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PACS. 61.20.Qg – Structure of associated liquids: electrolytes, molten salts, etc.
PACS. 61.20.Ja – Computer simulation of liquid structure.
PACS. 82.70.Dd – Colloids.

Abstract. – Employing computer simulations and Poisson-Boltzmann theory, we show that
a symmetric electrolyte in an electric condenser undergoes a localisation-delocalisation tran-
sition as a function of the external voltage U . The transition occurs at the critical voltage
Uc corresponding to the situation where the surface charge density of the plates equals the
area charge density of completely charge-separated electrolytes. The average distance of the
electrolyte ions to the plates diverges logarithmically for U ↘ Uc. This transition is expected
to be observable in micro-electrodes.

If a charged body is placed into a salt solution, the cations and anions of the salt will
screen the body charge. For high temperatures and/or low charge densities, the traditional
linearised screening theory leads to an electric double layer around the charged-body surface
which involves an exponentially decreasing density field of the micro-ions as a function of their
distance to the surface. One of the simplest set-ups are two parallel homogeneously charged
plates with the famous solution of Gouy-Chapman almost a century ago [1,2]. Subsequently,
further linear and nonlinear screening theories have been performed and the electrostatic forces
acting between two parallel plates have been calculated, see e.g. refs. [3–7] and references
therein. Furthermore, the dynamics of density distributions around one charged plate [8] and
in a charged disordered background [9] have been investigated.

While the colloidal community has spent much effort to investigate the interaction be-
tween like-charge plates which directly affects colloidal stability, one of the central topics of
electro-chemistry concerns electrolytes between plates of opposite charges. The latter situa-
tion, an electrolyte in a capacitor or condenser, is relevant for a fundamental understanding of
electrodes. Here the surface charge density on, or equivalently, the electric field between the
plates can be tuned by the external voltage U applied. Recent progress has also been achieved
in miniaturising capacitors leading to well-controlled micro-electrodes [10–12] or even nano-
electrodes [13, 14] in an electrolyte solution. These are used as basic switching elements in
microfluidic devices and in nanoelectronics.

In this letter, we show that symmetric electrolytes in a condenser of two oppositely charged
plates undergo a transition from a localised to a delocalised state. The transition occurs as
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a function of external voltage U applied for fixed electrolyte area density and temperature
in the limit where the plate distance D goes formally to infinity. The order parameter of
the transition is the first moment h of the micro-ion density profiles which is the averaged
distance of the anions and cations to the oppositely charged plate. If σ denotes the modulus
of the charge of anions (or cations) between the plates per unit area, the transition occurs
exactly at that voltage Uc which equals the surface charge density of the plates, σp, to σ. The
fingerprint of this transition is a logarithmic divergence of the order parameter h in (U−Uc)/Uc

for U ↘ Uc (respectively in (σ − σp)/σp for σ ↘ σp). For U < Uc, on the other hand, the
averaged distance is of the order of the plate distance D diverging in the limit D → ∞. This
result is obtained by Poisson-Boltzmann theory and confirmed by computer simulations of the
primitive electrolyte model with explicit micro-ions.

The physical reason for the localisation-delocalisation is as follows: for U > Uc (respec-
tively for σ < σp), all electrolyte ions will feel an external electric field attractive to the plates
of opposite charge, and all ions will screen this field which results in a localised density profile
decaying exponentially with the distance to the plates. On the other hand, for U < Uc (re-
spectively for σ > σp), a fraction of the electrolyte ions is sufficient to completely screen the
surface charge. Hence the rest of them is free to delocalise between the plates due to entropy
reasons. While the special case of only one species of ions in a globally charge-neutral system
has been addressed in the literature [15], we are not aware that the transition has been dis-
cussed previously. This might be due to the fact that for typical electrolyte solutions between
charged plates, one encounters the delocalised case, σ > σp. This is different, however, for
micro-electrodes where, at fixed bulk salt concentration, the area density, σ, can be drasti-
cally reduced by a confinement which is, however, still larger than the molecular length scales.
Therefore, as we shall detail below, the transition is clearly detectable in micro-electrodes.

