
Scientific code development.

Christian Blau

2016-05-19



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.

• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.

• People might just opt for the crappy method that is run on some webserver.

• publish the source code.

• Get people to find and download and compile. Keeping it up to date might be
hard.

• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.

• Might get you a lot of second authorships. Lots of work.
• publish your paper and have everybody redo the programming for themselves.

• People might just opt for the crappy method that is run on some webserver.

• publish the source code.

• Get people to find and download and compile. Keeping it up to date might be
hard.

• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.
• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.

• People might just opt for the crappy method that is run on some webserver.

• publish the source code.

• Get people to find and download and compile. Keeping it up to date might be
hard.

• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.
• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.

• People might just opt for the crappy method that is run on some webserver.
• publish the source code.

• Get people to find and download and compile. Keeping it up to date might be
hard.

• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.
• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.
• People might just opt for the crappy method that is run on some webserver.

• publish the source code.

• Get people to find and download and compile. Keeping it up to date might be
hard.

• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.
• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.
• People might just opt for the crappy method that is run on some webserver.

• publish the source code.

• Get people to find and download and compile. Keeping it up to date might be
hard.

• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.
• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.
• People might just opt for the crappy method that is run on some webserver.

• publish the source code.
• Get people to find and download and compile. Keeping it up to date might be

hard.

• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.
• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.
• People might just opt for the crappy method that is run on some webserver.

• publish the source code.
• Get people to find and download and compile. Keeping it up to date might be

hard.
• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Christian Blau.SciLifeLab.TCB

You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.
• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.
• People might just opt for the crappy method that is run on some webserver.

• publish the source code.
• Get people to find and download and compile. Keeping it up to date might be

hard.
• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.



Why it’s hard to push to gromacs Christian Blau.SciLifeLab.TCB

Being scientist and software developer at the same time is hard.



Scientific software development Christian Blau.SciLifeLab.TCB

Scientist wants to

• try something and you have no
clue where your idea will bring
you.

• publish and move on.
Thus you

• write more code than you read.
• are punished for coding slowly.

Developer wants to

• know precisely what your code
is supposed to do.

• maintain code for a long time
(think 15 years).

Thus you
• read more code than you write.
• are punished for coding ugly.



Scientific software development Christian Blau.SciLifeLab.TCB

Scientist wants to
• try something and you have no

clue where your idea will bring
you.

• publish and move on.
Thus you

• write more code than you read.
• are punished for coding slowly.

Developer wants to
• know precisely what your code

is supposed to do.

• maintain code for a long time
(think 15 years).

Thus you
• read more code than you write.
• are punished for coding ugly.



Scientific software development Christian Blau.SciLifeLab.TCB

Scientist wants to
• try something and you have no

clue where your idea will bring
you.

• publish and move on.

Thus you
• write more code than you read.
• are punished for coding slowly.

Developer wants to
• know precisely what your code

is supposed to do.
• maintain code for a long time

(think 15 years).

Thus you
• read more code than you write.
• are punished for coding ugly.



Scientific software development Christian Blau.SciLifeLab.TCB

Scientist wants to
• try something and you have no

clue where your idea will bring
you.

• publish and move on.
Thus you

• write more code than you read.

• are punished for coding slowly.

Developer wants to
• know precisely what your code

is supposed to do.
• maintain code for a long time

(think 15 years).
Thus you

• read more code than you write.

• are punished for coding ugly.



Scientific software development Christian Blau.SciLifeLab.TCB

Scientist wants to
• try something and you have no

clue where your idea will bring
you.

• publish and move on.
Thus you

• write more code than you read.
• are punished for coding slowly.

Developer wants to
• know precisely what your code

is supposed to do.
• maintain code for a long time

(think 15 years).
Thus you

• read more code than you write.
• are punished for coding ugly.



What we want. Christian Blau.SciLifeLab.TCB



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously

• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.

• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.
• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.

• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.
• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.

• Testing is documenting. Every test tells you about the supposed outcome of a
function.

• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.

• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.
• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.
• Modularize

• break code up into the smallest possbile units to perform a very specific task

• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.
• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.

• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.
• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.

• makes moving on easier.
• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.
• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.

• contains bug infections - if you break something, the rest still works



Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously
• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.
• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works



What we really want. Christian Blau.SciLifeLab.TCB



Into gromacs Christian Blau.SciLifeLab.TCB

1 read the manual
jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/

2 get the code
git.gromacs.org

• all information is in the source ; all interaction is through git

3 meta-discussion, no source
redmine.gromacs.org/projects/gromacs

4 new code
gerrit.gromacs.org

• push to gerrit through git
• play in the drafts branch, only you and reviewers see your code (beware:

auto-addition of two reviewers if reviewers left blank)

5 check your coding
jenkins.gromacs.org

• trigger manually when uploading drafts through query and trigger gerrit patches



Into gromacs Christian Blau.SciLifeLab.TCB

1 read the manual
jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/

2 get the code
git.gromacs.org

• all information is in the source ; all interaction is through git

3 meta-discussion, no source
redmine.gromacs.org/projects/gromacs

4 new code
gerrit.gromacs.org

• push to gerrit through git
• play in the drafts branch, only you and reviewers see your code (beware:

auto-addition of two reviewers if reviewers left blank)

5 check your coding
jenkins.gromacs.org

• trigger manually when uploading drafts through query and trigger gerrit patches



Into gromacs Christian Blau.SciLifeLab.TCB

1 read the manual
jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/

2 get the code
git.gromacs.org

• all information is in the source ; all interaction is through git

3 meta-discussion, no source
redmine.gromacs.org/projects/gromacs

4 new code
gerrit.gromacs.org

• push to gerrit through git
• play in the drafts branch, only you and reviewers see your code (beware:

auto-addition of two reviewers if reviewers left blank)

5 check your coding
jenkins.gromacs.org

• trigger manually when uploading drafts through query and trigger gerrit patches



Into gromacs Christian Blau.SciLifeLab.TCB

1 read the manual
jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/

2 get the code
git.gromacs.org

• all information is in the source ; all interaction is through git

3 meta-discussion, no source
redmine.gromacs.org/projects/gromacs

4 new code
gerrit.gromacs.org

• push to gerrit through git
• play in the drafts branch, only you and reviewers see your code (beware:

auto-addition of two reviewers if reviewers left blank)

5 check your coding
jenkins.gromacs.org

• trigger manually when uploading drafts through query and trigger gerrit patches



Into gromacs Christian Blau.SciLifeLab.TCB

1 read the manual
jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/

2 get the code
git.gromacs.org

• all information is in the source ; all interaction is through git

3 meta-discussion, no source
redmine.gromacs.org/projects/gromacs

4 new code
gerrit.gromacs.org

• push to gerrit through git
• play in the drafts branch, only you and reviewers see your code (beware:

auto-addition of two reviewers if reviewers left blank)

5 check your coding
jenkins.gromacs.org

• trigger manually when uploading drafts through query and trigger gerrit patches


