

Carsten Kutzner Theoretical & Computational Biophysics MPI for biophysical Chemistry

SAVING MONEY WITH GR MACS

Cost-efficient MD simulations 2018

MOTIVATION

- from a fixed hardware budget ...
- ... produce as much MD trajectory as possible!
- use tax payer's money responsibly
- therefore, measure MD performance and get hardware prices in an ongoing effort

Currency Converter	X
Currency I have:	Currency I want:
Euro Us Dollar British Pound	.xtc .tng .trr
1	0.72 ns
	Go

OUTLINE

- RECAP: what were our conclusions in 2014/15?
- UPDATE: hardware & software developments + their impact

WHAT IS THE 'OPTIMAL' HARDWARE TO BUY?

WHAT DO YOU WANT?

general-purpose cluster for all kinds of applications

- ► large RAM
- GROMACS uses 250 MB 1 GB of CPU RAM per process
- nodes connected by a high-performance network
- ▶ double-prec. GPU performance
- ▶ large GPU memory

even a 2M atom system requires only 225 MB GPU RAM

WHAT CAN WE SPARE?

FIND OPTIMAL HARDWARE FOR GROMACS!

Our criteria:

- 1. high performance-to-price (P/P) ratio
- 2. low energy consumption
- 3. reasonably high single-node performance
- 4. low rack space requirements

2014 EVALUATION SUMMARY

- get prices + benchmark GROMACS performance for >50 hardware configurations
- ♦ 12 CPU types + 13 GPU types
- 2 benchmark systems:
 - MEM 80k atoms
 - RIB 2 M atoms
- on each hardware determined fastest settings for running one simulation
 - # MPI ranks
 - # OpenMP threads
 - # separate PME ranks

2018 What's New?

- 1. Hardware: GPUs with higher performance
- 2. Software:PME can be offloaded to the GPU (among many other features!)
- 3. Benchmarks: (Slight) change of protocol

1. HARDWARE DEVELOPMENTS— GPUS 2014...2018

GPU model

1. HARDWARE: BUILDING A GPU NODE

2. SOFTWARE: GPU OFFLOADING SCHEMES

• if a run is CPU-bound, more GPU power won't shorten the time step

2. SOFTWARE: PME ON GPU

2. SOFTWARE: PME ON GPU

cluster health check using 80k atoms MEM benchmark

3. BENCHMARK PROTOCOL CHANGE – WHY?

We don't want to penalize the aggregation of compute power (which may offer price and rack space savings!)

How do we measure the performance of a node? Ideally we get:

RESULTS 2018

PERFORMANCE TO PRICE 2018

4-YEAR PERFORMANCE TO PRICE DEVELOPMENT 2014...2018

ENERGY EFFICIENCY

ADD ENERGY COSTS TO THE BILL

ADD ENERGY COSTS TO THE BILL

node costs taking into account energy + cooling (0.2 EUR / kWh) RIB

ADD ENERGY COSTS TO THE BILL

node costs taking into account energy + cooling (0.2 EUR / kWh) RIB

ENERGY EFFICIENCY

trajectory costs per microsecond RIB for 5 years of operation

ENERGY EFFICIENCY

trajectory costs per microsecond RIB for 5 years of operation

CONCLUSIONS

- compared to CPU nodes or nodes with Tesla GPUs, nodes with consumer GPUs yield significantly higher trajectory output per invested Euro
 - ◆ taking into account raw node price: 2—3 x for GROMACS 4.6, and 3—6 x for GROMACS 2018
 - including energy costs: about
 2 x for GROMACS 4.6, and
 3 x for GROMACS 2018
- ◆ PME on GPU...
 - ...moves the optimal hardware balance even more towards the GPU side (4-8 cores / 1080Ti)
 - ...allows to cheaply upgrade old nodes with state-of-the-art GPUs!

OUTLOOK

- upgrade old E5-2670v2 nodes (2x 10 cores
 @ 2.8 GHz) with 2 or 4 GTX 1080Ti.
- benchmark configurations with AMD GPUs (e.g. VEGA64)
- want to compare your own hardware and contribute to benchmarking?
 <u>https://www.mpibpc.mpg.de/grubmueller/</u>
 <u>bench</u> has various benchmark .tprs for download (CC licensed, also FE benchmarks)
- keep an updated list of benchmark results for the most recent GROMACS version

ACKNOWLEDGEMENTS

- the Grubmüller department
 - Martin Fechner, Ansgar Esztermann
- Szilard Pall (KTH)
- ♦ Markus Rampp (MPCDF)