

BioExcel Webinar Series #37

More bang for your buck: Improved use of GPU Nodes for GROMACS 2018

Presenter: Host: Carsten Kutzner (Max Planck Institute) Rossen Apostolov (KTH Royal Institute of Technology)

This webinar is being recorded

Audience Q&A session

 Please use the Questions function in GoToWebinar application

 Any other questions or points to discuss after the live webinar? Join the discussions at http:// ask.bioexcel.eu.

Today's Presenter

Carsten Kutzner

Max Planck Institute for Biophysical Chemistry

Carsten studied physics at the University of Göttingen. For his PhD he focused on numerical simulations of Earth's magnetic field, which brought him in contact with high performance and parallel computing. After a stay at the MPI for Solar System Research he moved to computational biophysics. Since 2004 he has been working at the Max Planck Institute for Biophysical Chemistry in the lab of Helmut Grubmüller. His is interested in method development, high performance computing, and atomistic biomolecular simulations.

Twitter:

@kutznercarsten https://twitter.com/kutznercarsten
@CompBioPhys https://twitter.com/CompBioPhys

Homepage:

https://www.mpibpc.mpg.de/grubmueller/kutzner

Carsten Kutzner¹, Szilárd Páll², Martin Fechner¹, Ansgar Esztermann¹, Bert de Groot¹, Helmut Grubmüller¹

1 Theoretical & Computational Biophysics, MPI for Biophysical Chemistry, Göttingen 2 Center for High Performance Computing, KTH Royal Institute of Technology, Stockholm

Motivation

- Many MD groups buy small compute clusters from a **fixed budget**
- How to optimally make use of that?
 - We run mostly **GROMACS** MD,
 → tailor nodes for GROMACS, maximise cost-efficiency by specialisation
 - queue is always full → optimise for throughput / single-node performance
 - (scaling \rightarrow HPC centres)
- Given a fixed budget, how can we produce as much MD trajectory as possible?

Currency Converter	×
Currency I have:	Currency I want:
Euro Us Dollar British Pound	.xtc .tng .trr
1	0.72 ns
	Go

Outline

- recap: what were our conclusions in 2014/15?
- hardware & software developments and their impact
- update

Outline

- recap: what were our conclusions in 2014/15?
- hardware & software developments and their impact
- update

Approach

- from ~10 CPU types + ~10 GPU models we assemble and benchmark various compute nodes
 - CPU nodes
 - GPU nodes with 1, 2, 3, and 4 GPUs
 - consumer and professional GPUs
- determine performance-to-price (P/P) ratio

GTX 980 GTX 1070 GTX 1070Ti GTX 1080 GTX 1080Ti RTX 2070 RTX 2080 RTX 2080Ti	consumer GPUs (GeForce)
Quadro P6000 Tesla V100	professional GPUs (Tesla)
Ryzen (16 core) Epyc (24 core) Core i7 (4 core) Xeon (4, 6, 8, 10, a	CPUs and 20 core)

Approach

- from ~10 CPU types + ~10 GPU models we assemble and benchmark various compute nodes
 - CPU nodes
 - GPU nodes with 1, 2, 3, and 4 GPUs
 - consumer and professional GPUs
- determine performance-to-price (P/P) ratio
- no comprehensive evaluation of currently available hardware!
 - but aim to uncover HW with good P/P ratio
- no strong scaling!

GTX 980 GTX 1070 GTX 1070Ti GTX 1080 GTX 1080Ti RTX 2070 RTX 2080 RTX 2080Ti	consumer GPUs (GeForce)
Quadro P6000 Tesla V100	professional GPUs (Tesla)
Ryzen (16 core) Epyc (24 core) Core i7 (4 core) Xeon (4, 6, 8, 10, a	CPUs and 20 core)

Approach

- from ~10 CPU types + ~10 GPU models we assemble and benchmark various compute nodes
 - CPU nodes
 - GPU nodes with 1, 2, 3, and 4 GPUs
 - consumer and professional GPUs
- determine performance-to-price (P/P) ratio
- no comprehensive evaluation of currently available hardware!
 - but aim to uncover HW with good P/P ratio
- no strong scaling!
- benchmark MD systems:

