
Cost-efficient MD simulations

“BEST BANG FOR YOUR BUCK”

Carsten Kutzner 
Theoretical & Computational Biophysics 
MPI for biophysical Chemistry



HOW CAN I PRODUCE AS MUCH TRAJECTORY AS POSSIBLE 
FOR MY SCIENCE?
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GROMACS PERFORMANCE?

TASK 2:    € ➔ .XTC 

WHAT IS THE OPTIMAL HARDWARE 
TO RUN GROMACS ON?

COST-EFFICIENT MD SIMULATIONS
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For us: 

1. high performance-to-price ratio  
à maximize trajectory output per invested € 

2. low energy consumption 

3. good single-node performance 

4. low rack space requirements 

5. scaling across many cluster nodes  
à HPC centers

IM
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WHAT IS THE ‘OPTIMAL’ HARDWARE TO BUY?

X



get prices + benchmark GROMACS performance  
for all reasonable hardware configurations 

‘Best bang for your buck’ (2015):  
2 benchmark systems (80k / 2 M atoms),  
12 CPU types  
13 GPU types  
>50 hardware configurations  
 

on each hardware try to get optimal GROMACS performance

COMPILATION: 
COMPILER, SIMD 
INSTRUCTIONS, 
MPI LIB

SYSTEM 
SETUP: 
V-SITES,  
BOX TYPE

MDRUN: 
FIND OPTIMAL 
RUN-TIME 
PARAMETERS

FINDING THE OPTIMAL HARDWARE

Best Bang for Your Buck: GPU Nodes for GROMACS

Biomolecular Simulations

Carsten Kutzner,*[a] Szil!ard P!all,[b] Martin Fechner,[a] Ansgar Esztermann,[a]

Bert L. de Groot,[a] and Helmut Grubm€uller[a]

The molecular dynamics simulation package GROMACS runs

efficiently on a wide variety of hardware from commodity work-

stations to high performance computing clusters. Hardware fea-

tures are well-exploited with a combination of single instruction

multiple data, multithreading, and message passing interface

(MPI)-based single program multiple data/multiple program

multiple data parallelism while graphics processing units (GPUs)

can be used as accelerators to compute interactions off-loaded

from the CPU. Here, we evaluate which hardware produces tra-

jectories with GROMACS 4.6 or 5.0 in the most economical way.

We have assembled and benchmarked compute nodes with var-

ious CPU/GPU combinations to identify optimal compositions in

terms of raw trajectory production rate, performance-to-price

ratio, energy efficiency, and several other criteria. Although

hardware prices are naturally subject to trends and fluctuations,

general tendencies are clearly visible. Adding any type of GPU

significantly boosts a node’s simulation performance. For inex-

pensive consumer-class GPUs this improvement equally reflects

in the performance-to-price ratio. Although memory issues in

consumer-class GPUs could pass unnoticed as these cards do

not support error checking and correction memory, unreliable

GPUs can be sorted out with memory checking tools. Apart

from the obvious determinants for cost-efficiency like hardware

expenses and raw performance, the energy consumption of a

node is a major cost factor. Over the typical hardware lifetime

until replacement of a few years, the costs for electrical power

and cooling can become larger than the costs of the hardware

itself. Taking that into account, nodes with a well-balanced ratio

of CPU and consumer-class GPU resources produce the maxi-

mum amount of GROMACS trajectory over their lifetime. VC 2015

The Authors. Journal of Computational Chemistry Published by

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24030

Introduction

Many research groups in the field of molecular dynamics (MD)

simulation and also computing centers need to make deci-

sions on how to setup their compute clusters for running the

MD codes. A rich variety of MD simulation codes is available,

among them CHARMM,[1] Amber,[2] Desmond,[3] LAMMPS,[4]

ACEMD,[5] NAMD,[6] and GROMACS.[7,8] Here, we focus on GRO-

MACS, which is among the fastest ones, and provide a com-

prehensive test intended to identify optimal hardware in terms

of MD trajectory production per investment.

