
Compute power optimization

by cluster & simulation setup

Carsten Kutzner

MPI for biophysical Chemistry, Göttingen
Theoretical and Computational Biophysics

GROMACS Workshop, Göttingen, 2016-05-19

I have access to
compute resources

I want to buy a
cluster

(core-h limited) (money limited)

Q. How to produce as much MD trajectory
as possible for my science?

Q1. How can optimal
performance  
be obtained?

Q2. What is the optimal
hardware to run
GROMACS on?

Q1. 
How can optimal GROMACS performance be obtained?

Before the simulation:  
The foundation of good performance

compilation, e.g. compiler, SIMD instructions, MPI library

system setup, e.g. virtual sites 

When launching mdrun: 
main benefits come from optimizing the parallel run settings

reach a balanced computational load

keep communication overhead small

Coul. + vdW make up for most of the time step
PME decomposes these into SR and LR
contributions
SR can be efficiently calculated in direct space
LR can be efficiently calculated in reciprocal
space
recip. part needs FT of charge density 
 
 

PME allows to shift work between real, SR (PP),
and reciprocal, LR (PME), space parts  
(balance cutoff : grid spacing)

3D FFT

solve PME

3D inverse FFT

SR forces

spread charges

bonded forces

interpolate forces

3D FFT

solve PME

3D inverse FFT

SR forces

spread charges

bonded forces

interpolate forces

neighbor searching neighbor searching

update coordinates update coordinates

3D FFT

solve PME

3D inverse FFT

SR forces

spread charges

bonded forces

interpolate forces

neighbor searching

update coordinates

domain decomp. domain decomp. domain decomp.

initial xi, vi

neighbor
searching

step?

Y

N

Recap: GROMACS serial time step

Coulomb &
van der
Waals

interactions

communication
intense in parallel

more PME/CPU workmore PP/GPU work

direct space interactions
decomposed into domains rMPI
= nx x ny x nz 
 
 
 
 
 
 
 

reciprocal space / LR PME
use rMPI slabs

neighbor
searching

step?

initial xi, vi

3D FFT

solve PME

3D inverse FFT

neighbor searching

SR forces

spread charges

bonded forces

interpolate forces

update coordinates

Y

N
r2
r1
r0 r3

...

r3r2r1 ...

3D FFT

solve PME

3D inverse FFT

SR forces

spread charges

bonded forces

interpolate forces

3D FFT

solve PME

3D inverse FFT

SR forces

spread charges

bonded forces

interpolate forces

neighbor searching neighbor searching

update coordinates update coordinates

3D FFT

solve PME

3D inverse FFT

SR forces

spread charges

bonded forces

interpolate forces

neighbor searching

update coordinates

domain decomp. domain decomp. domain decomp.

initial xi, vi

neighbor
searching

step?

Y

N

OpenMP thread

MPI rank
Recap: GROMACS parallel time step

r0 r1 r2

ü boundary layer communication

M all-to-all communication r2

during FFT grid transpose

PME calculation cost is
O(N log N) with N atoms,
but in parallel, PME
communication becomes
the bottleneck
number of messages
increases by r2, therefore
also total latency

r3r2r1 ...
r3

r2
r1

...

M all-to-all
 r2 messages

Independent calculation of SR and LR forces

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

send forces

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

send forces

update coordinates update coordinates

domain decomp. domain decomp.

initial xi, vi

neighbor
searching

step?

Y

N

send charges send charges receive charges receive charges

send positions send positions receive positions receive positions

Y

SR forces

bonded forces

neighbor searching

neighbor
searching

step?N

SR forces

bonded forces

neighbor searching

neighbor
searching

step?N

receive forcesreceive forces

neighbor
searching

step?

Y
N

SR processes (direct space, PP) LR processes (Fourier space, PME)

offload LR electrostatics to a subset of MPI ranks
typically 1/4 à reduces # of messages 16-fold

SR non-bonded forces can be offloaded to GPUs

neighbor searching neighbor searching

update coordinates update coordinates

domain decomp. domain decomp.

initial xi, vi

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

3D FFT
solve PME

3D inverse FFT

spread charges

interpolate forces

neighbor
searching

step?

Y
N x, q

SR non-
bonded
forces

SR non-
bonded
forces

f, Ef, E

bonded forces bonded forces

x, q

1. Number of SR (PP) vs. LR (PME)
processes is statically assigned  
 
 
 
 
 
 

2. PME allows to shift work between real
and reciprocal space parts! 
à fine-tune SR (PP) vs. LR (PME)
(balance cutoff : grid spacing)  
 
 

3. Balance direct space workload  
between SR domains

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

send forces

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

send forces

update coordinates update coordinates

domain decomp. domain decomp.

initial xi, vi

neighbor
searching

step?