80k atom MEM benchmark channel in membrane + water + ions, PME, 2 fs time step

GTX 980 GTX 1070 GTX 1070Ti GTX 1080 GTX 1080Ti RTX 2070 RTX 2080 RTX 2080Ti	consumer GPUs (GeForce)
Quadro P6000 Tesla V100	orofessional GPUs (Tesla)
Ryzen (16 core) Epyc (24 core) Core i7 (4 core) Xeon (4, 6, 8, 10, and	CPUs 20 core)

2M atoms RIB benchmark ribosome in solution, PME, 4 fs time step

What do we really want?

Hardware requirements:

- 1. high performance-to-price (P/P) ratio
- 2. low energy consumption
- 3. low rack space requirements packing density at least 1 GPU per U
- 4. reasonably high performance of a single simulation
 → one simulation per GPU on GPU nodes, one simulation per node on CPU nodes

What do we really want?

Hardware requirements:

- 1. high performance-to-price (P/P) ratio
- 2. low energy consumption
- 3. low rack space requirements packing density at least 1 GPU per U
- 4. reasonably high performance of a single simulation
 - → one simulation per GPU on GPU nodes, one simulation per node on CPU nodes

Details for the hardware comparison benchmarks

• **GROMACS 2018**

- GCC 6.4 + CUDA 9.1
- GCC 5.4 + CUDA 8.0 (~2.5% slower, taken into account)
- AVX2_128 SIMD for AMD CPUs
- AVX2_256 SIMD for recent Intel CPUs
 - (AVX_256 SIMD for old Intel CPUs)
- OpenMP enabled
- Nodes with 2, 3, or 4 GPUs:
 - using Intel MPI 2017
- Nodes booted from a common software image (Scientific Linux 7.4)

Details for the hardware comparison benchmarks

- **GROMACS 2018**
- GCC 6.4 + CUDA 9.1
- GCC 5.4 + CUDA 8.0 (~2.5% slower, taken into account)
- AVX2_128 SIMD for AMD CPUs
- AVX2_256 SIMD for recent Intel CPUs
 - (AVX_256 SIMD for old Intel CPUs)
- OpenMP enabled
- Nodes with 2, 3, or 4 GPUs:
 - using Intel MPI 2017
- Nodes booted from a common software image (Scientific Linux 7.4)

- benchmarks
 - average of two runs
 - MEM: 20,000 steps, average over last 5,000
 - RIB: run for 10,000 steps, average over last 2,000
- on multi-GPU nodes, benchmarks use 1 simulation per GPU (via -multidir),
 - reported node performance (ns/d) is sum of the performances of the individual simulations ("aggregate" performance)

2014: First Comprehensive Hardware Evaluation

- Main 2014 result:
 - nodes with GeForce consumer
 GPUs

produce **2–3x** as much MD trajectory per invested € as

C Kutzner, S Páll, M Fechner, A Esztermann, BL de Groot, H Grubmüller. **Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.** JCC 36 (26), pp. 1990 - 2008 (2015)

• FLOP-based GPU processing power x3!

- FLOP-based GPU processing power x3!
- + microarchitectural improvements: up to
 6x performance increase in GPU kernels
- CPU performance: only modest gains

- FLOP-based GPU processing power x3!
- + microarchitectural improvements: up to
 6x performance increase in GPU kernels
- CPU performance: only modest gains

- FLOP-based GPU processing power x3!
- + microarchitectural improvements: up to
 6x performance increase in GPU kernels
- CPU performance: only modest gains
- professional Tesla GPUs compete with consumer GPUs in terms of performance, but are lagging far behind in terms of P/P

performance / price ratio

BONDS

UPDATE

since version 2018

- 1. dual pair lists with dynamic pruning
- 2. PME offloading

BONDS

UPDATE

since version 2018

- 1. dual pair lists with dynamic pruning
- 2. PME offloading

time step

BONDS

UPDATE

since version 2018

- 1. dual pair lists with dynamic pruning
- 2. PME offloading

since version 2018

- 1. dual pair lists with dynamic pruning
- 2. PME offloading

time step

since version 2018

- 1. dual pair lists with dynamic pruning
- 2. PME offloading

time step

GROMACS performance evolution on GPU nodes

 most pronounced increase in performance with PME offloading (given a strong enough GPU)

