Solvent fluctuations drive the hole transfer in DNA
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Transfer of charge

Conductivity of DNA

Effect of environment

» T hrough double-stranded DNA

— via the nucleobases
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» Transport of positive charge — hole
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» Electron donors with small IP required:

» Transfer of hole between G's across A-bridges
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» Charge-transfer parameters using HOMO of bases:
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Multi-scale computational scheme

1. Classical MD simulation

» Generate structures, sampling of the ensemble
» DNA backbone and the solvent included
» Amber force field, Gromacs package

2. Calculation of charge-transfer parameters
» For structures generated in the classical MD
» SCC-DFTB — approximative DFT, very efficient

» QM /MM implementation — environment included
— coarse-grained Hamiltonian for hole transfer

3. Integration of time-dependent Schrodinger eqn
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» Using the coarse-grained Hamiltonian
» Runge-Kutta predictor-corrector integrator (RKsuite)

» negative imag. potential to model the final oxidation

— Dynamics of a hole coupled to classical MD

Mechanism of hole transfer

» Tunneling — proposed for short bridges
— one-step process through the barrier

» Hopping — assumed active in long bridges
— consecutive hops of the hole between nucleobases

» Magnitude of charge present on the bridge:
(for various number of A’s in the bridge)
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— significant already in short bridges

— hopping may be operative at all bridge lengths
» Interaction charge: - - solvent not yet described

— may alter the results slightly
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» Significance
» biology (DNA damage and repair)
» nano-electronics

» Contradictory experimental findings
» insulator, semi-conductor, metallic-like conductor
» probably deviations in experimental setup
» sensitivity to DNA structure & the environment
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» Can molecular modeling help?
» Static approaches often used
» This work — multi-scale scheme involving MD simulation

Rate of hole transfer

» The part of hole remaining in G1-A-G—-G—-G:
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» Large variance of rate among individual simulations
» ~ 100 faster than with the static model

— dynamic energy profile required

— transfer suppressed by constant parameters

» Rate decreases with the length of bridge:
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A ‘slow’ example of simulation of hole transfer in
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» barrier height
fluctuations largely
due to the solvent
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1. vanishing barrier

» 2. non-zero coupling
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Mapping of the hole charge onto nucleobases

» T DSE integration coupled with the classical MD
(atom charges being modified in every MD step)

» Response of environment to the charge of hole
and its varying distribution (polaron)

» Slower rate of transfer expected

» Induction of electric field on the nucleobases
» Influence on site energies / ionization potentials:
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— large fluctuation of the barrier height

151 — QM/MM
— 'in vacuo'

1 i

—
b

L
ik

0 5 10 15 20
time (ps)

energy barrier (eV)
o
1

o

1
©
1

» Neglect of environment — slower transfer rates
due to the barrier vanishing less frequently:
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» No effect of solvent on electronic couplings
(driven by the structure of DNA)

Correlation of site energies

» Site energies of neigboring nucleobases correlated
(p = 0.7 with 1% neighbor, 0.3 with 2" neighbor)
— domains of synchronized site energies

» Stochastic model
— parameters drawn from distributions randomly
— correlation canceled
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— slower rates obtained

» Correlations — increased transfer efficiency
— up to 50 % difference (long DNA strands)

» Electronic couplings — no correlations observed

Key observations

» Dynamics of DNA structure controls el. couplings
» T he solvent drives the energetics of hole transfer

» The neglect of solvent decelerates the transfer

» Charge-transfer-active states of the DNA strand
— those with vanishing energy barrier

» Hopping observed rather than tunelling
— non-zero occupation of the bridge by the hole

Acknowledgment

This work has been supported
by the Deutsche Forschungsgemeinschaft.

SPP 1243 Quantum transport at the molecular scale
(Project DFG-EL 206/5-1)

http://www.tu-bs.de/pci/forschung/theorie

t.kubar@tu-bs.de