Y

N

send charges send charges receive charges receive charges

send positions send positions receive positions receive positions

Y

SR forces

bonded forces

neighbor searching

neighbor
searching

step?N

SR forces

bonded forces

neighbor searching

neighbor
searching

step?N

receive forcesreceive forces

neighbor
searching

step?

Y
N

more PME/CPU workmore PP/GPU work

Automatic multi-level load balancing

1. Number of SR (PP) vs. LR (PME)
processes is statically assigned  
 
 
 
 
 
 

2. PME allows to shift work between real
and reciprocal space parts! 
à fine-tune SR (PP) vs. LR (PME)
(balance cutoff : grid spacing)  
 
 

3. Balance direct space workload  
between SR domains

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

send forces

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

send forces

update coordinates update coordinates

domain decomp. domain decomp.

initial xi, vi

neighbor
searching

step?

Y

N

send charges send charges receive charges receive charges

send positions send positions receive positions receive positions

Y

SR forces

bonded forces

neighbor searching

neighbor
searching

step?N

SR forces

bonded forces

neighbor searching

neighbor
searching

step?N

receive forcesreceive forces

neighbor
searching

step?

Y
N

more PME/CPU workmore PP/GPU work

staticall
y

assigned

continuou
sly

once at s
tart

of simulation

Automatic multi-level load balancing

Automatic multi-level load balancing

good news: 
 
on single nodes with a 1 CPU and opt. 1 GPU,  
GROMACS’ automatic settings often already give optimal
performance (thread-MPI) 
 
 

however, …  
 
on multi-GPU or multi-socket CPU nodes,  
or on a cluster of nodes,  
manual tuning will in most cases enhance performance

CPU

GPU

CPU CPU

GPU GPU

CPU

GPU

Tips & tricks for optimal GROMACS performance

If in doubt, make a benchmark
Most importantly:

testing different settings just takes few minutes

will directly uncover the optimal settings  
for your MD system on your hardware

the following demonstrations were done with these 2 benchmarks:

3 Systematic performance evaluation

Benchmark input systems

Table 1: Specifications of the MD benchmark systems.

MD system membrane protein (MEM) ribosome (RIB)

particles 81,743 2,136,412
system size (nm) 10.8⇥10.2⇥9.6 31.2⇥31.2⇥31.2
time step length (fs) 2 4
cutoff radiia (nm) 1.0 1.0
PME grid spacinga (nm) 0.120 0.135
neighborlist update freq. CPU 10 25
neighborlist update freq. GPU 40 40
load balancing time steps 5,000 – 10,000 1,000 – 5,000
benchmark time steps 5,000 1,000 – 5,000

aTable lists the initial values of Coulomb cutoff and PME grid spacing. These are adjusted for optimal load balance
at the beginning of a simulation.

For the performance evaluation on different hardware configurations we chose two represen-

tative biomolecular benchmark systems as summarized in Table 1. MEM is a membrane channel

protein embedded in a lipid bilayer surrounded by water and ions. With its size of ⇡ 80 k atoms

it serves as a prototypic example for a large class of setups used to study all kinds of membrane-

embedded proteins. RIB is a bacterial ribosome in water with ions9 and with more than two million

atoms an example of a rather large MD system that is usually run in parallel across several nodes.

Software environment

The benchmarks have been carried out with the most recent version of GROMACS 4.6 available

at the time of testing (see 5th column of Table 2). Results obtained with version 4.6 will in the

majority of cases hold for version 5.0 since the performance of CPU and GPU compute kernels

have not changed substantially. Moreover, as both compute kernel, threading and heterogeneous

parallelization design remains largely unchanged, performance characteristics and optimization

10

Both automatic load balancing mechanisms  
need time to reach the optimum
Reject the initial time steps from performance measurement
with
mdrun	-resetstep	2000 
mdrun	-resethway

Getting useful performance numbers in benchmarks
Tip 1 of 10:

0 50 100 150 200

0.84

0.88

0.92

0.96

1

time step
tim

e
fo

r 1
0

st
ep

s
/ t

0

8x1x1

4x4x1

8x2x1

8x2x2

4x4x4

8x4x4

domain decom-
position grid

DD		step	39	load	imb.:	force	14.8%	
step			80:	timed	with	pme	grid	96	96	240,	coulomb	cutoff	1.200:	2835.1	M-cycles	
step		160:	timed	with	pme	grid	84	84	208,	coulomb	cutoff	1.311:	2580.3	M-cycles	
step		240:	timed	with	pme	grid	72	72	192,	coulomb	cutoff	1.529:	3392.3	M-cycles	
step		320:	timed	with	pme	grid	96	96	240,	coulomb	cutoff	1.200:	2645.2	M-cycles	
step		400:	timed	with	pme	grid	96	96	224,	coulomb	cutoff	1.212:	2569.9	M-cycles	