Performance in relation to node costs

Performance in relation to node costs

P/P ratio of consumer GPU nodes w.r.t. CPU nodes

The Gap Widens With GROMACS 2018

C Kutzner, S Páll, M Fechner, A Esztermann, BL de Groot, H Grubmüller. **More bang for your buck: Improved use of GPU nodes for GROMACS 2018.** JCC 40 (27), pp. 2418-2431 (2019)

- shift CPU → GPU allows to upgrade old nodes with recent GPUs!
- e.g. E3-1270v2 CPU (4 cores @3.5 GHz)
 + GTX 680 (27 ns/d)
 + (●) RTX 2080 (92 ns/d) → 3.4x perf!

Energy Efficiency

Add energy costs to the bill

Add energy costs to the bill

Add energy costs to the bill

Node costs taking into account energy + cooling (0.2 EUR / kWh) RIB

Add energy costs to the bill

Node costs taking into account energy + cooling (0.2 EUR / kWh) RIB

E5-2670	0v2 x2 (no GP	U)		*		hardware
+ 78						
+ 78	OTi x4					energy
+ 98	0					
+ 98	0 X2					
E5-2680	Dv2 x2 (no GP	U)			*	
+ 98	0			GROMACS 4 6		
+ 98	0 x2					
+ 90	U X4			ola nodes		
E3-1240	Dv6 (no GPU)		*			
+ 10	80			GROMACS 201	.8	
E5-2630	0v4 + 1080Ti			new nodes		
E5-2630	0v4 + 2080 0v4 + 1080Ti	x7				
E5-2630	v4 + 2080 x2					
Ryzen 1	.950X + 2080	x2				
Epyc 74	01P (no GPU)		*			
+10 + 10	8011 X2 80Ti x4					
E5-2670)v2 x2 + 1080)Ti x2		old nodes upgra	ded	
E5-2680	$v_2 x_2 + 2080$) x2		with new GPUs		
E3-2080	JVZ XZ + ZU8U	/ X4	I		<u> </u>	
0	500	1000	1500	2000	2500	
	cost pe	r microsecon	d of RIB traie	ectorv (€)		

E5-2670v2 v2	(no GPII)				no GPIIc		h a valuura va
+ 780Ti							naruware
+ 780Ti x2							onorav
+ 780Ti x4							energy
+ 980							
+ 980 x2							
+ 980 x4							
E5-2680v2 x2	(no GPU)					no	b PUS
+ 980			GR	OMACS	4.6		
+ 980 X2							
+ 980 X4			010	nodes			
E3-1240v6 (no	GPII)		no GPIIs				
+1080			10 01 05	OMACS	2018		
E5-2630v4 + 1	0 80Ti				2010		
E5-2630v4 + 2	080		nev	<i>N</i> nodes			
E5-2630v4 + 1	080Ti x2						
E5-2630v4 + 2	080 x2						
Ryzen 1950X -	- 2080 x2						
Epyc 7401P (n	o GPU)	-	no GPUs	S			
+ 1080Ti x2	<u>}</u>						
+ 1080Ti X4	ł						
EE 2670v2 v2	1000Ti v2			padacu	narada		
E5-2680v2 x2	+ 100011 XZ		010	noues u	ipgrade	a	
E5-2680v2 x2	+ 2000 x2 + 2080 x4		wit	h new G	PUs		
				T	I		
0 50	0 1000	1500		2000	25	00	
C	oct nor microsc	acond of DIP +	rainctory	(f)			
Ľ	ost het tilltige		ajectory	y (モ)			