One of the main benefits of GROMACS is its bottom-up per-

formance-oriented design aimed at highly efficient use of the

underlying hardware. Hand-tuned compute kernels allow utilizing

the single instruction multiple data (SIMD) vector units of most

consumer and high performance computing (HPC) processor plat-

forms while OpenMP multithreading and GROMACS’ built-in

thread- message passing interface (MPI) library together with non-

uniform memory access (NUMA)-aware optimizations allow for

efficient intranode parallelism. Using a neutral-territory domain-

decomposition (DD) implemented with MPI, a simulation can be

distributed across multiple nodes of a cluster. Beginning with ver-

sion 4.6, the compute-intensive calculation of short-range non-

bonded forces can be off-loaded to graphics processing unit

(GPUs), while the CPU concurrently computes all remaining forces

such as long-range electrostatics, bonds, so forth, and updates the

particle positions.[9] Additionally, through multiple program multi-

ple data (MPMD) task-decomposition the long-range electrostatics

calculation can be off-loaded to a separate set of MPI ranks for bet-

ter parallel performance. This multilevel heterogeneous paralleliza-

tion has been shown to achieve strong scaling to as little as 100

particles per core, at the same time reaching high absolute appli-

cation performance on a wide range of homogeneous and hetero-

geneous hardware platforms.[10,11]

A lot of effort has been invested over the years in software

optimization, resulting in GROMACS being one of the fastest

MD software engines available today.[7,12] GROMACS runs on a

wide range of hardware, but some node configurations pro-

duce trajectories more economically than others. In this study,

we ask: What is the “optimal” hardware to run GROMACS on

and how can optimal performance be obtained?
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Coulomb + vdW make up for most of the 
time step 

PME decomposes these into SR (direct) 
and LR (grid) contributions 

PME allows to shift work between real, SR 
(PP), and reciprocal, LR (PME), space parts  
(balance cutoff :  grid spacing)
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SR NON-BONDED FORCES ARE OFFLOADED TO GPUS,  
WITH AUTOMATIC BALANCING
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MPI + OpenMP 
à work can be distributed in various ways 

pure OpenMP performs well on single CPUs, 
but does not scale well across sockets 

à on multi-socket nodes pure MPI is best 

OpenMP+MPI adds overhead  

2x 8-core E5-2690 (Sandy Bridge), RNAse protein, 
solvated, 24k atoms, PME, 0.9 nm cutoffs (Fig. taken 
from S Pall, MJ Abraham, C Kutzner, B Hess, E 
Lindahl, EASC 2014, Springer, 2015)
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Figure 3: Comparison of single-node simulation performance using MPI,
OpenMP, and combined MPI+OpenMP parallelization. The OpenMP multi-
threading (blue) achieves the highest performance and near linear scaling up
to 8 threads deteriorating only when threads on OpenMP regions need to
communicate across the system bus. In contrast, the MPI-only paralel runs
(red), requiring less communication scale well across sockets. Combining
MPI and OpenMP parallelization with two ranks and varying number of
threads (green) results in worse performance due to the added overhead of
the two parallizations.
The simulations were carried out on a dual-socket node with 8-core Intel Xeon
E5-2690 (2.8 GHz Sandy Bridge). Input system: RNAse protein, solvated in
a rectangular box, 24k atoms, PME electrostatics, 0.9 nm cut-o↵.
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With GPUs it is beneficial 
to have few large domains 
offloading their data to the 
GPU  
à use pure OpenMP 
unless multi-socket  
 

Multi-socket GPU nodes  
 à find optimum!

THE OPTIMAL MIX OF THREADS & RANKS



2x E5-2680v2 (2x 10 cores) processors with 4x GTX 980 GPUs
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Table 4: Some GPU models that can be used by GROMACS. The upper part of the table lists HPC-
class Tesla cards, below are the consumer-class GeForce GTX cards. For the GTX 980 GPUs, cards
by different manufacturers differing in clock rate were benchmarked, + and ‡ symbols are used to
differentiate between them.

