

valuable extensions in terms of refinement and verification

of designed proteins. Moreover, both computational and

algorithmic advances render atomistic simulations in the

order of microseconds more and more tractable. In addition,

problems with limited complexity such as, e.g., Alanine

scans of proteins or protein-protein interfaces, can be readily

carried out using free energy calculations with more

moderate resources.

For 88% of the mutations used for this study, the predic-

tion whether the mutation results in a stabilizing or a destabi-

lizing effect is correct, and in only two cases did the protocol

predict a wrong tendency (a stabilizing effect of >3 kJ/mol

where the experimental DDG is <�3 kJ/mol). This is
Biophysical Journal 98(10) 2309–2316



FIGURE 6 Accuracy for mutations with a net charge

change. (Left) The accuracy for mutations which result in

a change of the net charge of the system is significantly

worse than for neutral mutations. Only 52% of the calcu-

lated values are within 51 kcal/mol of the experimental

value, and six of the 25 mutations deviate by >10 kJ/mol

(one data point is not shown). (Right) Dependence of the

accuracy to the relative solvent-accessible surface area.

Mutations at highly solvent-exposed positions are in favor-

able agreement with experimental data, whereas mutations

at partly buried positions are badly predicted.
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particularly remarkable if one considers that one of the two

states required for the calculation of the free energy differ-

ences, the unfolded state, is completely undefined and

crudely approximated by a tripeptide that does not even

share the sequence with the protein fragment under consider-

ation. These findings open the possibility for the compilation

of a database of reference values for all possible mutations.

For the mutations considered here, these reference values

are available online and in Table S2 and Table S3. Hence,

future protein-stability calculations do not require the calcu-

lation of both states, but only the calculation of the mutation

in the protein of interest.

Mutations involving a charge change should be inter-

preted with care. As the long-range electrostatic interactions

are calculated using particle-mesh Ewald with tin-foil

boundaries, an effect equivalent to a uniformly distributed

canceling charge is generated to compensate for the net

charge due to the charge mutation. For charge mutations at

highly solvent-exposed positions on the protein surface,

providing a high-dielectric environment for the mutation in

both the folded and unfolded (peptide) case we obtain

comparable accuracy to neutral mutations. In these cases,

the background charge effect performs well due to shielding

effects of the high-dielectric environment. For mutations in

a more heterogeneous environment as at partly buried posi-

tions, we see a distinct loss of accuracy that is most likely

due to an incorrect charge distribution.

For free energy calculations aiming at protein/ligand

interactions or protein/protein-interfaces, this limitation

might be overcome by simultaneously mutating an oppo-

sitely charged amino acid far from the interface or binding

site. However, for protein stability calculations, this is not

applicable, and alternatives need to be developed. Another

limitation arises from the requirement of equilibrated ensem-

bles of the native protein and the mutated protein. It is

heavily case-dependent whether a 10-ns trajectory (of which

snapshots from the last 8 ns were used as starting configura-

tions for the fast-growth TI calculations) will be sufficient to

serve as an approximation of a converged ensemble. Anal-

ysis of the presented data confirmed the trivial expectation

that ‘‘longer is better’’. However, with only 20% of the
Biophysical Journal 98(10) 2309–2316
computational effort, we already obtain an accuracy of

65% within 51 kcal/mol.

The data furthermore show that a total simulation time of

30 ns per mutation, as employed here, yields a high level of

accuracy. By investing more computational power, it is

expected to increase accuracy even further. It is evident

that special care needs to be taken for those cases involving

conformational changes that occur on longer timescales.

The work performed on the system while switching l from

zero to one depends heavily on the conformation from which

the FGTI simulation is started. Hence, if the distribution

of snapshots taken from the ensemble only covers a subset

of the conformational space in equilibrium or the relative

weights of different conformations deviate from those in

the true ensemble, the resulting work averages from which

the free energy differences are calculated will deviate

from the true averages. However, as the work values are

conformation-dependent, such behavior may be detected

when looking at the evolution of calculated work values

over the simulation time (of the equilibrium simulation).

Conformational changes usually result in a jump, indicating

that longer simulation time is required, while oscillation

around the mean indicates convergence.

A second aspect that needs to be taken into account is

that a modeled mutation does not necessarily represent an

equilibrium state. Whether this equilibrium state is reached

and adequately sampled within the simulation time depends

on the type of mutation and the magnitude of the resulting

free energy change. Highly destabilizing mutations, as for

some of the Glycine mutations in the presented dataset,

may cause changes in both the conformational flexibility

of the protein and the mean structure—therefore represent-

ing an additional challenge. Furthermore, mutations of

well-packed residues are difficult to predict. In our setup

we did not pay special attention to favorable positioning

of the inserted hybrid residue or to possible rearrangements

of neighboring residues. This may easily lead to an unfa-

vorable conformation that probably will not be corrected-

for by the simulation within the accessible time. For future

improvements of the method, we therefore consider the

utilization of rotamer libraries or established methods
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such as Rosetta (10) to obtain more realistic initial config-

urations.
CONCLUSION

We presented the development of a mutant library based on

the AMBER99sb force field and a computational framework

to carry out free energy calculations in an automated fashion

involving naturally occurring amino acids mutations (except

for proline). The library was applied to predict the effect of

109 point mutations on the thermodynamic stability in

microbial Ribonuclease Barnase. For 71.6% of the muta-

tions, the accuracy of the calculated free energy differences

was within 51 kcal/mol of the experimental value, and an

overall correlation of 0.86 was obtained. We furthermore

showed that GXG tripeptides with capped termini serve as

sufficient approximations of the unfolded state, enabling

the compilation of a reference database containing precom-

puted values for all possible amino acid mutations.

An initial version of this library is available online.

The library is expected to facilitate the setup of free energy

calculations for various applications, particularly for rational

protein engineering and design.
SUPPORTING MATERIAL

Four tables are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(10)00216-X.
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3. Röthlisberger, D., O. Khersonsky, ., D. Baker. 2008. Kemp elimina-
tion catalysts by computational enzyme design. Nature. 453:190–195.

4. Carter, P. J. 2006. Potent antibody therapeutics by design. Nat. Rev.
Immunol. 6:343–357.

5. Chennamsetty, N., V. Voynov, ., B. L. Trout. 2009. Design of
therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci.
USA. 106:11937–11942.

6. Ditursi, M. K., S. J. Kwon, ., J. S. Dordick. 2006. Bioinformatics-
driven, rational engineering of protein thermostability. Protein Eng.
Des. Sel. 19:517–524.

7. Korkegian, A., M. E. Black, ., B. L. Stoddard. 2005. Computational
thermostabilization of an enzyme. Science. 308:857–860.

8. Kumar, S., C. J. Tsai, and R. Nussinov. 2000. Factors enhancing protein
thermostability. Protein Eng. 13:179–191.

9. Marshall, S. A., G. A. Lazar, ., J. R. Desjarlais. 2003. Rational design
and engineering of therapeutic proteins. Drug Discov. Today. 8:212–221.

10. Rohl, C. A., C. E. Strauss, ., D. Baker. 2004. Protein structure predic-
tion using Rosetta. Methods Enzymol. 383:66–93.

11. Schymkowitz, J., J. Borg, ., L. Serrano. 2005. The FoldX web server:
an online force field. Nucleic Acids Res. 33(Web Server issue):
W382–W388.
12. Benedix, A., C. M. Becker, ., R. A. Böckmann. 2009. Predicting free
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