
Copernicus: A new paradigm for parallel adaptive
molecular dynamics

Sander Pronk
Dept. of Theoretical Physics
Royal Institute of Technology

Stockholm, Sweden

Per Larsson
Dept. of Molecular Physiology

and Biological Physics
University of Virginia

Charlottesville, VA, USA

Iman Pouya
Dept. of Theoretical Physics
Royal Institute of Technology

Stockholm, Sweden

Gregory R. Bowman
Dept. of Chemistry
Stanford University
Stanford, CA, USA

Imran S. Haque
Dept. of Computer Science

Stanford University
Stanford, CA, USA

Kyle Beauchamp
Biophysics Program
Stanford University
Stanford, CA, USA

Berk Hess
Dept. of Theoretical Physics
Royal Institute of Technology

Stockholm, Sweden

Vijay S. Pande∗

Dept. of Chemistry
Stanford University
Stanford, CA, USA

Peter M. Kasson∗

Dept. of Molecular Physiology
and Biological Physics
University of Virginia

Charlottesville, VA, USA

Erik Lindahl
∗

Dept. of Theoretical Physics &
Swedish e-Science Research Center

Royal Institute of Technology
Stockholm, Sweden

ABSTRACT
Biomolecular simulation is a core application on supercom-
puters, but it is exceptionally difficult to achieve the strong
scaling necessary to reach biologically relevant timescales.
Here, we present a new paradigm for parallel adaptive molec-
ular dynamics and a publicly available implementation: Coper-
nicus. This framework combines performance-leading molec-
ular dynamics parallelized on three levels (SIMD, threads,
and message-passing) with kinetic clustering, statistical model
building and real-time result monitoring. Copernicus en-
ables execution as single parallel jobs with automatic re-
source allocation. Even for a small protein such as villin
(9,864 atoms), Copernicus exhibits near-linear strong scal-
ing from 1 to 5,376 AMD cores. Starting from extended
chains we observe structures 0.6 Å from the native state
within 30h, and achieve sufficient sampling to predict the
native state without a priori knowledge after 80–90h. To
match Copernicus’ efficiency, a classical simulation would
have to exceed 50 microseconds per day, currently infeasible
even with custom hardware designed for simulations.
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1. INTRODUCTION
Modern high-performance computing spans a wide spec-

trum of interconnect bandwidths, from remote shared mem-
ory links that rival the main memory bus in bandwidth and
latency to a complete absence of network interconnect in
most distributed computing applications. Large resources
with high-bandwidth interconnects tend to be extremely ex-
pensive and highly allocated. Distributed computing projects
such as Folding@Home can include half a million cores at
any time, while 10,000 cores for continuous use would be an
extremely large allocation on today’s high-end supercom-
puters. Many interesting real-world applications (all that
are not embarrassingly parallel) require some interprocess
communication for scaling and are therefore limited both by
the availability of this bandwidth as well as the total amount
of resources for high absolute performance.

We address the limits of this scaling by using domain-
specific knowledge to achieve more efficient parallelization.
Biomolecular experiments typically measure averages over
billions of molecules undergoing transitions in parallel, while
computer simulations have classically tried to reproduce the
results by studying sequential transitions for a single molecule.
By recognizing that the target problem is fundamentally an
ensemble one and incorporating the statistical mechanical
sampling into the simulation itself, we can efficiently paral-
lelize using a hierarchical scheme. Top-level communication
between members of the ensemble only requires low band-
width, while communication within an ensemble can uti-
lize high interconnect bandwidth. Having multiple levels of
parallelization with different interconnect dependencies al-



lows us to tune the application to the hardware at hand,
it achieves state-of-the-art scaling efficiency of simulations
at the lowest level, and provides a path for any sampling-
based particle simulation to scale to hundreds of thousands
of cores (and beyond) on next-generation supercomputers.

In this paper, we present Copernicus1, a new software
platform designed to accomplish this, and its application to
molecular dynamics simulations of biomolecules.

Computer simulations of biomolecules, in particular pro-
teins, have yielded fundamental insights into how these build-
ing blocks of life work [1], fold into functional form [15]
and interact [14]. A distinguishing feature of these sys-
tems is that phenomena on the level of atomic detail are
important, making individual atoms the smallest units of
these simulations. This means that simulations of individ-
ual biomolecules usually have 10,000 to 500,000 particles,
and it is not possible to improve scaling simply by increas-
ing resolution. The high computational requirements come
from the time scales involved in molecular rearrangements,
which requires from 5 · 105 (corresponding to 1 ns) to 5 · 108

steps (1 µs) or more.
Molecular dynamics simulations pose significant compu-

tational challenges. The systems are big enough to be par-
allelized, with 100-500 particles assigned to each core in
high-performance molecular dynamics (MD) packages such
as Gromacs [10, 17] when run on a system with sufficiently
low interconnect latency. However, at this point the time
required for a step is approaching 100µs of wallclock time,
and there simply aren’t enough floating-point operations in
a single simulation to achieve order-of-magnitude improve-
ments in scalability compared to current state-of-the-art im-
plementations. While molecular dynamics can achieve close
to perfect weak scaling, this will put hard bounds in strong
scaling and limit the accessible run lengths for biomolecular
simulation.

