Interpretation of Anisotropic Solution X-ray Scattering
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* new method for_ calculato_n of anisotropic and Q| g W Cluste Il ng
time resolved solution scattering pattern N | > &
e good agreement with experiment « excitation probability depend on angle be- ol ' * Clustering into marcostates for in-
» anisotropy enhances molecular interpretation tween transition dipole moment of protein _terpretation
and laser polarization £ (¢) x cos*(¢) ¥ & eclustering inspirate by mar-
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Solution X-ray scattering in comparison to crystallography trades in the advantage of » a particular oriented fraction of the protein \ kov state models
probing proteins in their natural solute environment for a much lower information content is excited ' J 1. defining microstates
(~ 20 d.ata.po.mtfs) due to on averaging over orientations. Thgs mterpretatuon of solution + in the difference pattern the fraction not ex- =) 2. lumping of states ac-
scattering is limited. We propose and aim to show that the information content can be ted | ¢ D) | : hei "
doubled in a possible anisotropy measurement of the diffraction pattern. We report a new cite F:ance S ou _ g/, qud'r_lg to their transition
method for calculation of anisotropic solution scattering pattern from trajectories of mo- + effectively mea_surl.ng the structural 9o . kinetics
lecular dynamic simulations. change after excitation for an ensemble * defintion of six states
In anisotropy solution experiments rather then the structure of a protein itself structural of proteins particular oriented o9 based on CO position
changgs aftgr exqtatuon by a laser bearp are.mea§ured. .By Iaser.polanzatlon proteins of - - . distal(D), intermediate 1 & 2
a certain orientation are preferable excited, inducing anisotropy into the probe. We can An tr 112 fFusive(DF :
show analytically that the resulting anisotropic scattering pattern consist of exactly two ISO Oplc o ot (11,12), diffusive(DF), proximate
independent components for each scattering angle. o AN (P) and bulk (B)
For these type of experiment the time delay between excitation and diffraction can be - X y ‘
altered to obtain time resolution. Here we present our method for the CO dissociation “c -
process of myoglobin for which time resolved and anisotropic solution X-ray scattering Protocol of clustering OCCU path n
have been reported. We present for the first time a structural interpretation of these data , ‘ (routines used from msmbuider [4)
based on molecular dynamic simulations. Good agreement with the experiment can be | | ; ; el RMEDOLCO Bl of the different states in the course of

» (after rotational and translatation fit on

protein Backbone) the simulaton

found and the time evolution of the experimental data can be traced back to a diffusion
of the myoglobin between certain distinct cavities. Thus we offer a founded structural

* |ump all cases where CO is more then
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interpretation of time resolved solution X-ray solution pattern. The additional anisotropic . algorithm: k-centers (out of RMSD > g
. . . . . . . . . 0.1 nm) \ ol
|nfo.rr.nat!on will presgmably improve d|fferent|§t|ng between the occupation of different B o clusters: 1/20 y .\“m e
cavities in the analysis of experimental scattering pattern. of 500x 30ns sampled each 10ps o1 intermediate 2 —
2. assigning full data to clusters proximate —
3. build 16 macro-states with PCCA+ [5] c diffusive —
4. macro-states with less then 1% oc- -,9_, 0.6 | bulk
- cupation are assigned too kinetically a
I m e res o ve strongest connected neighbor § W,
5. 6 states obtained including one bulk © oal \V\\,\\‘
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 Excitation laser perpendicular =7 2
to the X-ray beam
* Temporal resolution given by

time delay between laser and

X-ray

« X-ray pulse length allow pico- 00°
second time resolution Anisotropic data unveils new features

« examined: Some scattering angles show features hidden in the iso-
e = larrer excrranion = lserore exciration tropic data; e.g. there are prominent peaks in the aniso-

distal —

tropic data which are not to be seen in the isotropic data.
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The scattering intensity
I(q) = |A(q)|?

can be given in terms of the . , , , , , , ,
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structur factors fj: — q [nm"]

A(q) =X, fij(q) expliq - (ri —r;))

Scattering pattern are calculated as a linear combination
of the pattern to the right. The relative occupation of the

Inspired by Park et. Al 2009 [3] we found the difference spectra of time different states at different times is taken from the simula-
resolved solution scattering to be tions. An estimate of the expected erroris given in shaded

Al(a) [ P(m) [<\A(q>]2> - < B(q)\2> +2.Re [(Al@) - Bl@) - (—Ew))]] dm grey.

« structure factors: B(q) (prior excitation), A(q) (past excitation) and E(q) —
(envelope) 1000 : : : ' 2000 - intermediate 1—

- bra-kets denote averaging over confirmations e oimate

* integration over transition dipol moment m

* P(m) denote the relative population of each orientation of m 500

Scattering pattern of the 6 states each calculated from
1000 randomly chosen frames. In shaded green the
error of one states is depicted as an example.
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* In the isotropic case: P(m) = const 0% p /J\?%\ //Q“ & A\qﬁ @)
The coordintate system can be changed such that the transition moment & a O 4 \ A@& % : f/% | _t,
is fixed and integration is performed over the scattering vector q, ,in the > £ j @
cqordmate system o_f the pro- AL % | P o) (D) daee g 1000 i)
tein. Consequently it can be Al(quns) o (2282232 . AL (q) + Aln(q)
shown that the diffraction pat-|~ ¢ e |
tern is a function of only two =) = 1) - (D(dpron) | dtpro o 20009
components for each absolute mezetrot)2 41 ) - (D(pror)) | detpror . - - - ”s
value of g. Hence we are look- q [nm™]
ing at horizontal and vertical cuts of the scatterng pattern in the following. 1000

Hypothesis: Anisotropy doubles information content. Isotropic data corresponds
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Simulation details
gromacs with charmmz22star forcefiled
3-site quadropole model for CO
4fs time-step
virtual sites on Hydrogens

MD Simulation

500 x 3 simulations (1x CO bonded, 2x CO not bonded) a
30ns are branched from a 2ms simulation of Myoglobin.

all bonds constrained (LINCs)
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