NVIDIA architec- CUDA clock rate memory SP throughput ⇡ price
model ture cores (MHz) (GB) (Gflop/s) (e) (net)

Tesla K20Xa Kepler GK110 2,688 732 6 3,935 2,800
Tesla K40a Kepler GK110 2,880 745 12 4,291 3,100

GTX 680 Kepler GK104 1,536 1,058 2 3,250 300
GTX 770 Kepler GK104 1,536 1,110 2 3,410 320
GTX 780 Kepler GK110 2,304 902 3 4,156 390
GTX 780Ti Kepler GK110 2,880 928 3 5,345 520
GTX Titan Kepler GK110 2,688 928 6 4,989 750
GTX Titan X Maxwell GM200 3,072 1,002 12 6,156
GTX 970 Maxwell GM204 1,664 1,050 4 3,494 250
GTX 980 Maxwell GM204 2,048 1,126 4 4,612 430
GTX 980+ Maxwell GM204 2,048 1,266 4 5,186 450
GTX 980‡ Maxwell GM204 2,048 1,304 4 5,341 450

aSee Figure 4 for how performance varies with clock rate of the Tesla cards, all other benchmarks have been done
with the base clock rates reported in this table.

GPU acceleration

GROMACS 4.6 and later supports CUDA-compatible GPUs with compute capability 2.0 or higher.

Table 4 lists a selection of modern GPUs including some relevant technical information. The single

precision (SP) column shows the GPU’s maximum theoretical SP flop rate, calculated from the

base clock rate (as reported by NVIDIA’s deviceQuery program) times the number of cores times

two floating-point operations per core and cycle. GROMACS exclusively uses single precision

floating point (and integer) arithmetic on GPUs and can therefore only be used in mixed precision

mode with GPUs. Note that at comparable theoretical SP flop rate the Maxwell GM204 cards yield

a higher effective performance than Kepler generation cards due to better instruction scheduling

and reduced instruction latencies.

Since the GROMACS CUDA non-bonded kernels are by design strongly compute-bound,3

GPU main memory performance has little impact on their performance. Hence, peak performance

13

GPU MODELS

NVIDIA architec- CUDA- clock rate memory SP throughput ⇡ price
model ture cores (MHz) (GB) (GFlop/s) (e net)

Tesla K40 Kepler GK110B 2 880 745 12 4 291 2 500
Tesla P100 Pascal P100 3 584 1328 16 9 519 3 200

GTX 1060 Pascal GP106-400 1 280 1506 3 3 855 152
GTX 1070 Pascal GP104-200 1 920 1506 8 5 783 330
GTX 1080 Pascal GP104-400 2 560 1607 8 8 228 420
GTX 1080Ti Pascal GP102-350-K1 3 584 1480 11 10 609 625
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20
17
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Table 5: Frequency of consumer-class GPUs exhibiting memory errors.

NVIDIA GPU memory # of cards # memtest # cards
model checker13 tested iterations with errors

GTX 580 memtestG80 1 10, 000 –
GTX 680 memtestG80 50 4, 500 –
GTX 770 memtestG80 100 4, 500 –
GTX 780 memtestCL 1 50, 000 –
GTX Titan memtestCL 1 50, 000 –
GTX 780Ti memtestG80 70 4⇥ 10, 000 6
GTX 980 memtestG80 4 4⇥ 10, 000 –
GTX 980+

memtestG80 70 4⇥ 10, 000 2

980+). Error rates were close to constant for each of the four repeats over 10,000 iterations. We

strongly recommend to carry out these stress-tests and replace defective cards before using them

in production simulations.

Benchmarking procedure

Balancing the computational load takes mdrun up to a few thousand time steps at the beginning

of a simulation. During the load balancing phase performance is neither stable nor optimal, so we

excluded the first 1,000 – 10,000 steps from measurements using the -resetstep or -resethway

command line switches. Whereas execution on non-GPU nodes is under most circumstances faster

with activated DLB, on GPU nodes the situation is not so clear due to the competition between DD

and CPU-GPU load balancing mentioned in Section 2. We therefore tested both with and without

DLB in most of the GPU benchmarks.

