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Learning Important Features from 
Molecular Simulations

Abstract: Biomolecular simulations are intrinsically high dimensional and generate datasets of ever increasing size. Reducing the number of features in the dataset and gaining insight into the 
biophysical properties of molecular states is currently a big challenge that many scientists face on a regular basis. Following the recent years’ rising interest in machine learning methods there are now 
many powerful dimensionality reduction tools easily accessible, although such methods are often criticized to resemble black boxes and provide limited human-interpretable insight. In this study we 
demonstrate how a number of methods from supervised as well as unsupervised machine learning can learn ensemble properties from molecular simulations and provide easily interpretable metrics of 
what features are actually important. In order to show which methods perform best under different circumstances we first test the performance using a toy model designed to mimic real macromolecular 
behavior. Finally, we apply the methods to simulations of the β2 adrenergic receptor to gain insights into its activation mechanism and the effect of ligand binding. The results demonstrate how machine 
learning methods can produce valuable insights into properties of biomolecular states and we anticipate that our approach can be useful to aid many researchers in demystifying complex simulations.
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Applications to the β2 adrenergic receptor

Hallmarks of β2 activation include the outward movement of transmembrane helix 6 
(TM6), the collapse of the cavity around the highly conserved residue Asp792.50, as well 
as the twist of the conserved NPxxY motif at the bottom of TM7.

Multilayer Perceptron(MLP)
• Feedforward artificial neural network with fully connected layers. 
• Implementation from sklearn [1] with a stochastic gradient 

descent solver. 
• Important features can be derived using Deep Taylor 

Decomposition [2], a method originally derived for image 
classification. 

Unsupervised Learning

Restricted Boltzmann Machine 
(RBM)
• A generative stochastic neural 

network trained to maximize the 
likelihood of the data using a 
graphical model with a layer of 
hidden nodes connected to the 
input nodes. 

• Important features are identified 
using Deep Taylor Decomposition.

Autoencoder (AE)
• A generative neural network 

trained to reconstruct the 
features through a set of hidden 
layers of lower dimensionality. 

• Important features are identified 
using Deep Taylor 
Decomposition.

Learnings
• All methods identify that the G-protein binding site 

undergoes the most significant conformational change, 
especially TM6. 

• The importance profiles change upon increase of the 
number of clusters, revealing more features important for 
activation.

• Regarding the effect of ligand binding we see that there are 
important residues in the extracellular region close to the  
ligand binding site. 

• The corresponding input features are more strongly 
activated when a ligand is present. 

• There is also a strong signal in the G-protein binding site, 
which illustrates how it is allosterically coupled to the ligand 
binding site.

UNSUPERVISED RBM

Important residues identified by an RBM as 
an example of how unsupervised learning 
can help demystify molecular simulations. 
Least important residues are highlighted in 
blue and most important residues in red.

Random Forest(RF)
• Prediction is taken as the 

ensemble average of many 
decision trees. 

• Average relevance per feature is 
computed as the mean decrease 
impurity.

∑

Learnings
• Simply computing the KL divergence may perform well as long as the features are well chosen. 
• When using cartesian coordinates, KL performs poorly.
• More sophisticated machine learning methods (neural networks, random forests etc.) can 

successfully learn the important features without being as sensitive to the choice of coordinates.
• Regarding the unsupervised learning techniques, RBMs and autoencoders can pick up even 

nonlinear features.
• PCA on the other hand, typically performs well on identifying linear displacements.

We also learn to discriminate between trajectories along the 
activation path with (holo) and without (apo) an agonist ligand 
bound. Least important residues for classification are 
highlighted in blue and most important residues in red.

APO HOLO

SUPERVISED MLP

Principal Component Analysis (PCA)
• Converts the input features to an 

orthogonal set of linearly uncorrelated 
variables (principal components) through 
an orthogonal transformation. 

• The first component has the largest 
variance possible. 

• The feature importance is taken to be the 
components’ coefficients of a feature 
times the variance covered by (i.e. the 
eigenvalues) the components.

Kullback–Leibler (KL) divergence
• Computes the difference between 

two distributions "($) and &($)
along a feature X as 
− ∑) ∈+ " $ log / )

0 ) . 
• We compute the KL divergence 

between one class and all other 
classes as an indication of the 
importance of the feature X. 

• Also called relative entropy.

Nonlinear displacement & internal coordinates

Nonlinear displacement + random rotation & cartesian coordinates

Linear displacement & internal coordinates

SUPERVISED

We identify important features using spectral clustering [3] on a trajectory from [4] to derive a 
number of clusters along the activation path and see which features are important for cluster 
classification. Similar profiles are obtained for MLP and KL.

TM6

NPxxY
Asp79 cavity

SUPERVISED RF
2 clusters

6 clusters

Nonlinear displacement & internal coordinates

Linear displacement & internal coordinates

UNSUPERVISED

Linear displacement

Nonlinear displacement

Nonlinear displacement + random rotation


