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I have access to 
compute resources

I want to buy a 
cluster

(core-h limited) (money limited)

Q.  How to produce as much MD trajectory 
as possible for my science?

Q1.  How can optimal 
performance  
be obtained?

Q2. What is the optimal 
hardware to run 
GROMACS on?



Q1. 
How can optimal GROMACS performance be obtained?

Before the simulation:  
The foundation of good performance 

compilation, e.g. compiler, SIMD instructions, MPI library 

system setup, e.g. virtual sites 

When launching mdrun: 
main benefits come from optimizing the parallel run settings 

reach a balanced computational load 

keep communication overhead small



Coul. + vdW make up for most of the time step 
PME decomposes these into SR and LR 
contributions 
SR can be efficiently calculated in direct space 
LR can be efficiently calculated in reciprocal 
space 
recip. part needs FT of charge density 
 
 

PME allows to shift work between real, SR (PP), 
and reciprocal, LR (PME), space parts  
(balance cutoff :  grid spacing)
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direct space interactions 
decomposed into domains rMPI 
= nx x ny x nz 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ü boundary layer communication
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during FFT grid transpose



PME calculation cost is 
O(N log N) with N atoms, 
but in parallel, PME 
communication becomes 
the bottleneck 
number of messages 
increases by r2, therefore 
also total latency

r3r2r1 ...
r3

r2
r1

...

M all-to-all 
     r2 messages



Independent calculation of SR and LR forces
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SR non-bonded forces can be offloaded to GPUs
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1. Number of SR (PP) vs. LR (PME) 
processes is statically assigned  
 
 
 
 
 
 

2. PME allows to shift work between real 
and reciprocal space parts! 
à fine-tune SR (PP) vs. LR (PME)
(balance cutoff :  grid spacing)  
 
 

3. Balance direct space workload  
between SR domains  
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Automatic multi-level load balancing



1. Number of SR (PP) vs. LR (PME) 
processes is statically assigned  
 
 
 
 
 
 

2. PME allows to shift work between real 
and reciprocal space parts! 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Automatic multi-level load balancing

good news: 
 
on single nodes with a 1 CPU and opt. 1 GPU,  
GROMACS’ automatic settings often already give optimal 
performance (thread-MPI) 
 
 

however, …  
 
on multi-GPU or multi-socket CPU nodes,  
or on a cluster of nodes,  
manual tuning will in most cases enhance performance
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CPU CPU

GPU GPU

CPU

GPU



Tips & tricks for optimal GROMACS performance



If in doubt, make a benchmark
Most importantly:

testing different settings just takes few minutes 

will directly uncover the optimal settings  
for your MD system on your hardware 

the following demonstrations were done with these 2 benchmarks:

3 Systematic performance evaluation

Benchmark input systems

Table 1: Specifications of the MD benchmark systems.

MD system membrane protein (MEM) ribosome (RIB)

# particles 81,743 2,136,412
system size (nm) 10.8⇥10.2⇥9.6 31.2⇥31.2⇥31.2
time step length (fs) 2 4
cutoff radiia (nm) 1.0 1.0
PME grid spacinga (nm) 0.120 0.135
neighborlist update freq. CPU 10 25
neighborlist update freq. GPU 40 40
load balancing time steps 5,000 – 10,000 1,000 – 5,000
benchmark time steps 5,000 1,000 – 5,000

aTable lists the initial values of Coulomb cutoff and PME grid spacing. These are adjusted for optimal load balance
at the beginning of a simulation.

For the performance evaluation on different hardware configurations we chose two represen-

tative biomolecular benchmark systems as summarized in Table 1. MEM is a membrane channel

protein embedded in a lipid bilayer surrounded by water and ions. With its size of ⇡ 80 k atoms

it serves as a prototypic example for a large class of setups used to study all kinds of membrane-

embedded proteins. RIB is a bacterial ribosome in water with ions9 and with more than two million

atoms an example of a rather large MD system that is usually run in parallel across several nodes.

