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You implemented a great method. Now you can:

• have everybody come to you if they want to apply your method.

• Might get you a lot of second authorships. Lots of work.

• publish your paper and have everybody redo the programming for themselves.

• People might just opt for the crappy method that is run on some webserver.

• publish the source code.

• Get people to find and download and compile. Keeping it up to date might be
hard.

• make your tool part of a community.

• Your tool might live long and prosper, even when you’re long dead and gone to
industry.
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Being scientist and software developer at the same time is hard.



Scientific software development Christian Blau.SciLifeLab.TCB

Scientist wants to

• try something and you have no
clue where your idea will bring
you.

• publish and move on.
Thus you

• write more code than you read.
• are punished for coding slowly.

Developer wants to

• know precisely what your code
is supposed to do.

• maintain code for a long time
(think 15 years).

Thus you
• read more code than you write.
• are punished for coding ugly.
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Paths to make happy developers Christian Blau.SciLifeLab.TCB

• Document vigorously

• Write tests

• it lets you sleep better.
• makes you faster in the long run.
• Testing is documenting. Every test tells you about the supposed outcome of a

function.

• Modularize

• break code up into the smallest possbile units to perform a very specific task
• makes testing easier.
• makes code-review easier.
• makes moving on easier.
• contains bug infections - if you break something, the rest still works
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Into gromacs Christian Blau.SciLifeLab.TCB

1 read the manual
jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/

2 get the code
git.gromacs.org

• all information is in the source ; all interaction is through git

3 meta-discussion, no source
redmine.gromacs.org/projects/gromacs

4 new code
gerrit.gromacs.org

• push to gerrit through git
• play in the drafts branch, only you and reviewers see your code (beware:

auto-addition of two reviewers if reviewers left blank)

5 check your coding
jenkins.gromacs.org

• trigger manually when uploading drafts through query and trigger gerrit patches
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