The benchmarks were run for 2,000 – 15,000 steps, which translates to a couple of minutes

wall clock runtime for the single-node benchmarks. We aimed to find the optimal command-

line settings for each hardware configuration by testing the various parameter combinations as

mentioned in Section 2. On individual nodes with Nc cores, to evaluate criteria C1 – C2, we tested

the following settings using thread-MPI ranks:

(a) Nrank = Nc

15

CONSUMER GPU ERROR RATES
consumer GPUs do  not have ECC memory, thus cannot 
correct for rare bit-flips 

however, GPU stress tests can be used to sort out 
problematic GPUs

(13) I. S. Hague, V. S. Pande, In 10th IEEE/ACM International conference on cluster, cloud and grid computing: Stanford University, 2010

newer GTX 1060/70/80 GPUs seem to have comparable 
error rates
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T

GPU freq

Consumer GPUs are 
optimized for acoustics:  

their fan speed is limited 
to 60% of max 
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frequency if too hot 

affects performance! 

see suppl. for how to fix 
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The molecular dynamics simulation package GROMACS runs

efficiently on a wide variety of hardware from commodity work-

stations to high performance computing clusters. Hardware fea-

tures are well-exploited with a combination of single instruction

multiple data, multithreading, and message passing interface

(MPI)-based single program multiple data/multiple program

multiple data parallelism while graphics processing units (GPUs)

can be used as accelerators to compute interactions off-loaded

from the CPU. Here, we evaluate which hardware produces tra-

jectories with GROMACS 4.6 or 5.0 in the most economical way.

We have assembled and benchmarked compute nodes with var-

ious CPU/GPU combinations to identify optimal compositions in

terms of raw trajectory production rate, performance-to-price

ratio, energy efficiency, and several other criteria. Although

hardware prices are naturally subject to trends and fluctuations,

general tendencies are clearly visible. Adding any type of GPU

significantly boosts a node’s simulation performance. For inex-

pensive consumer-class GPUs this improvement equally reflects

in the performance-to-price ratio. Although memory issues in

consumer-class GPUs could pass unnoticed as these cards do

not support error checking and correction memory, unreliable

GPUs can be sorted out with memory checking tools. Apart

from the obvious determinants for cost-efficiency like hardware

expenses and raw performance, the energy consumption of a

node is a major cost factor. Over the typical hardware lifetime

until replacement of a few years, the costs for electrical power

and cooling can become larger than the costs of the hardware

itself. Taking that into account, nodes with a well-balanced ratio

of CPU and consumer-class GPU resources produce the maxi-

mum amount of GROMACS trajectory over their lifetime. VC 2015

The Authors. Journal of Computational Chemistry Published by

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24030

Introduction

Many research groups in the field of molecular dynamics (MD)

simulation and also computing centers need to make deci-

sions on how to setup their compute clusters for running the

MD codes. A rich variety of MD simulation codes is available,

among them CHARMM,[1] Amber,[2] Desmond,[3] LAMMPS,[4]

ACEMD,[5] NAMD,[6] and GROMACS.[7,8] Here, we focus on GRO-

MACS, which is among the fastest ones, and provide a com-

prehensive test intended to identify optimal hardware in terms

of MD trajectory production per investment.