Software environment

The benchmarks have been carried out with the most recent version of GROMACS 4.6 available

at the time of testing (see 5th column of Table 2). Results obtained with version 4.6 will in the

majority of cases hold for version 5.0 since the performance of CPU and GPU compute kernels

have not changed substantially. Moreover, as both compute kernel, threading and heterogeneous

parallelization design remains largely unchanged, performance characteristics and optimization

10



Both automatic load balancing mechanisms  
need time to reach the optimum
Reject the initial time steps from performance measurement 
with
mdrun	-resetstep	2000 
mdrun	-resethway

Getting useful performance numbers in benchmarks
Tip 1 of 10:
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The optimal SR : LR process ratio (CPU nodes)

‣ GROMACS estimates SR : LR load,  
chooses near-optimal setting, based on 
cutoff + grid settings, but cannot know 
about network


‣ e.g. 
12 SR + 4 LR for 16 MPI processes 

‣ gmx	tune_pme tries settings around 
this value, e.g. 
14 : 2 
13 : 3 
12 : 4 * 
11 : 5 
10 : 6 
16 : 0 (no separate LR processes) 

‣ For > 8 MPI ranks on CPU nodes 
(single or multiple nodes), usually 
separate PME nodes perform better
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The optimal SR : LR process ratio (CPU nodes)

‣ GROMACS estimates SR : LR load,  
chooses near-optimal setting, based on 
cutoff + grid settings, but cannot know 
about network


‣ e.g. 
12 SR + 4 LR for 16 MPI processes 

‣ gmx	tune_pme tries settings around 
this value, e.g. 
14 : 2 
13 : 3 
12 : 4 * 
11 : 5 
10 : 6 
16 : 0 (no separate LR processes) 

‣ For > 8 MPI ranks on CPU nodes 
(single or multiple nodes), usually 
separate PME nodes perform better
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The optimal mix of threads & ranks (single node)
Tip 3 of 10:

MPI + OpenMP 
à work can be distributed in various ways 
pure OpenMP performs well on single 
nodes, but does not scale well across 
sockets 
à on multi-socket nodes pure MPI is best 
OpenMP+MPI adds overhead  

2x 8-core E5-2690 (Sandy Bridge), RNAse protein, 
solvated, 24k atoms, PME, 0.9 nm cutoffs (Fig. taken 
from S Pall, MJ Abraham, C Kutzner, B Hess, E 
Lindahl, EASC 2014, Springer, 2015)
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Figure 3: Comparison of single-node simulation performance using MPI,
OpenMP, and combined MPI+OpenMP parallelization. The OpenMP multi-
threading (blue) achieves the highest performance and near linear scaling up
to 8 threads deteriorating only when threads on OpenMP regions need to
communicate across the system bus. In contrast, the MPI-only paralel runs
(red), requiring less communication scale well across sockets. Combining
MPI and OpenMP parallelization with two ranks and varying number of
threads (green) results in worse performance due to the added overhead of
the two parallizations.
The simulations were carried out on a dual-socket node with 8-core Intel Xeon
E5-2690 (2.8 GHz Sandy Bridge). Input system: RNAse protein, solvated in
a rectangular box, 24k atoms, PME electrostatics, 0.9 nm cut-o↵.
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With GPUs it is 
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large domains 
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The optimal mix of threads & ranks (single node)
Tip 3 of 10:

2x E5-2680v2 (2x 10 cores) processors with 4x GTX 980 GPUs
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The optimal mix of threads & ranks (single node)
Tip 3 of 10:

2x E5-2680v2 (2x 10 cores) processors with 4x GTX 980 GPUs
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The optimal mix of threads & ranks (multi node)
Tip 4 of 10:

2x E5-2680v2 “Ivy Bridge” processors / node with 2x K20X GPUs, FDR-14 IB (Hydra)

threads per rank

CPU CPU

GPU GPU

CPU CPU

CPU nodes:

pure MPI or 2 OpenMP 

threads per rank

With GPUs:

2-5 threads per rank



Hyperthreading is beneficial at moderate 

parallelization

Tip 5 of 10:

2x E5-2680v2 “Ivy Bridge” processors / node with 2x K20X GPUs, FDR-14 IB (Hydra)

40 threads per 
node (HT)

20 threads 
per nodeHT yields  

+10 – 15% 
performance  
(single node) 
effect decreases 
with higher 
parallelization