…	
step	1200:	timed	with	pme	grid	96	96	208,	coulomb	cutoff	1.305:	2669.8	M-cycles	
step	1280:	timed	with	pme	grid	84	84	208,	coulomb	cutoff	1.311:	2677.5	M-cycles	
step	1360:	timed	with	pme	grid	84	84	200,	coulomb	cutoff	1.358:	2770.5	M-cycles	
step	1440:	timed	with	pme	grid	80	80	200,	coulomb	cutoff	1.376:	2832.6	M-cycles	

														optimal	pme	grid	96	96	224,	coulomb	cutoff	1.212	
DD		step	4999		vol	min/aver	0.777		load	imb.:	force		0.6%	
DD		step	9999		vol	min/aver	0.769		load	imb.:	force		1.1%

Both automatic load balancing mechanisms  
need time to reach the optimum
Reject the initial time steps from performance measurement
with
mdrun	-resetstep	2000 
mdrun	-resethway

Getting useful performance numbers in benchmarks

md.log

Tip 1 of 10:

The optimal SR : LR process ratio (CPU nodes)

‣ GROMACS estimates SR : LR load,  
chooses near-optimal setting, based on
cutoff + grid settings, but cannot know
about network

‣ e.g. 
12 SR + 4 LR for 16 MPI processes 

‣ gmx	tune_pme tries settings around
this value, e.g. 
14 : 2 
13 : 3 
12 : 4 * 
11 : 5 
10 : 6 
16 : 0 (no separate LR processes) 

‣ For > 8 MPI ranks on CPU nodes
(single or multiple nodes), usually
separate PME nodes perform better

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

send forces

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

send forces

update coordinates update coordinates

domain decomp. domain decomp.

initial xi, vi

neighbor
searching

step?

Y

N

send charges send charges receive charges receive charges

send positions send positions receive positions receive positions

Y

SR forces

bonded forces

neighbor searching

neighbor
searching

step?N

SR forces

bonded forces

neighbor searching

neighbor
searching

step?N

receive forcesreceive forces

neighbor
searching

step?

Y
N

Tip 2 of 10:

The optimal SR : LR process ratio (CPU nodes)

‣ GROMACS estimates SR : LR load,  
chooses near-optimal setting, based on
cutoff + grid settings, but cannot know
about network

‣ e.g. 
12 SR + 4 LR for 16 MPI processes 

‣ gmx	tune_pme tries settings around
this value, e.g. 
14 : 2 
13 : 3 
12 : 4 * 
11 : 5 
10 : 6 
16 : 0 (no separate LR processes) 

‣ For > 8 MPI ranks on CPU nodes
(single or multiple nodes), usually
separate PME nodes perform better

Performance with
 and without tuning

8 16 24 32 48
0

5

10

15

20

25

pe
rfo

rm
an

ce
 [n

s/
da

y]

3.
2

4.6
5.7

6.7

8.1 9.0
10.1 10.8

13.1 12.4

16.0

40
processes

Tip 2 of 10:

+10-30%

DPPC, 2fs, 120k atoms, 8 core intel Harpertown nodes, IB

The optimal mix of threads & ranks (single node)
Tip 3 of 10:

MPI + OpenMP 
à work can be distributed in various ways
pure OpenMP performs well on single
nodes, but does not scale well across
sockets
à on multi-socket nodes pure MPI is best
OpenMP+MPI adds overhead  

2x 8-core E5-2690 (Sandy Bridge), RNAse protein,
solvated, 24k atoms, PME, 0.9 nm cutoffs (Fig. taken
from S Pall, MJ Abraham, C Kutzner, B Hess, E
Lindahl, EASC 2014, Springer, 2015)

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80
OpenMP

MPI

MPI+OpenMP (two ranks)

#cores

p
e

rf
o

rm
a

n
ce

 (
n

s/
d

a
y)

Figure 3: Comparison of single-node simulation performance using MPI,
OpenMP, and combined MPI+OpenMP parallelization. The OpenMP multi-
threading (blue) achieves the highest performance and near linear scaling up
to 8 threads deteriorating only when threads on OpenMP regions need to
communicate across the system bus. In contrast, the MPI-only paralel runs
(red), requiring less communication scale well across sockets. Combining
MPI and OpenMP parallelization with two ranks and varying number of
threads (green) results in worse performance due to the added overhead of
the two parallizations.
The simulations were carried out on a dual-socket node with 8-core Intel Xeon
E5-2690 (2.8 GHz Sandy Bridge). Input system: RNAse protein, solvated in
a rectangular box, 24k atoms, PME electrostatics, 0.9 nm cut-o↵.

