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Outline

‣ GROMACS molecular dynamics (MD)

‣ challenges of parallel MD (mainly PME)
and how GROMACS deals with them

‣ Benchmark setup

‣ Results – Scaling of GROMACS 4.6 on SuperMUC



Molecular dynamics simulations
with GROMACS



‣ time-dependent motion of a set of i=1...n atoms

‣ positions ri, charges qi, masses mi, velocities vi, 
and a “force field” / potential  U(ri, qi, mi, ...)

‣ calculate forces Fi = -∂U/∂ri  

and solve Newton’s eq. of motion Fi = mi ai

‣ periodic boundaries

B.L. de Groot, H. Grubmüller, Science 294, 2353 (2001)

Molecular dynamics simulations



>> 90% of calculation time!

PME

cutoff

long-range!

Molecular dynamics simulations

‣ “force field” U defines potential energy

M.Levitt, Nat. Struct. Biol. 8, 392-393 (2001)
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Particle Mesh Ewald (PME) electrostatics
‣ Ewald summation splits Coulomb interactions in 

short range SR + long range LR part 
         (“spikes + tails”)

‣ calculate “spiky” SR part in direct space,

‣ calculate slowly varying LR part in reciprocal space. 

‣ put charges on a Mesh à use FFT
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Particle Mesh Ewald (PME) electrostatics
‣ Ewald summation splits Coulomb interactions in 

short range SR + long range LR part 
         (“spikes + tails”)

‣ calculate “spiky” SR part in direct space,

‣ calculate slowly varying LR part in reciprocal space. 

‣ put charges on a Mesh à use FFT

‣ parallel FFT requires all-to-all 
communication
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L

Particle Mesh Ewald (PME) electrostatics
‣ Ewald summation splits Coulomb interactions in 

short range SR + long range LR part 
         (“spikes + tails”)

‣ calculate “spiky” SR part in direct space,

‣ calculate slowly varying LR part in reciprocal space. 

‣ put charges on a Mesh à use FFT

‣ parallel FFT requires all-to-all 
communication

‣ direct vs. reciprocal PME load can be shifted



‣ PME calculation cost is O(n•log n) with n atoms, but in parallel
communication becomes most costly (all-to-all)
at high number of processes N

‣ number of messages increases by N2, therefore also total latency

‣ GROMACS runs PME on a subset of the processors 
(typically 1/4  à  number of messages reduced 16-fold!)

Parallel PME is a scaling bottleneck

N=6

N•(N–1) messages

N=3



Parallel PME in GROMACS
“particle-particle” PP processes 

SR / direct space
“PME” processes 

LR / reciprocal space

LR forces

positions & charges
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short-range Coulomb &
van der Waals forces

bonded forces

LR Coulomb forces
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3 Load-balancing mechanisms

1. balance number of PP vs. PME processes 

2. fine-tune PP vs. PME workload 
(balance cutoff :  grid spacing)

3. balance direct space workload 
between PP domains 

LR forces

positions & charges

p1 p2 p3 p4 p5

short-range Coulomb &
van der Waals forces

bonded forces

LR Coulomb forces
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Dynamic load balancing (#3)

‣ domain decomposition for 
direct space / short range parts

‣ each MPI process gets assigned one of 
N = nx x ny x nz domains

step 0 step 200
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Find optimal PME : PP 
ratio (#1)

‣ GROMACS estimates PP : PME load, 
chooses near-optimal setting, e.g.

12 PP + 4 PME for 16 MPI processes

‣ use g_tune_pme to benchmarks 
settings around this value, e.g.
 
14 : 2
13 : 3
12 : 4 *
11 : 5
10 : 6
16 : 0 (no separate processes)

‣ 5–15 % extra performance!