>1000 atoms/core for good parallel efficiency
Tip 6 of 10:

2x E5-2680v2 “Ivy Bridge” processors / node with 2x K20X GPUs, FDR-14 IB (Hydra)
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E=0.73



mpirun	-np	64	mdrun_mpi	-npme	32

Separate LR PME nodes on GPU nodes
Tip 7 of 10:

usual approach would leave GPUs unused 
assigning half of the ranks to LR PME and interleave PME : PP nodes
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4 PP (SR) 
threads 

6 PME (LR) 
threads 

CPU0 CPU1 CPU0 CPU1

GPU0 GPU1 GPU0 GPU1

Infiniband Switch

node 3

node 1 node 2

p1 p3

p2 p4

SR ranks

LR ranks

mpirun	-np	128	mdrun_mpi	-npme	64	-ntomp	4	-ntomp_pme	6	-gpu_id	01	…

Separate LR PME nodes on GPU nodes
Tip 7 of 10:

assigning half of the ranks to LR PME, balance LR:SR load via threads



Impact of the compiler
Tip 8 of 10:

Table 3: GROMACS 4.6 single-node performance with thread-MPI (and CUDA 6.0) using differ-
ent compiler versions on AMD and Intel hardware with and without GPUs. The last column shows
the speedup compared to GCC 4.4.7 calculated from the average of the speedups of the MEM and
RIB benchmarks.

Hardware Compiler AQP (ns/d) RIB (ns/d) av. speedup (%)

AMD 6380 ⇥ 2 GCC 4.4.7 14 0.99 0
GCC 4.7.0 15.6 1.11 11.8
GCC 4.8.3 16 1.14 14.7
ICC 13.1 12.5 0.96 �6.9

AMD 6380 ⇥ 2 GCC 4.4.7 40.5 3.04 0
with 2⇥ GTX 980+ GCC 4.7.0 38.9 3.09 �1.2

GCC 4.8.3 40.2 3.14 1.3
ICC 13.1 39.7 3.09 �0.2

Intel E5-2680v2 ⇥ 2 GCC 4.4.7 21.6 1.63 0
GCC 4.8.3 26.8 1.86 19.1
ICC 13.1 24.6 1.88 14.6
ICC 14.0.2 25.2 1.81 13.9

Intel E5-2680v2 ⇥ 2 GCC 4.4.7 61.2 4.41 0
with 2⇥ GTX 980+ GCC 4.8.3 62.3 4.69 4.1

ICC 13.1 60.3 4.78 3.5

GROMACS can be compiled in mixed precision (MP) or in double precision (DP). DP treats

all variables with double precision accuracy. MP treats almost all variables with DP accuracy with

the exception of the large arrays that contain the positions, forces, and velocities. All variables

requiring a high precision, like energies and the virial are always computed in double precision

accuracy, and it was shown that MP does not deteriorate energy conservation.1 Since MP produces

1.4 – 2⇥ more trajectory in the same compute time, it is in most cases preferable over DP.10

Therefore, we used MP for the benchmarking.

Table 3 shows the impact of the compiler version on simulation performance. From all tested

compilers, GCC 4.8 provides the fastest executable on both AMD and Intel platforms. On GPU

nodes, the difference between the fastest and slowest executable is at most 4%, but on nodes

without GPUs it is considerable and can reach up to 20%. Table 3 can also be used to normalize

benchmark results obtained with different compilers.

12
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Multi-simulations enhance throughput
Tip 9 of 10:

The GPU is typically idle for 15 – 40 % of a 
time step 

Multi-simulation = running several replicas of a 
system  
mpirun	-np	4	mdrun	-multi	4	-gpu_id	0011	-s	in.tpr 

SR non bonded forces can interlock on GPUs 
so that aggregated performance is higher 

+ benefits from higher efficiency at lower 
parallelization
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Multi-simulations enhance throughput
Tip 9 of 10:
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Check which MPI library performs best
Tip 10 of 10:

IBM PE MPI

Intel MPI



typical trajectory gain

virtual sites x 2

multi simulations 50+ %

optimizing threads per rank on GPU nodes 20 – 40 %

Determine optimal # of PME nodes on CPU 
nodes using gmx tune_pme 10 – 30 %

Compiler up to 20 %  
on CPU nodes

hyper threading 10 – 15%
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‘optimal’ in terms of … ? 

performance-to-price ratio 
achievable single-node performance 
parallel performance “time-to-solution” 
energy consumption “energy-to-solution” 
rack space requirements

with S Páll, M Fechner, A Esztermann, BL de Groot and H Grubmüller

Q2. 