11

CPU CPUCPU

CPU CPU

GPU GPU

CPU

GPU
With GPUs it is
beneficial to have few
large domains
offloading their data to
the GPU  
à use pure OpenMP 
 

Multi-socket GPU
nodes 
 à find optimum!

The optimal mix of threads & ranks (single node)
Tip 3 of 10:

2x E5-2680v2 (2x 10 cores) processors with 4x GTX 980 GPUs

threads
ranks

1
40

2
20

4
10

5
8

8
5
10
4

20
2

1
40

2
20

4
10

5
8

8
5
10
4

20
2

MEM RIB

no GPU

1 GPU

2 GPUs
3 GPUs

4 GPUs

with DLB
no DLB

CPU nodes:

ü pure MPI

GPU nodes:

ü several threads/rank

The optimal mix of threads & ranks (single node)
Tip 3 of 10:

2x E5-2680v2 (2x 10 cores) processors with 4x GTX 980 GPUs

threads
ranks

1
40

2
20

4
10

5
8

8
5
10
4

20
2

1
40

2
20

4
10

5
8

8
5
10
4

20
2

MEM RIB

no GPU

1 GPU

2 GPUs
3 GPUs

4 GPUs

with DLB
no DLB

+30 %

GPU nodes:

ü several threads/rank

The optimal mix of threads & ranks (multi node)
Tip 4 of 10:

2x E5-2680v2 “Ivy Bridge” processors / node with 2x K20X GPUs, FDR-14 IB (Hydra)

threads per rank

CPU CPU

GPU GPU

CPU CPU

CPU nodes:

pure MPI or 2 OpenMP

threads per rank

With GPUs:

2-5 threads per rank

Hyperthreading is beneficial at moderate

parallelization

Tip 5 of 10:

2x E5-2680v2 “Ivy Bridge” processors / node with 2x K20X GPUs, FDR-14 IB (Hydra)

40 threads per
node (HT)

20 threads
per nodeHT yields  

+10 – 15%
performance  
(single node)
effect decreases
with higher
parallelization

>1000 atoms/core for good parallel efficiency
Tip 6 of 10:

2x E5-2680v2 “Ivy Bridge” processors / node with 2x K20X GPUs, FDR-14 IB (Hydra)

4,000 atoms/
core

130
atoms/core

E=0.25

100,000
atoms/core

400 atoms/core

E=0.39

1,000 atoms/core

E=0.71

6,500 atoms/core

E=0.73

mpirun	-np	64	mdrun_mpi	-npme	32

Separate LR PME nodes on GPU nodes
Tip 7 of 10:

usual approach would leave GPUs unused
assigning half of the ranks to LR PME and interleave PME : PP nodes

SR
direct
space

SR
direct
space

SR
direct
space

LR
PME LR PME

SR dir

LR PME

SR dir

LR PME

SR dir

LR PME

SR dir

x

4 PP (SR)
threads

6 PME (LR)
threads

CPU0 CPU1 CPU0 CPU1

GPU0 GPU1 GPU0 GPU1

Infiniband Switch

node 3

node 1 node 2

p1 p3

p2 p4

SR ranks

LR ranks

mpirun	-np	128	mdrun_mpi	-npme	64	-ntomp	4	-ntomp_pme	6	-gpu_id	01	…

Separate LR PME nodes on GPU nodes
Tip 7 of 10:

assigning half of the ranks to LR PME, balance LR:SR load via threads

Impact of the compiler
Tip 8 of 10:

Table 3: GROMACS 4.6 single-node performance with thread-MPI (and CUDA 6.0) using differ-
ent compiler versions on AMD and Intel hardware with and without GPUs. The last column shows
the speedup compared to GCC 4.4.7 calculated from the average of the speedups of the MEM and
RIB benchmarks.