LR forces

positions & charges

p1 p2 p3 p4 p5

short-range Coulomb &
van der Waals forces

bonded forces

LR Coulomb forces

Performance with
 and without tuning
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step  120: timed with pme grid 320 320 320, coulomb cutoff 1.200: 24209.0 M-cycles
step  200: timed with pme grid 288 288 288, coulomb cutoff 1.302: 22664.5 M-cycles
step  280: timed with pme grid 256 256 256, coulomb cutoff 1.465: 24579.1 M-cycles
step  360: timed with pme grid 224 224 224, coulomb cutoff 1.674: 33557.8 M-cycles
step  440: timed with pme grid 320 320 320, coulomb cutoff 1.200: 24507.7 M-cycles
step  520: timed with pme grid 300 300 300, coulomb cutoff 1.250: 24998.7 M-cycles
step  600: timed with pme grid 288 288 288, coulomb cutoff 1.302: 23082.2 M-cycles
step  680: timed with pme grid 280 280 280, coulomb cutoff 1.339: 23978.4 M-cycles
step  760: timed with pme grid 256 256 256, coulomb cutoff 1.465: 24737.4 M-cycles
step  840: timed with pme grid 240 240 240, coulomb cutoff 1.563: 28536.6 M-cycles

‣ PP : PME workload fine tuning needs time

‣ Reject the initial balancing phase when benchmarking! 

mdrun -resetstep 1000
mdrun -resethway

Fine-tune PME : PP 
workload (#2)



GROMACS 4.6
benchmarks on SuperMUC



Benchmark protocol

‣ Gromacs 4.6 compilation:

‣ with IBM MPI & icc12.1.6   ßà  Intel MPI 4.1 & icc 13.1.1

‣ FFTW 3.3.2 (SSE2)

‣ -O3 -mavx compiler flags

‣ OpenMP support 
(each MPI process can use several OpenMP threads)

‣ 2.7 GHz clock rate

‣ vary number of MPI processes per node
(32, 16, 8, 4, 2, 1)

‣ vary number of OpenMP threads
per MPI process (1, 2, 4, 8, 16)

‣ using g_tune_pme, 
no timings taken during first half of benchmark

Find optimal 
performance for any 
number of nodes!



Three “real world” benchmark systems: 

“Aquaporin-1 channel”

‣ 81,743 atoms

‣ 2 fs time step

‣ cutoffs @ 1.0 nm

‣ PME grid spacing 0.120 nm

‣ 10,000 steps

‣ de Groot, Grubmüller, 
Science 294, 2353 (2001)

“Ribosome”

‣ 2,136,412 atoms

‣ 4 fs time step

‣ cutoffs @ 1.0 nm

‣ PME grid spacing 0.135 nm

‣ 2,000 steps

‣ Fischer, Konevega, Wintermeyer, 
Rodnina, Stark, Nature 466 
(2010), 329–333

“Peptide aggregation”

‣ 12,495,503 atoms

‣ 2 fs time step

‣ cutoffs @ 1.2 nm

‣ PME grid spacing 0.160 nm

‣ 500 steps

‣ Matthes, Gapsys, de Groot, 
J. Mol. Biol. 421, 390–416 (2012)

27 of these 
boxes



‣ with IBM 
MPI & 
icc12.1.6

40 atoms/core
1077 steps/second

381 atoms/core
250 steps/second

130 atoms/core
430 steps/second

GROMACS performance on SuperMUC



‣ with IBM 
MPI & 
icc12.1.6

‣ 16 MPI x 2 
OpenMP is 
fastest, 
except at 
high 
parallelization

16 MPI 
processes / node

with 2 OpenMPI threads 
per process

GROMACS performance on SuperMUC



‣ with Intel 
MPI & 
icc13.1.1

Still some issues using Intel MPI

IBM
Intel IBM

IBM
Intel

Intel



Scaling
‣ S(N) = t1 / (N • tN) 



Performance gain due to g_tune_pme
‣ with IBM 

MPI & 
icc12.1.6



PME limits 
the scaling

ß nodes

ß cores

tim
e



1 PFLOP/s



GROMACS performance on SuperMUC

Modylas on 
K-computer
10 Petaflops, 
88.128 Sparc64 CPUs
@2 GHz and 8 cores
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Conclusions

‣ resolve problems when using Intel MPI

‣ scale even larger system to whole SuperMUC? à Petaflop?