What is the ‘optimal’ hardware to run GROMACS on?



Our goal: Cost-efficient simulations.  
Maximize MD trajectory on a fixed budget  
 

Method: Determine price + performance for >50 hardware 
configurations, 2 MD systems, 12 CPU types, 13 GPU 
types 

determine ‘optimal’ performance per node type 
optimize threads x ranks 
optimize number of LR PME nodes 
use HT, where beneficial

with S Páll, M Fechner, A Esztermann, BL de Groot and H Grubmüller

Q2. 

What is the ‘optimal’ hardware to run GROMACS on?



Table 4: Some GPU models that can be used by GROMACS. The upper part of the table lists HPC-
class Tesla cards, below are the consumer-class GeForce GTX cards. For the GTX 980 GPUs, cards
by different manufacturers differing in clock rate were benchmarked, + and ‡ symbols are used to
differentiate between them.

NVIDIA architec- CUDA clock rate memory SP throughput ⇡ price
model ture cores (MHz) (GB) (Gflop/s) (e) (net)

Tesla K20Xa Kepler GK110 2,688 732 6 3,935 2,800
Tesla K40a Kepler GK110 2,880 745 12 4,291 3,100

GTX 680 Kepler GK104 1,536 1,058 2 3,250 300
GTX 770 Kepler GK104 1,536 1,110 2 3,410 320
GTX 780 Kepler GK110 2,304 902 3 4,156 390
GTX 780Ti Kepler GK110 2,880 928 3 5,345 520
GTX Titan Kepler GK110 2,688 928 6 4,989 750
GTX Titan X Maxwell GM200 3,072 1,002 12 6,156
GTX 970 Maxwell GM204 1,664 1,050 4 3,494 250
GTX 980 Maxwell GM204 2,048 1,126 4 4,612 430
GTX 980+ Maxwell GM204 2,048 1,266 4 5,186 450
GTX 980‡ Maxwell GM204 2,048 1,304 4 5,341 450

aSee Figure 4 for how performance varies with clock rate of the Tesla cards, all other benchmarks have been done
with the base clock rates reported in this table.

GPU acceleration

GROMACS 4.6 and later supports CUDA-compatible GPUs with compute capability 2.0 or higher.

Table 4 lists a selection of modern GPUs including some relevant technical information. The single

precision (SP) column shows the GPU’s maximum theoretical SP flop rate, calculated from the

base clock rate (as reported by NVIDIA’s deviceQuery program) times the number of cores times

two floating-point operations per core and cycle. GROMACS exclusively uses single precision

floating point (and integer) arithmetic on GPUs and can therefore only be used in mixed precision

mode with GPUs. Note that at comparable theoretical SP flop rate the Maxwell GM204 cards yield

a higher effective performance than Kepler generation cards due to better instruction scheduling

and reduced instruction latencies.

Since the GROMACS CUDA non-bonded kernels are by design strongly compute-bound,3

GPU main memory performance has little impact on their performance. Hence, peak performance

13

GPUs used in the test nodes

2014

MEM uses 50 MB of GPU 
RAM, RIB 225 MB



Table 5: Frequency of consumer-class GPUs exhibiting memory errors.

NVIDIA GPU memory # of cards # memtest # cards
model checker13 tested iterations with errors

GTX 580 memtestG80 1 10, 000 –
GTX 680 memtestG80 50 4, 500 –
GTX 770 memtestG80 100 4, 500 –
GTX 780 memtestCL 1 50, 000 –
GTX Titan memtestCL 1 50, 000 –
GTX 780Ti memtestG80 70 4⇥ 10, 000 6
GTX 980 memtestG80 4 4⇥ 10, 000 –
GTX 980+

memtestG80 70 4⇥ 10, 000 2

980+). Error rates were close to constant for each of the four repeats over 10,000 iterations. We

strongly recommend to carry out these stress-tests and replace defective cards before using them

in production simulations.

