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Coarse-graining — charge carriers

Excess charge (electron / hole) — described with a

nucleobases

AA side chains

Y =a,0,+a,0,+a,0,*... = (a,, a,, a,,...)
Charge on a carrier: g; = |a|*-Q

Total charge: Q = 5.q
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Coarse-grained Hamiltonian
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— lonization potential (hole xfer)

— electron affinity (electron xfer)
electronic coupling T

— approximated by Hamiltonian
elements between HOMOs/LUMOs

evaluated with quantum chemistry
SCC-DFTB - efficient approx. DFT
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Key ideas

2nd-order expansion of energy in density
E=E,+E,+E,
E, — energy of neutral system
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— Includes within g; the interaction
of charge with environment
E,=2; 97U+ 394, /R;

— Involves the Hubbard parameter U
(chemical hardness of charge carriers)

Self-interaction error

pronounced for radical systems in DFT
correction — scaling with a constant < 1

E,=C-E, C=0.2

— Improves the distribution of charge
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Mantz et al. 2007,
JPCA 111, 105-112.

Interaction of charge with environment

Hamiltonian evaluated with QM/MM
— environment involved as point charges

E, contains the contribution "AE /"

excess charge on site A
polarizes environment
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excess charge occupies
site A predominantly

Multi-scale simulation scheme

obtain the elements

of coarse-grained Hamiltonian
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new charge distribution

update MM charges of charge carriers
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1) Classical MD simulation describes the entire molecular system
1) Quantum chemistry » coarse-grained Hamiltonian

1) Propagation of excess charge with this Hamiltonian

Propagation — various non-adiabatic schemes:
TD-DFT based — Ehrenfest dynamics:
numerical solution of time-dep. Schrodinger egn.

Surface hopping:

SCF procedure with diagonalization of HamiltoniM

+ simple diabatic surface hopping

Mixed DFT:

SCF procedure with diagonalization of Hamiltonian
+ mixing of eigenstates with Fermi—Dirac distrib.

environment is polarized
most strongly around A
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iInduced elstat. potential
IS maximal at site A
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Application — hole transfer in poly(A) DNA

TD-DFT based simulation

Strongly delocalized hole Is

flowing along the

strand

— TD-DFT based: deloc = 3.61 + 1.18
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Surface hopping

Spatially confined hole is

transferri

ng along the strand
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—— w/ F-D distr.: deloc = 1.19 + 0.31

—— Surf. hopping: deloc = 1.16 + 0.30
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Mixing of states w/ F-D distro

Even more confined hole Is
transfering more slowly
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"Standard" adiabatic QM/MM

Confined hole, slow xfer
Difficult convergence!
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— Mixed DFT: deloc = 1.04 + 0.10
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— Adiabatic: deloc = 1.09 + 0.19
— w/ F-D distr.: deloc = 1.02 + 0.05
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