The letter is organised as follows: first we shall apply nonlinear Poisson-Boltzmann theory
to extract the characteristics of the localisation-delocalisation transition analytically. We then
confirm the predictions of Poisson-Boltzmann theory by Monte Carlo computer simulations
with explicit micro-ions. Finally, we estimate that the transition is in principle verifiable in
micro-electrodes.

In our theoretical model, we consider a system of two species of ions with charges +qe and
−qe, respectively, (q > 0), and microscopic hard-core diameters d. The ions are kept at a finite
temperature T in a container of a solvent with dielectric permittivity ε which is placed inside a
capacitor. The condenser consists of two homogeneously and oppositely charged planar plates
which are a distance D apart. The plates are not in contact with the electrolyte to prevent
electrolysis. The plate charge is σp at z = 0 and −σp at z = D. The total micro-ion number
density per plate area is denoted 2σ. The system is globally charge neutral. One of the basic
length scales is the microscopic Bjerrum length λB = e2/εkBT which is the typical distance
where two oppositely charged ions gain a thermal energy kBT . The opposite plate charges
±σp lead to an external electric field in the condenser, E = 4πσp/ε. Equivalently, one may
see the plate charge originating from an external voltage U applied with U = ED. The plates
are infinitely large in the x and y directions. We address the case of large plate distances D,
taking formally the limit D → ∞ at finite σ. The key quantities to characterise localisation
and delocalisation are the inhomogeneous averaged density profiles, ρ+(z) and ρ−(z) of the
cations and anions. Due to symmetry, ρ−(D/2 + z) = ρ+(D/2 − z), hence it is sufficient to
consider only one species. The whole set-up is shown schematically in fig. 1.

An analytical approach is provided by one-dimensional nonlinear Poisson-Boltzmann the-
ory [16–18] which is a mean-field approximation. This approach incorporates entropy and elec-
trostatics but neglects correlations of the electrolyte. Let us assume that we have a situation
above the transition, U > Uc, such that we are dealing with localised micro-ion density profiles
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Fig. 1 – Schematic drawing of the electrolyte condenser considered. The voltage U is applied across
the capacitor, charging the plates to the area charge density σp. This corresponds to an electric
field E external to the electrolyte. The microscopic cations and anions are shown in a container of
dielectric fluid, and their averaged density profiles ρ+(z) and ρ−(z) are sketched as well.

close to the plates. Since the plate distance is large, it is reasonable to further assume that the
cation and anion density profiles are completely separated by the midplane of the condenser
at z = D/2. Then Poisson’s and Boltzmann’s equations read as Φ′′(z) = −4πqeρ−(z)/ε,
ρ−(z) = exp[−qeΦ(z)/kBT ]σ/D. Here, Φ is the electric potential. The analytical solution is

ρ−(z) =
Aλσ

sinh2
(√

Az + ϕ
) , (1)

where A and ϕ are determined from the boundary conditions
∫ D

0
ρ−(z)dz=σ and dΦ(z)/dz|z=0 =

−E as coth ϕ = q/(b
√

A) and A = [q/b − 1/λ]2, where b = e/(2πλBσp) is the traditional
Gouy-Chapman length, and we introduce the localisation length λ = 1/(2πq2λBσ). Clearly,
for nonzero A the density profile (1) is localised. Hence, necessarily, A has to vanish at
a possible localisation-delocalisation transition. This yields the threshold criterion for the
critical electric field Ec = 4πqeσ/ε or the critical external voltage Uc = EcD. Equivalently,
this can be expressed as σp = qeσ or λ = b/q. Note that Ec is also equal to the maximum
internal electric field that is generated by complete separation of charges in the system. In
other words, the density profiles are delocalised whenever the system can compensate for the
external electric field by building up an equal but opposite internal field. When the external
field is too strong to be compensated for, the remaining field localises the ions around the
capacitor plates.

In order to quantify the localisation-delocalisation transition, we introduce the first mo-
ment of the density profile as an order parameter defining a characteristic height
h =

∫ D

0
zρ−(z) dz/

∫ D

0
ρ−(z) dz. Equation (1) yields

h = λ ln
2δ + 1

2δ
, (2)
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Fig. 2 – Density profiles as obtained by simulation for δ = 3.17 (◦) and δ = 0.043 (+) and their
respective theoretical predictions. A delocalised density profile (δ = −0.48) is also shown (small
dots). The inset shows the same data on a semilogarithmic scale.

where δ = (U − Uc)/Uc ≡ (E − Ec)/Ec > 0 measures the dimensionless distance to the
transition. Thus, the characteristic height, h, diverges logarithmically ∝ ln δ as the external
voltage approaches its critical value Uc.