Benchmarking procedure

Balancing the computational load takes mdrun up to a few thousand time steps at the beginning

of a simulation. During the load balancing phase performance is neither stable nor optimal, so we

excluded the first 1,000 – 10,000 steps from measurements using the -resetstep or -resethway

command line switches. Whereas execution on non-GPU nodes is under most circumstances faster

with activated DLB, on GPU nodes the situation is not so clear due to the competition between DD

and CPU-GPU load balancing mentioned in Section 2. We therefore tested both with and without

DLB in most of the GPU benchmarks.

The benchmarks were run for 2,000 – 15,000 steps, which translates to a couple of minutes

wall clock runtime for the single-node benchmarks. We aimed to find the optimal command-

line settings for each hardware configuration by testing the various parameter combinations as

mentioned in Section 2. On individual nodes with Nc cores, to evaluate criteria C1 – C2, we tested

the following settings using thread-MPI ranks:

(a) Nrank = Nc

15

Consumer GPU error rates

consumer GPUs do  not have ECC memory, thus cannot 
correct for rare bit-flips 
however, GPU stress tests can be used to sort out 
problematic GPUs

(13) I. S. Hague, V. S. Pande, In 10th IEEE/ACM International conference on cluster, cloud and grid computing: Stanford University, 2010



Consumer GPU frequency throttling due to overheating

GeForce GTX TITAN

T

GPU freq

start mdrun

Consumer GPUs 
optimized for acoustics:  

fan speed limited to 
60% of max 
reduce GPU frequency 
if too hot



Performances and hardware investment
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Energy efficiency

Over cluster lifetime, energy costs become comparable to hardware costs 
assuming 5 yr of operation and 0.2 EUR / kWh (incl. cooling)

Table 1

Node ns/d microseconds power draw 
(W)

energy costs (Euro) node costs 
(Euro)

traj costs (Euro / 
microsecond)

just node just energy yield (ns per 
1000 Euro)

2x E5-2670v2 1,38 2,5185 252 2207,52 3360 €2211 €1334 €877 €2211 452

2x E5-2670v2 + 780Ti 3,3 6,0225 519 4546,44 3880 €1399 €644 €755 €1399 715

2x E5-2670v2 + 2x 780Ti 3,87 7,06275 666 5834,16 4400 €1449 €623 €826 €1449 690

2x E5-2670v2 + 3x 780Ti 4,17 7,61025 933 8173,08 5430 €1787 €714 €1074 €1787 559

2x E5-2670v2 + 4x 780Ti 4,17 7,61025 960 8409,6 5950 €1887 €782 €1105 €1887 530

2x E5-2670v2 + 980 3,86 7,0445 408 3574,08 3780 €1044 €537 €507 €1044 958

2x E5-2670v2 + 2x 980 4,18 7,6285 552 4835,52 4200 €1184 €551 €634 €1184 844

2x E5-2670v2 + 3x 980 4,2 7,665 696 6096,96 5130 €1465 €669 €795 €1465 683

2x E5-2670v2 + 4x 980 4,2 7,665 840 7358,4 5550 €1684 €724 €960 €1684 594

2x E5-2680v2 1,86 3,3945 446 3906,96 4400 €2447 €1296 €1151 €2447 409

2x E5-2680v2 + 980 3,99 7,28175 622 5448,72 4850 €1414 €666 €748 €1414 707

2x E5-2680v2 + 2x 980 4,69 8,55925 799 6999,24 5300 €1437 €619 €818 €1437 696

2x E5-2680v2 + 3x 980 4,85 8,85125 926 8111,76 5750 €1566 €650 €916 €1566 639

2x E5-2680v2 + 4x 980 4,96 9,052 1092 9565,92 6200 €1742 €685 €1057 €1742 574

Trajectory production costs per microsecond
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Q2 conclusions

Nodes with 1–2 consumer-class GPUs produce >2x 
as much trajectory as CPU nodes or nodes with 
“professional” Tesla GPUs