Hardware Compiler AQP (ns/d) RIB (ns/d) av. speedup (%)

AMD 6380 ⇥ 2 GCC 4.4.7 14 0.99 0
GCC 4.7.0 15.6 1.11 11.8
GCC 4.8.3 16 1.14 14.7
ICC 13.1 12.5 0.96 �6.9

AMD 6380 ⇥ 2 GCC 4.4.7 40.5 3.04 0
with 2⇥ GTX 980+ GCC 4.7.0 38.9 3.09 �1.2

GCC 4.8.3 40.2 3.14 1.3
ICC 13.1 39.7 3.09 �0.2

Intel E5-2680v2 ⇥ 2 GCC 4.4.7 21.6 1.63 0
GCC 4.8.3 26.8 1.86 19.1
ICC 13.1 24.6 1.88 14.6
ICC 14.0.2 25.2 1.81 13.9

Intel E5-2680v2 ⇥ 2 GCC 4.4.7 61.2 4.41 0
with 2⇥ GTX 980+ GCC 4.8.3 62.3 4.69 4.1

ICC 13.1 60.3 4.78 3.5

GROMACS can be compiled in mixed precision (MP) or in double precision (DP). DP treats

all variables with double precision accuracy. MP treats almost all variables with DP accuracy with

the exception of the large arrays that contain the positions, forces, and velocities. All variables

requiring a high precision, like energies and the virial are always computed in double precision

accuracy, and it was shown that MP does not deteriorate energy conservation.1 Since MP produces

1.4 – 2⇥ more trajectory in the same compute time, it is in most cases preferable over DP.10

Therefore, we used MP for the benchmarking.

Table 3 shows the impact of the compiler version on simulation performance. From all tested

compilers, GCC 4.8 provides the fastest executable on both AMD and Intel platforms. On GPU

nodes, the difference between the fastest and slowest executable is at most 4%, but on nodes

without GPUs it is considerable and can reach up to 20%. Table 3 can also be used to normalize

benchmark results obtained with different compilers.

12

MEM

recent gcc’s >= 4.7 perform best
can make a 25% difference

optimized
performance!

Multi-simulations enhance throughput
Tip 9 of 10:

The GPU is typically idle for 15 – 40 % of a
time step

Multi-simulation = running several replicas of a
system  
mpirun	-np	4	mdrun	-multi	4	-gpu_id	0011	-s	in.tpr

SR non bonded forces can interlock on GPUs
so that aggregated performance is higher

+ benefits from higher efficiency at lower
parallelization

idle

idle

CPUGPU

neighbor searching

update coordinates

domain decomp.

3D FFT

solve PME

3D inverse FFT

spread charges

interpolate forces

SR non-
bonded
forces

f, E

bonded forces

x, q

Multi-simulations enhance throughput
Tip 9 of 10:

GL
C

7.0
27.3
39.1

19.3
55.8
66.6

A

RN
A

Intel 5960X + Quadro M6000 - 4 repl
Intel 5960X + Quadro M6000
Intel 5960X
AMD 6376 + GTX TITAN - 8 repl
AMD 6376 + GTX TITAN
AMD 6376

64.4
225

389
205

507
700B

0 500 1000 1500 2000

VI
L

183
548

1353
549

1308
1950

P (ns/d)

0 10 20 30 40 50 60 70 80 90

M
EM

26.82x E5-2680v2
52.0+ GTX 980

76.4+ GTX 980 - 5 repl
46.4+ 2x GTX 980 - auto

62.3+ 2x GTX 980 - optimized
87.0+ 2x GTX 980 - 5 repl

P (ns/d)

2x E5-2680v2 node with 2x GTX980 GPUs 2x10 cores, 40 hyperthreads

+40%

+47%

Check which MPI library performs best
Tip 10 of 10:

IBM PE MPI

Intel MPI

typical trajectory gain

virtual sites x 2

multi simulations 50+ %

optimizing threads per rank on GPU nodes 20 – 40 %

Determine optimal # of PME nodes on CPU
nodes using gmx tune_pme 10 – 30 %

Compiler up to 20 %  
on CPU nodes

hyper threading 10 – 15%

Q1 summary
tr

aj
ec

to
ry

 le
ng

th
 g

ain

‘optimal’ in terms of … ? 

performance-to-price ratio
achievable single-node performance
parallel performance “time-to-solution”
energy consumption “energy-to-solution”
rack space requirements

with S Páll, M Fechner, A Esztermann, BL de Groot and H Grubmüller

Q2.

What is the ‘optimal’ hardware to run GROMACS on?

Our goal: Cost-efficient simulations.  
Maximize MD trajectory on a fixed budget  
 

Method: Determine price + performance for >50 hardware
configurations, 2 MD systems, 12 CPU types, 13 GPU
types 

determine ‘optimal’ performance per node type
optimize threads x ranks
optimize number of LR PME nodes
use HT, where beneficial

with S Páll, M Fechner, A Esztermann, BL de Groot and H Grubmüller

Q2.