One of the main benefits of GROMACS is its bottom-up per-

formance-oriented design aimed at highly efficient use of the

underlying hardware. Hand-tuned compute kernels allow utilizing

the single instruction multiple data (SIMD) vector units of most

consumer and high performance computing (HPC) processor plat-

forms while OpenMP multithreading and GROMACS’ built-in

thread- message passing interface (MPI) library together with non-

uniform memory access (NUMA)-aware optimizations allow for

efficient intranode parallelism. Using a neutral-territory domain-

decomposition (DD) implemented with MPI, a simulation can be

distributed across multiple nodes of a cluster. Beginning with ver-

sion 4.6, the compute-intensive calculation of short-range non-

bonded forces can be off-loaded to graphics processing unit

(GPUs), while the CPU concurrently computes all remaining forces

such as long-range electrostatics, bonds, so forth, and updates the

particle positions.[9] Additionally, through multiple program multi-

ple data (MPMD) task-decomposition the long-range electrostatics

calculation can be off-loaded to a separate set of MPI ranks for bet-

ter parallel performance. This multilevel heterogeneous paralleliza-

tion has been shown to achieve strong scaling to as little as 100

particles per core, at the same time reaching high absolute appli-

cation performance on a wide range of homogeneous and hetero-

geneous hardware platforms.[10,11]

A lot of effort has been invested over the years in software

optimization, resulting in GROMACS being one of the fastest

MD software engines available today.[7,12] GROMACS runs on a

wide range of hardware, but some node configurations pro-

duce trajectories more economically than others. In this study,

we ask: What is the “optimal” hardware to run GROMACS on

and how can optimal performance be obtained?
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any medium, provided the original work is properly cited.
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Over cluster lifetime, energy costs become comparable to hardware costs 

assuming 5 yr of operation and 0.2 EUR / kWh (incl. cooling)  
 
 
 
 
 
 
 
 
 
 
 
 

balanced CPU/GPU resources keep energy costs low 

Table 1

Node ns/d microseconds power draw 
(W)

energy costs (Euro) node costs 
(Euro)

traj costs (Euro / 
microsecond)

just node just energy yield (ns per 
1000 Euro)

2x E5-2670v2 1,38 2,5185 252 2207,52 3360 €2211 €1334 €877 €2211 452

2x E5-2670v2 + 780Ti 3,3 6,0225 519 4546,44 3880 €1399 €644 €755 €1399 715

2x E5-2670v2 + 2x 780Ti 3,87 7,06275 666 5834,16 4400 €1449 €623 €826 €1449 690

2x E5-2670v2 + 3x 780Ti 4,17 7,61025 933 8173,08 5430 €1787 €714 €1074 €1787 559

2x E5-2670v2 + 4x 780Ti 4,17 7,61025 960 8409,6 5950 €1887 €782 €1105 €1887 530

2x E5-2670v2 + 980 3,86 7,0445 408 3574,08 3780 €1044 €537 €507 €1044 958

2x E5-2670v2 + 2x 980 4,18 7,6285 552 4835,52 4200 €1184 €551 €634 €1184 844

2x E5-2670v2 + 3x 980 4,2 7,665 696 6096,96 5130 €1465 €669 €795 €1465 683

2x E5-2670v2 + 4x 980 4,2 7,665 840 7358,4 5550 €1684 €724 €960 €1684 594

2x E5-2680v2 1,86 3,3945 446 3906,96 4400 €2447 €1296 €1151 €2447 409

2x E5-2680v2 + 980 3,99 7,28175 622 5448,72 4850 €1414 €666 €748 €1414 707

2x E5-2680v2 + 2x 980 4,69 8,55925 799 6999,24 5300 €1437 €619 €818 €1437 696

2x E5-2680v2 + 3x 980 4,85 8,85125 926 8111,76 5750 €1566 €650 €916 €1566 639

2x E5-2680v2 + 4x 980 4,96 9,052 1092 9565,92 6200 €1742 €685 €1057 €1742 574

Trajectory production costs per microsecond
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trajectory yield   (ns  /  1000 €)
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CONCLUSIONS
buying dedicated MD nodes boosts 
the performance to price ratio 

Nodes with 1–2 consumer-class 
GPUs produce >2x as much 
trajectory as CPU nodes or nodes 
with “professional” Tesla GPUs 

consumer GPUs with memory errors 
can be replaced, GPU throttling can 
be prevented by proper ventilation 

Energy efficiency can be optimized 
by balancing the GPU to CPU 
compute power 

upcoming PME-GPU code further 
enhances performance to price ratio, 
as it allows for cheaper CPUs
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