Highest energy efficiency for nodes with balanced 
CPU-GPU resources

more details, tweaks and benchmark scripts in  
Best Bang for Your Buck:  
GPU Nodes for GROMACS Biomolecular Simulations 
C Kutzner, S Páll, M Fechner, A Esztermann, BL de Groot, H Grubmüller, 
J. Comput. Chem. 36, 1990–2008 (2015)

 

Table 1

Node ns/d microseconds power draw 
(W)

energy costs (Euro) node costs 
(Euro)

traj costs (Euro / 
microsecond)

just node just energy yield (ns per 
1000 Euro)

2x E5-2670v2 1,38 2,5185 252 2207,52 3360 €2211 €1334 €877 €2211 452

2x E5-2670v2 + 780Ti 3,3 6,0225 519 4546,44 3880 €1399 €644 €755 €1399 715

2x E5-2670v2 + 2x 780Ti 3,87 7,06275 666 5834,16 4400 €1449 €623 €826 €1449 690

2x E5-2670v2 + 3x 780Ti 4,17 7,61025 933 8173,08 5430 €1787 €714 €1074 €1787 559

2x E5-2670v2 + 4x 780Ti 4,17 7,61025 960 8409,6 5950 €1887 €782 €1105 €1887 530

2x E5-2670v2 + 980 3,86 7,0445 408 3574,08 3780 €1044 €537 €507 €1044 958

2x E5-2670v2 + 2x 980 4,18 7,6285 552 4835,52 4200 €1184 €551 €634 €1184 844

2x E5-2670v2 + 3x 980 4,2 7,665 696 6096,96 5130 €1465 €669 €795 €1465 683

2x E5-2670v2 + 4x 980 4,2 7,665 840 7358,4 5550 €1684 €724 €960 €1684 594

2x E5-2680v2 1,86 3,3945 446 3906,96 4400 €2447 €1296 €1151 €2447 409

2x E5-2680v2 + 980 3,99 7,28175 622 5448,72 4850 €1414 €666 €748 €1414 707

2x E5-2680v2 + 2x 980 4,69 8,55925 799 6999,24 5300 €1437 €619 €818 €1437 696

2x E5-2680v2 + 3x 980 4,85 8,85125 926 8111,76 5750 €1566 €650 €916 €1566 639

2x E5-2680v2 + 4x 980 4,96 9,052 1092 9565,92 6200 €1742 €685 €1057 €1742 574

Trajectory production costs per microsecond

€0

€500

€1000

€1500

€2000

€2500

2x
 E

5-
26

70
v2

2x
 E

5-
26

70
v2

 +
 7

80
Ti

2x
 E

5-
26

70
v2

 +
 2

x 
78

0T
i

2x
 E

5-
26

70
v2

 +
 3

x 
78

0T
i

2x
 E

5-
26

70
v2

 +
 4

x 
78

0T
i

2x
 E

5-
26

70
v2

 +
 9

80

2x
 E

5-
26

70
v2

 +
 2

x 
98

0

2x
 E

5-
26

70
v2

 +
 3

x 
98

0

2x
 E

5-
26

70
v2

 +
 4

x 
98

0

2x
 E

5-
26

80
v2

2x
 E

5-
26

80
v2

 +
 9

80

2x
 E

5-
26

80
v2

 +
 2

x 
98

0

2x
 E

5-
26

80
v2

 +
 3

x 
98

0

2x
 E

5-
26

80
v2

 +
 4

x 
98

0

hardware
energy

Trajectory costs per microsecond

2x E5-2680v2

2x E5-2680v2 + 1 GPU

2x E5-2680v2 + 2 GPUs

2x E5-2680v2 + 3 GPUs

2x E5-2680v2 + 4 GPUs

€0 €750 €1500 €2250 €3000

�1

hardware energy
GPUs
0
1
2
3
4

GROMACS 4.6

CPU 

nodes

nodes with 

consumer-

class GPUs 

u2

equal 

perf
orm

ance-t
o-p

ric
e

nodes with 

Tesla GPUs 

12 2

4

1

8

4

1

2

4

8

16

8

16