What is the ‘optimal’ hardware to run GROMACS on?

Table 4: Some GPU models that can be used by GROMACS. The upper part of the table lists HPC-
class Tesla cards, below are the consumer-class GeForce GTX cards. For the GTX 980 GPUs, cards
by different manufacturers differing in clock rate were benchmarked, + and ‡ symbols are used to
differentiate between them.

NVIDIA architec- CUDA clock rate memory SP throughput ⇡ price
model ture cores (MHz) (GB) (Gflop/s) (e) (net)

Tesla K20Xa Kepler GK110 2,688 732 6 3,935 2,800
Tesla K40a Kepler GK110 2,880 745 12 4,291 3,100

GTX 680 Kepler GK104 1,536 1,058 2 3,250 300
GTX 770 Kepler GK104 1,536 1,110 2 3,410 320
GTX 780 Kepler GK110 2,304 902 3 4,156 390
GTX 780Ti Kepler GK110 2,880 928 3 5,345 520
GTX Titan Kepler GK110 2,688 928 6 4,989 750
GTX Titan X Maxwell GM200 3,072 1,002 12 6,156
GTX 970 Maxwell GM204 1,664 1,050 4 3,494 250
GTX 980 Maxwell GM204 2,048 1,126 4 4,612 430
GTX 980+ Maxwell GM204 2,048 1,266 4 5,186 450
GTX 980‡ Maxwell GM204 2,048 1,304 4 5,341 450

aSee Figure 4 for how performance varies with clock rate of the Tesla cards, all other benchmarks have been done
with the base clock rates reported in this table.

GPU acceleration

GROMACS 4.6 and later supports CUDA-compatible GPUs with compute capability 2.0 or higher.

Table 4 lists a selection of modern GPUs including some relevant technical information. The single

precision (SP) column shows the GPU’s maximum theoretical SP flop rate, calculated from the

base clock rate (as reported by NVIDIA’s deviceQuery program) times the number of cores times

two floating-point operations per core and cycle. GROMACS exclusively uses single precision

floating point (and integer) arithmetic on GPUs and can therefore only be used in mixed precision

mode with GPUs. Note that at comparable theoretical SP flop rate the Maxwell GM204 cards yield

a higher effective performance than Kepler generation cards due to better instruction scheduling

and reduced instruction latencies.

Since the GROMACS CUDA non-bonded kernels are by design strongly compute-bound,3

GPU main memory performance has little impact on their performance. Hence, peak performance

13

GPUs used in the test nodes

2014

MEM uses 50 MB of GPU
RAM, RIB 225 MB

Table 5: Frequency of consumer-class GPUs exhibiting memory errors.

NVIDIA GPU memory # of cards # memtest # cards
model checker13 tested iterations with errors

GTX 580 memtestG80 1 10, 000 –
GTX 680 memtestG80 50 4, 500 –
GTX 770 memtestG80 100 4, 500 –
GTX 780 memtestCL 1 50, 000 –
GTX Titan memtestCL 1 50, 000 –
GTX 780Ti memtestG80 70 4⇥ 10, 000 6
GTX 980 memtestG80 4 4⇥ 10, 000 –
GTX 980+

memtestG80 70 4⇥ 10, 000 2

980+). Error rates were close to constant for each of the four repeats over 10,000 iterations. We

strongly recommend to carry out these stress-tests and replace defective cards before using them

in production simulations.

Benchmarking procedure

Balancing the computational load takes mdrun up to a few thousand time steps at the beginning

of a simulation. During the load balancing phase performance is neither stable nor optimal, so we

excluded the first 1,000 – 10,000 steps from measurements using the -resetstep or -resethway

command line switches. Whereas execution on non-GPU nodes is under most circumstances faster

with activated DLB, on GPU nodes the situation is not so clear due to the competition between DD

and CPU-GPU load balancing mentioned in Section 2. We therefore tested both with and without

DLB in most of the GPU benchmarks.

The benchmarks were run for 2,000 – 15,000 steps, which translates to a couple of minutes

wall clock runtime for the single-node benchmarks. We aimed to find the optimal command-

line settings for each hardware configuration by testing the various parameter combinations as

mentioned in Section 2. On individual nodes with Nc cores, to evaluate criteria C1 – C2, we tested

the following settings using thread-MPI ranks:

(a) Nrank = Nc

15

Consumer GPU error rates

consumer GPUs do not have ECC memory, thus cannot
correct for rare bit-flips
however, GPU stress tests can be used to sort out
problematic GPUs

(13) I. S. Hague, V. S. Pande, In 10th IEEE/ACM International conference on cluster, cloud and grid computing: Stanford University, 2010