‣ can we get time steps < 1 ms at high parallelization?

‣ Long term: replace PME electrostatics by FMM

http://www.mpibpc.mpg.de/grubmueller/sppexa

Outlook

‣ Scaled GROMACS to 4096 nodes (65,000 cores, 8 islands) 

‣ 12 M atom system reached 49 ns/day on 32,000 cores, 223 TFLOP/s

‣ PME / all-to-all is major scaling bottleneck, 

‣ <= 1024 MPI processes for PME!

http://www.mpibpc.mpg.de/grubmueller/sppexa
http://www.mpibpc.mpg.de/grubmueller/sppexa
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#!/bin/bash
#
#@ job_type = parallel
#@ class = general 
#@ node = 64
### schedule the job to A to B islands 
#@ island_count=1
#@ tasks_per_node = 16
#@ wall_clock_limit = 1:00:00
#@ job_name = RIBO_n64_mpi16_th2
#@ network.MPI = sn_all,not_shared,us
### Energy saving options
#@ energy_policy_tag = NONE
#@ output = job$(jobid).out
#@ error = job$(jobid).err
#@ notification=always
#@ queue
. /etc/profile
. /etc/profile.d/modules.sh

#setup of environment
module load mpi.ibm
module load lrztools

export MP_BULK_MIN_MSG_SIZE=32768
export OMP_NUM_THREADS=2
export MP_TASK_AFFINITY=core:2
export MPIRUN=mpiexec
export PROCS=1024
export MDRUN=/gpfs/work/pr86se/lu78tis/gromacs/4.6/463-ibmmpi-fftw332-icc121/bin/mdrun

# $MPIRUN -n ${PROCS} ${MDRUN} -dlb yes -s Ribo10kBench.tpr -noconfout -maxh 0.25 -gcom 1000 -npme 0

/gpfs/work/pr86se/lu78tis/gromacs/4.6/463-ibmmpi-fftw332-icc121/bin/g_tune_pme -np ${PROCS} -npstring -n 
-dlb yes -s Ribo10kBench.tpr -steps 1000 -resetstep 1000 -noconfout -r 1 -ntpr 1 -npme all

Job file IBM MPI

use RDMA for 
messages larger than 

this 



#!/bin/bash
#
#@ job_type = MPICH
#@ class = general 
#@ node = 64
### schedule the job to A to B islands 
#@ island_count=1
#@ tasks_per_node = 16
#@ wall_clock_limit = 1:00:00
#@ job_name = RIBO_n64_mpi16_th2_MPICH
#@ network.MPI = sn_all,not_shared,us
### Energy saving options
#@ energy_policy_tag = NONE
#@ output = job$(jobid).out
#@ error = job$(jobid).err
#@ notification=always
#@ queue
. /etc/profile
. /etc/profile.d/modules.sh
#setup of environment
module unload mpi.ibm
module load mpi.intel/4.1.1
#####################################################################
module load lrztools 

export OMP_NUM_THREADS=2
if [ "$OMP_NUM_THREADS" -gt 1 ] ; then
  module load mpi_pinning/hybrid_blocked
else
  module load mpi_pinning/mpp
fi
export I_MPI_PIN_DOMAIN=auto
export I_MPI_PIN_CELL=unit

export I_MPI_DEBUG=5
cpuinfo
#####################################################################
export MPIRUN=mpiexec
export PROCS=1024
export MDRUN=/gpfs/work/pr86se/lu78tis/gromacs/4.6/462-impi41-fftw332-icc131-3/bin/mdrun
export I_MPI_DAPL_DIRECT_COPY_THRESHOLD=262114

/gpfs/work/pr86se/lu78tis/gromacs/4.6/462-impi41-fftw332-icc131-3/bin/g_tune_pme -np ${PROCS} -npstring -n -dlb 
yes -s Ribo10kBench.tpr -steps 2000 -resetstep 2000 -noconfout -r 1 -ntpr 1

Job file Intel MPI

use RDMA for 
messages larger than 

this 

workaround since mpiexec 
defines some I_MPI variables in the 

wrong way