One recent alternative is to use custom hardware with
application-specific integrated circuits designed for molecu-
lar simulation [18]. This approach is extremely powerful (al-
though expensive) and can extend the accessible timescales
by roughly two orders of magnitude, but even this falls far
short of most biologically interesting timescales.

Over the last few decades hardware has improved with
constantly higher-frequency chips, but the current trend of
multi-core chips with lower frequencies presents a formidable
challenge. This development is likely to continue both in
the form of many more traditional cores and the emergence
of streaming architectures with simpler processing elements
(e.g. GPUs), with trends pointing to an increase in available
core counts by several orders of magnitude. This pattern
is likely to be similar for custom hardware, which will get
more transistors, but not faster ones.

A hypothetical future machine could conceivably simulate
a whole cell (weak scaling), but since it would still be sub-
ject to the same limits for simulation timescales it would not
teach us much about biology. There are several alternatives
that try to circumvent the requirement for long simulations.
Most rely on the fact the phenomena under study are de-
scribed by statistical mechanics, and work by splitting up
transitions between states into smaller units that can be
sampled using shorter individual runs [9]. Examples of this

1A first version will be released under an open source li-
cense at http://copernicus-computing.org/ in conjunc-
tion with SC11.

are free energy perturbation-type calculations [4], umbrella
sampling [13], or other types of importance sampling meth-
ods. Among the most comprehensive of these methods is
Markov state modeling (MSM) [16], where the entire free
energy landscape of a system under study is split up into
individual, short transitions from clusters of similar confor-
mations, where the end result is a collection of clusters and
their transition rates. Through adaptive sampling [2] (where
new simulations are started from conformations that haven’t
yet been sampled effectively) it is possible to visit states at a
rate many orders of magnitude higher than the physical rate
of transition that would otherwise determine the minimum
time of a single run [2].

Markov state modeling with adaptive sampling not only
explores the landscape of possible states more efficiently, but
offers a picture of the dynamics of the system being studied
while it explores the possible states. An individual molecu-
lar dynamics run may or may not see a transition between
states, but the ensemble probed by MSM gives the likelihood
of transitions and thus the rates at which these transitions
happen.

These sampling algorithms give rise to a new level of par-
allelism, that of the ensemble of individual runs. In effect,
the coordination of simulations, an adaptive step, and run-
ning new simulations becomes an algorithm of its own. Yet,
in practice, this is almost invariably still done by hand, with
the user serving as processor for these algorithms. It has
also led to a situation where there are essentially two types
of simulations: Supercomputers are used for projects with
a handful of long trajectories, while throughput-focused re-
sources have been more useful for sampling, often run as a
collection of independent jobs.

With Copernicus, we attempt to exploit the inherent par-
allelism of ensemble simulation and address the difficulties
associated with using advanced sampling algorithms, while
keeping the performance advantages of massively parallel
simulations. A project is executed as a single job, but breaks
it up into coupled individual parallel simulations over all
available computational resources, with the single simula-
tion as the individual work unit. While the software has
been optimized for using multiple high-performance com-
pute clusters, it works equally well with cloud computing
instances or even individual workstations.

Copernicus integrates elements of distributed computing,
and applies them to more traditional high-performance com-
puting environments by taking advantage of the fast inter-
connects that may be available on each machine to paral-
lelize individual simulations as far as possible. This makes
it possible to use orders-of-magnitude more cores than a
single simulation on a supercomputer, enables larger-scale
simulations than would be possible with purely distributed
computing, and achieves order-of-magnitudes reductions in
time-to-solution. In its networked architecture, Copernicus
takes a decentralized approach akin to that found in peer-to-
peer networks, while at the same time relying on the avail-
ability of network resources to do real-time processing of
results.

By taking the large-scale sampling jobs as individual units
of computation, Copernicus takes a more user-friendly ap-
proach to these advanced algorithms, allowing them to be
used by non-experts: much in the same way as the emer-
gence of molecular dynamics packages allowed non-experts
to start doing high-performance parallel MD simulations.
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Figure 1: Example Copernicus network architecture with two servers acting as project servers and another
four as network servers. Note the simultaneous use of three supercomputers. The overlay network topology
is shown in the center, with dark solid lines. In this case, clusters 0 and 1 might be located in Stockholm
with a common gateway server, while cluster 2 is in Palo Alto.

The networked approach to running these simulations al-
lows the user to monitor the runs remotely and see results
in real time as they become available.

Below, we first describe the architecture of the general
Copernicus framework, and then show the benefits of the ap-
proach through a specific application in the form of Markov
State Modeling for the transition of a small protein (the
villin headpiece) from an unfolded to a folded state. Even for
this extreme case – the system only contains 9,864 atoms –
Copernicus achieves close-to-linear strong scaling up to 5376
cores. We believe this framework combines the strongest as-
pects of massively parallel high-performance molecular dy-
namics with the Markov State Model approach to sampling,
while making it possible for anybody to deploy on a cluster.