Consumer GPU frequency throttling due to overheating

GeForce GTX TITAN

T

GPU freq

start mdrun

Consumer GPUs
optimized for acoustics:

fan speed limited to
60% of max
reduce GPU frequency
if too hot

Performances and hardware investment

GROMACS 4.6

CPU

nodes

nodes with

consumer-

class GPUs

u2

equal

perf
orm

ance-t
o-p

ric
e

nodes with

Tesla GPUs

12 2

4

1

8

4

1

2

4

8

16

8

16

ha
rd

wa
re

 c
os

ts
 (€

)

performance (ns/d)

2x as good

Performances and hardware investment

adding the first
GPU yields the largest
performance benefit

Energy efficiency

Over cluster lifetime, energy costs become comparable to hardware costs
assuming 5 yr of operation and 0.2 EUR / kWh (incl. cooling)

Table 1

Node ns/d microseconds power draw
(W)

energy costs (Euro) node costs
(Euro)

traj costs (Euro /
microsecond)

just node just energy yield (ns per
1000 Euro)

2x E5-2670v2 1,38 2,5185 252 2207,52 3360 €2211 €1334 €877 €2211 452

2x E5-2670v2 + 780Ti 3,3 6,0225 519 4546,44 3880 €1399 €644 €755 €1399 715

2x E5-2670v2 + 2x 780Ti 3,87 7,06275 666 5834,16 4400 €1449 €623 €826 €1449 690

2x E5-2670v2 + 3x 780Ti 4,17 7,61025 933 8173,08 5430 €1787 €714 €1074 €1787 559

2x E5-2670v2 + 4x 780Ti 4,17 7,61025 960 8409,6 5950 €1887 €782 €1105 €1887 530

2x E5-2670v2 + 980 3,86 7,0445 408 3574,08 3780 €1044 €537 €507 €1044 958

2x E5-2670v2 + 2x 980 4,18 7,6285 552 4835,52 4200 €1184 €551 €634 €1184 844

2x E5-2670v2 + 3x 980 4,2 7,665 696 6096,96 5130 €1465 €669 €795 €1465 683

2x E5-2670v2 + 4x 980 4,2 7,665 840 7358,4 5550 €1684 €724 €960 €1684 594

2x E5-2680v2 1,86 3,3945 446 3906,96 4400 €2447 €1296 €1151 €2447 409

2x E5-2680v2 + 980 3,99 7,28175 622 5448,72 4850 €1414 €666 €748 €1414 707

2x E5-2680v2 + 2x 980 4,69 8,55925 799 6999,24 5300 €1437 €619 €818 €1437 696

2x E5-2680v2 + 3x 980 4,85 8,85125 926 8111,76 5750 €1566 €650 €916 €1566 639

2x E5-2680v2 + 4x 980 4,96 9,052 1092 9565,92 6200 €1742 €685 €1057 €1742 574

Trajectory production costs per microsecond

€0

€500

€1000

€1500

€2000

€2500

2x
 E

5-
26

70
v2

2x
 E

5-
26

70
v2

 +
 7

80
Ti

2x
 E

5-
26

70
v2

 +
 2

x
78

0T
i

2x
 E

5-
26

70
v2

 +
 3

x
78

0T
i

2x
 E

5-
26

70
v2

 +
 4

x
78

0T
i

2x
 E

5-
26

70
v2

 +
 9

80

2x
 E

5-
26

70
v2

 +
 2

x
98

0

2x
 E

5-
26

70
v2

 +
 3

x
98

0

2x
 E

5-
26

70
v2

 +
 4

x
98

0

2x
 E

5-
26

80
v2

2x
 E

5-
26

80
v2

 +
 9

80

2x
 E

5-
26

80
v2

 +
 2

x
98

0

2x
 E

5-
26

80
v2

 +
 3

x
98

0

2x
 E

5-
26

80
v2

 +
 4

x
98

0

hardware
energy

Trajectory costs per microsecond

2x E5-2680v2

2x E5-2680v2 + 1 GPU

2x E5-2680v2 + 2 GPUs

2x E5-2680v2 + 3 GPUs

2x E5-2680v2 + 4 GPUs

€0 €750 €1500 €2250 €3000

�1

energyhardware0
1
2
3
4

GPUs

balanced CPU/GPU
resources are

necessary!
2x E5-2680v2 (2x 10 core) with GTX 980 GPUs, RIB benchmark

trajectory yield (ns / 1000 €)
0 250 500 750 1000

2x E5-2670v2
+1 GPU (GTX 780Ti)