	E5-2670v2 x2 (no GPU)			*		hardware
	+ 780Ti x2 + 780Ti x4					energy
	+ 980 x2					
	+ 980 x4				*	
	+ 980 + 980 x2 + 980 x4			GROMACS 4.6 old nodes		
	E3-1240v6 (no GPU) + 1080		*	GROMACS 201	8	
	E5-2630v4 + 108011 $E5-2630v4 + 2080$ $E5-2630v4 + 1080Ti x2$ $E5-2630v4 + 2080 x2$ $Bv7cop 1050Y + 2080 x2$			new nodes		GPU upgrade
	Epyc 7401P (no GPU) + 1080Ti x2 + 1080Ti x4		*			
	E5-2670v2 x2 + 1080Ti x	2		old nodes upgra	ded	
	E5-2680v2 x2 + 2080 x2 E5-2680v2 x2 + 2080 x4			with new GPUs		
(E5-2680v2 x2 + 2080 x2 E5-2680v2 x2 + 2080 x4 500	1000	1500	with new GPUs	 2500	

Buying new nodes:

- Consumer GPU nodes have a **much higher performance-to-price ratio** than CPU nodes
 - raw node price: 2–3 x for GROMACS 4.6, and 3–7 x for GROMACS 2018
 - + energy costs: 2 x for GROMACS 4.6, and 3 x for GROMACS 2018

Buying new nodes:

- Consumer GPU nodes have a **much higher performance-to-price ratio** than CPU nodes
 - raw node price: 2–3 x for GROMACS 4.6, and 3–7 x for GROMACS 2018
 - + energy costs: 2 x for GROMACS 4.6, and 3 x for GROMACS 2018

Recycle old nodes if you can! As a result of CPU → GPU work shifting (PME on GPU)

- **upgrading the GPU** yields large performance increase, whereas
- exchanging the rest of a node (CPU, ..) can be a **waste of money**

Buying new nodes:

- Consumer GPU nodes have a **much higher performance-to-price ratio** than CPU nodes
 - raw node price: 2–3 x for GROMACS 4.6, and 3–7 x for GROMACS 2018
 - + energy costs: 2 x for GROMACS 4.6, and 3 x for GROMACS 2018

Recycle old nodes if you can! As a result of CPU → GPU work shifting (PME on GPU)

- **upgrading the GPU** yields large performance increase, whereas
- exchanging the rest of a node (CPU, ..) can be a **waste of money**
- optimal hardware balance: ~15 core-GHz per 2080 GPU

Buying new nodes:

- Consumer GPU nodes have a **much higher performance-to-price ratio** than CPU nodes
 - raw node price: 2–3 x for GROMACS 4.6, and 3–7 x for GROMACS 2018
 - + energy costs: 2 x for GROMACS 4.6, and 3 x for GROMACS 2018

Recycle old nodes if you can! As a result of CPU → GPU work shifting (PME on GPU)

- **upgrading the GPU** yields large performance increase, whereas
- exchanging the rest of a node (CPU, ..) can be a **waste of money**
- optimal hardware balance: ~15 core-GHz per 2080 GPU
- results transfer to GROMACS 2019 as well
 - bonded interactions → CUDA GPU
 - PME offload with OpenCL \rightarrow AMD GPUs

Additional Material

- want to compare your own hardware and contribute to benchmarking? <u>https://www.mpibpc.mpg.de/grubmueller/bench</u> has various **benchmark .tprs for download** (CC licensed)
- Related publications:
 - GROMACS 2018/2019: More Bang for Your Buck: Improved use of GPU Nodes for GROMACS 2018
 - JCC <u>https://onlinelibrary.wiley.com/doi/10.1002/jcc.26011</u>
 - arXiv https://arxiv.org/abs/1903.05918
 - Summary **poster:** <u>https://www.mpibpc.mpg.de/grubmueller/kutzner/posters</u>
 - GROMACS 4.6/5.0: Best bang for your buck: GPU nodes for GROMACS biomolecular simulations
 - JCC <u>https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.24030</u>
 - arXiv https://arxiv.org/abs/1507.00898

Acknowledgments

The Department of Theoretical & Computational Biophysics @ MPI for Biophysical Chemistry Göttingen

Markus Rampp, Hermann Lederer (Max Planck Computing & Data Facility)

Audience Q&A session

 Please use the Questions function in GoToWebinar application

 Any other questions or points to discuss after the live webinar? Join the discussions at http:// ask.bioexcel.eu.

Coming up next!

12 Sept 2019

Enhanced molecular simulations with PLUMED