We have further performed extensive computer simulation of the “primitive” electrolyte
model where the solvent is treated as a dielectric continuum [5]. This model includes all cor-
relations of the micro-ions which are neglected in the analytical Poisson-Boltzmann approach.
We consider a finite, globally charge-neutral system of N cations and N anions in a rectan-
gular simulation box with lengths Lx, Ly,D and periodic boundary conditions in the x and y
directions. Walls impenetrable for the ions are placed at z = 0,D, and an external electric
field E = Eez is applied in the z direction. We take L ≡ Lx = Ly and vary D and L to check
for finite-size effects.

A Monte Carlo (MC) simulation is performed in the canonical ensemble. The Coulomb
interaction is calculated via Lekner sums [19]. We use the Bjerrum length, λB, as the basic
length scale. The hard-core diameter of the ions is d = 0.25 λB and the lateral system size is
L = 512 λB for most runs. Upon increasing it to 1024 λB to check for finite-size effects, the
results did not change. The area density per species varied between 0.95 and 4.8 × 10−4λ−2

B

for the smaller system corresponding to a total number 2N of simulated particles varying
between 2000 and 10000. Equilibration typically took 5000 MC steps per particle; statistics
were gathered during 50000 MC steps per particle. The distance between the capacitor plates
was varied between D = 128 λB to D = 4096 λB.

Simulation data for the density profiles for δ = 3.17 and δ = 0.043 are presented in fig. 2.
The parameters are chosen to be σ = 9.54×10−4λ−2

B , D = 4.10×103λB and L = 5.12×102λB.
One can clearly see the delocalisation of the density profiles close to the transition. The
predictions of Poisson-Boltzmann theory for positive δ as given by eq. (1) are also included
and show favourable agreement with the simulation data.

Furthermore, we have performed an investigation very close to the transition for three
different parameter combinations. The resulting heights, h, are shown in fig. 3. The data is
plotted using the universal scaling representation as suggested by the theory, the averaged
height is scaled with the length scale λ, and the distance to the transition is just expressed by
the dimensionless δ. Not only do the simulation data fall onto the same universal curve, there
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Fig. 3 – Reduced mean height, h/λ, of one species as a function of the reduced external field, δ. The
solid line shows the universal scaling prediction. It diverges at δ = 0. The asymptotic behaviour
∝ ln δ for small δ is shown as a dotted line. Simulation results are shown for different area densities,
namely σ = 9.5 × 10−4 λ−2

B (+), σ = 7.6 × 10−3 λ−2
B (×), and σ = 1.9 × 10−2 λ−2

B (�). The other
parameters were D = 4.10× 103λB and Lx = Ly = 5.12× 102λB. The inset shows the same data in
a semi-logarithmic plot.

is even quantitative agreement with the prediction (2) of our analytical Poisson-Boltzmann
approach. The inset of fig. 3 shows the same data on a semi-logarithmic plot proving that
there is indeed a logarithmic divergence in the simulation data. Based on both figs. 2 and 3 we
conclude that the predictions of the Poisson-Boltzmann theory are quantitatively confirmed
by the simulation. Regarding the divergence of h close to the transition (0 < δ � 1),
we think that Poisson-Boltzmann theory is still adequate. Correlation effects may lead to
micro-ion structuring and layering near the walls. Halfway between the plates, however, the
concentration of micro-ions is small close to the transition such that Poisson-Boltzmann theory
is still applicable there. Therefore we believe that the asymptotic form of the divergence (2)
will not be changed for strong Coulomb coupling. The same insensitivity is expected for
surface charge modulations [20, 21] provided the modulation length is much smaller than the
plate spacing, D.