2 GPUs
3 GPUs

4 GPUs
+1 GPU (GTX 980)

2 GPUs
3 GPUs

4 GPUs

2x E5-2680v2
+1 GPU (GTX 980)

2 GPUs
3 GPUs

4 GPUs

Energy efficiency

Fixed budget trajectory yield taking into account energy + cooling
(0.2 EUR / kWh) RIB

don’t add too
many GPUs if you have

to pay for energy
consumption

Q2 conclusions

Nodes with 1–2 consumer-class GPUs produce >2x
as much trajectory as CPU nodes or nodes with
“professional” Tesla GPUs

Highest energy efficiency for nodes with balanced
CPU-GPU resources

more details, tweaks and benchmark scripts in  
Best Bang for Your Buck:  
GPU Nodes for GROMACS Biomolecular Simulations 
C Kutzner, S Páll, M Fechner, A Esztermann, BL de Groot, H Grubmüller,
J. Comput. Chem. 36, 1990–2008 (2015)

 

Table 1

Node ns/d microseconds power draw
(W)

energy costs (Euro) node costs
(Euro)

traj costs (Euro /
microsecond)

just node just energy yield (ns per
1000 Euro)

2x E5-2670v2 1,38 2,5185 252 2207,52 3360 €2211 €1334 €877 €2211 452

2x E5-2670v2 + 780Ti 3,3 6,0225 519 4546,44 3880 €1399 €644 €755 €1399 715

2x E5-2670v2 + 2x 780Ti 3,87 7,06275 666 5834,16 4400 €1449 €623 €826 €1449 690

2x E5-2670v2 + 3x 780Ti 4,17 7,61025 933 8173,08 5430 €1787 €714 €1074 €1787 559

2x E5-2670v2 + 4x 780Ti 4,17 7,61025 960 8409,6 5950 €1887 €782 €1105 €1887 530

2x E5-2670v2 + 980 3,86 7,0445 408 3574,08 3780 €1044 €537 €507 €1044 958

2x E5-2670v2 + 2x 980 4,18 7,6285 552 4835,52 4200 €1184 €551 €634 €1184 844

2x E5-2670v2 + 3x 980 4,2 7,665 696 6096,96 5130 €1465 €669 €795 €1465 683

2x E5-2670v2 + 4x 980 4,2 7,665 840 7358,4 5550 €1684 €724 €960 €1684 594

2x E5-2680v2 1,86 3,3945 446 3906,96 4400 €2447 €1296 €1151 €2447 409

2x E5-2680v2 + 980 3,99 7,28175 622 5448,72 4850 €1414 €666 €748 €1414 707

2x E5-2680v2 + 2x 980 4,69 8,55925 799 6999,24 5300 €1437 €619 €818 €1437 696

2x E5-2680v2 + 3x 980 4,85 8,85125 926 8111,76 5750 €1566 €650 €916 €1566 639

2x E5-2680v2 + 4x 980 4,96 9,052 1092 9565,92 6200 €1742 €685 €1057 €1742 574

Trajectory production costs per microsecond

€0

€500

€1000

€1500

€2000

€2500

2x
 E

5-
26

70
v2

2x
 E

5-
26

70
v2

 +
 7

80
Ti

2x
 E

5-
26

70
v2

 +
 2

x
78

0T
i

2x
 E

5-
26

70
v2

 +
 3

x
78

0T
i

2x
 E

5-
26

70
v2

 +
 4

x
78

0T
i

2x
 E

5-
26

70
v2

 +
 9

80

2x
 E

5-
26

70
v2

 +
 2

x
98

0

2x
 E

5-
26

70
v2

 +
 3

x
98

0

2x
 E

5-
26

70
v2

 +
 4

x
98

0

2x
 E

5-
26

80
v2

2x
 E

5-
26

80
v2

 +
 9

80

2x
 E

5-
26

80
v2

 +
 2

x
98

0

2x
 E

5-
26

80
v2

 +
 3

x
98

0

2x
 E

5-
26

80
v2

 +
 4

x
98

0

hardware
energy

Trajectory costs per microsecond

2x E5-2680v2

2x E5-2680v2 + 1 GPU

2x E5-2680v2 + 2 GPUs

2x E5-2680v2 + 3 GPUs

2x E5-2680v2 + 4 GPUs

€0 €750 €1500 €2250 €3000

�1

hardware energy
GPUs
0
1
2
3
4

GROMACS 4.6

CPU

nodes

nodes with

consumer-

class GPUs

u2

equal

perf
orm

ance-t
o-p

ric
e

nodes with

Tesla GPUs

12 2

4

1

8

4

1

2

4

8

16

8

16