Finally, we discuss whether the condition at the delocalisation-localisation transition,
σp = qeσ, can be fulfilled in realistic samples. This criterion needs high plate charges, σp, and
small electrolyte densities, σ. Let us subsequently estimate limits for these two quantities.
Very highly charged plates immersed into an electrolyte will lead to chemi- and physisorption
of the microscopic ions [22] such that they are not any longer dissociated. A typical maximum
for an effective renormalised plate charge is given by the Manning threshold value [23] and is
of the order of σp = 1 e/λ2

B. In aqueous solution at room temperature, monovalent electrolytes
typically have bulk concentrations ranging from at least 10−6 mol/litre to 10−3 mol/litre. De-
pending on the electrolyte concentration, the criterion therefore requires plate distances which
are in the range between a millimetre and a micrometre to see the transition. The conclusion
from this estimate is that the transition can in principle be observed in small condensers.
However, for realistic electrolyte concentrations, one has to go down to micro-electrodes. In
order to prevent the applied voltage from driving a current through the system, which would
lead to electrolysis, the capacitor plates should be mounted outside the cell. Furthermore, the
cell should be placed between the plates in its entirety so that no reservoir of ions outside the
electric field exists.
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In an experiment on micro-electrodes, one can see the fingerprints of the transition by
watching the electrolyte concentration directly. This is in principle possible by fluorescent
marking of the micro-ions (see, e.g., [24,25] for recent progress in this domain). Alternatively,
the transition may be observed by watching the response of the system [26, 27] under an AC
electric field. Close to the localisation-delocalisation transition, there should be a marked
anomaly in the resistance at low frequencies; a delocalised state should contribute much more
efficiently to the conductivity than a localised one. Another implication of the delocalisation-
localisation transition concerns the transport of mesoscopic neutral particles with an electric
dipole moment (e.g., proteins close to the isoelectric point) in the transverse direction of a
micro-electrode. Tuning the external voltage such that the system parameters are close to
the transition, it is expected that the effective interaction and the transport through such a
microfluidic device can be tailored at wish.

In conclusion, we have predicted a sharp localisation-delocalisation transition in an elec-
trolyte solution confined to a condenser as a function of the external voltage applied. At the
transition, there is a qualitative change in the screening of the condenser plates by the elec-
trolyte. There are either enough electrolyte ions in order to completely screen the plate charge
leaving additional ions in the solution which are delocalised due to entropy. Or micro-ions are
missing for complete screening, but then they are all localised. Crossing through the transition
produces a logarithmic divergence of the averaged distance of the micro-ions to the plates in
the limit of large plate distances. The basics of this transition is a simple competition between
entropy and electrostatics, and nonlinear Poisson-Boltzmann theory describes it adequately.
It would be interesting to systematically investigate electrolytes in micro-electrodes in order
to detect this transition experimentally.

We finally point out that a similar effect occurs in asymmetric electrolytes and even for
strongly asymmetric systems such as nanometric proteins or mesoscopic charged colloids.
It would be interesting to expose sedimenting charged suspensions [28–31] to an additional
electric field and study the corresponding levitation [32].
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[5] Hansen J.-P. and Löwen H., Annu. Rev. Phys. Chem., 51 (2000) 209.
[6] Netz R. R., J. Phys. Condens. Matter, 16 (2004) S2353.
[7] Meier-Koll A. A., Fleck C. C. and von Grünberg H. H., J. Phys. Condens. Matter, 16

(2004) 6041.
[8] Golestanian R., Europhys. Lett., 52 (2000) 47.
[9] Golestanian R., Europhys. Lett., 58 (2002) 712.
[10] Green N. G., Ramos A., Gonzalez A., Morgan H. and Castellanos A., Phys. Rev. E,

61 (2000) 4011.
[11] Gonzalez A., Ramos A., Green N. G., Castellanos A. and Morgan H., Phys. Rev. E,

61 (2000) 4019.



870 EUROPHYSICS LETTERS

[12] Sur U. K., Marken F., Rees N., Coles B. A., Compton R. G. and Seager R., J. Elec-
troanal. Chem., 573 (2004) 175.

[13] Chen S. W., Ingram R. S., Hostetler M. J., Pietron J. J., Murray R. W.,

Schaaff T. G., Khoury J. T., Alvarez M. M. and Whetten R. L., Science, 280 (1998)
2098.

[14] Katemann B. B. and Schuhmann T., Electroanalysis, 14 (2002) 22.
[15] Lau A. and Pincus P., Eur. Phys. J. B, 10 (1999) 175.
[16] Deserno M. and Holm C., Electrostatic Effects in Soft Matter and Biophysics, edited by
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