2. COPERNICUS: ARCHITECTURE
The main aim of the Copernicus framework is to efficiently

handle large jobs, termed ‘projects’, consisting of many in-
dividual but coupled simulations, and treat those as a single
entity. To do this, the system must be able to:

• Match and distribute the individual simulations to the
available computational resources.

• Run simulations on a variety of remote platforms si-
multaneously: HPC clusters, workstations, cloud com-
puting instances, et cetera.

• Parallelize tasks to the maximum extent possible on
each resource, and use adaptive coupling beyond this.

• Allow flexibility in the types of projects that can be
run.

• Perform real-time analysis of the running project.

• Enable monitoring of running projects.

Because of the networked nature of running remote simu-
lations and the long run time of most projects, Copernicus
is set up as a collection of servers connected through an
overlay network, with web or command-line clients to con-
trol and monitor the projects, and a special class of clients:
the ‘workers’, that run the individual parallel simulations,
termed ‘commands’. A worker could comprise anything from
a single node to hundreds or thousands of nodes running a
single simulation with message-passing in a high-end ma-
chine.

A typical Copernicus setup is shown in Fig. 1. This illus-
trates two servers controlling projects and four additional
servers acting as communication hosts for the workers. All
servers run identical code, and their role is determined solely
by their connectivity and whether or not they have run-
ning projects. The architecture is fully symmetric in the
sense that it can include an unlimited number of sites that
both contribute computing resources and initiate projects,
subject to authorization. Copernicus makes it possible to
combine disparate supercomputers linked by relatively high-
latency networks: For the case illustrated in Fig. 1 we can
imagine the first two clusters to be located in the same data
center with a high bandwidth and low latency connection
(behind a firewall with a common gateway server), while
the third machine might be on a different continent.

Computational resources are made available to the system
by starting workers, e.g. by submitting them to the batch
queue of a cluster. Workers present themselves to the system
by running a small bootstrap binary to convey the available
resources – their architecture, number of cores, and intercon-
nect type – to the closest server. The server then assigns a
matching workload of one or more commands to the worker,



including a specification of the program to execute.
The worker completes the commands and returns their

output to the closest server, which in turn propagates the re-
sults to the server from which the project originated. Projects
are maintained by ‘controller’ servers that maintain job queues
and coordinate communication among individual workers
and commands. The controller then responds to these fin-
ished commands, and new projects or commands can be
issued until the project finishes – for example when the
standard error estimate of the output result has reached a
user-specified minimum value. Progress and results can be
monitored in real time through a web interface.

Copernicus can detect and take advantage of shared file
systems to reduce communication; future versions will be
able to use this to distribute data processing by the con-
troller over the available resources too.

2.1 Plugin-based project control
While much of our work has been focused on biomolecu-

lar simulation and tightly integrated with the Gromacs sim-
ulation package, a core idea behind Copernicus is to make
the framework itself agnostic of the underlying simulation
engine and indeed usable for any problem that can be for-
mulated in terms of statistical sampling. In order to be as
flexible as possible, even the controllers doing the analysis
and deciding what to run are ‘plugins’ that can be installed
(or programmed) by the user. These application-specific
controllers break down projects into sub-projects or com-
mands. All knowledge about how to execute a project and
how to interpret the resulting command output is contained
in these user-installable modules.

Controllers are in essence event handlers that react to a
set of conditions: they are called when a project starts, a
subproject finishes, a command finishes, etc. In response
to these events, controllers can initiate and perform post-
processing of data generated by commands. Because the
controller can request a specific set of data for each event,
controller processing could happen in a decentralized way
with project data scattered across several clusters that do
not share any storage.

2.2 Overlay network
The design of the Copernicus network was guided by the

following considerations:

• Servers and all communications should be secure. Only
authorized clients and servers should be able to con-
nect.

• Typically, a compute cluster’s individual nodes are on
an internal network that is not routed externally, ne-
cessitating the presence of an interface server on a clus-
ter’s head node.

• The overlay network between servers is small, typically
no more than a handful of servers, and is relatively
static.

• The network must support routing of requests both to
specific servers, and to the first server with available
commands.

• User interaction should occur through the network.

To support peer-to-peer usage and almost arbitrary topolo-
gies, any Copernicus server can both send and receive com-
mands, either from user clients, worker clients, or other
servers. There is no top-level server in the architecture.

The user is free to set up any number of servers to en-
able communication between a server holding a project and
workers; usually a user will set up one server per cluster head
node, since compute nodes are typically on a network only
accessible from that node. These servers relay workload re-
quests, workloads and simulation data between workers and
project-holding servers.

Because most Copernicus network traffic is of a request-
response nature, we chose SSL as the basic communication
protocol. The encoded routing priority effectively deter-
mines the run priority in case of multiple servers with avail-
able commands.

In order to set up a new link in the overlay network, the
user must initiate the exchange of public keys. Each server
has a set of trusted keys which together make up the overlay
network and provide authentication between different net-
works or users. The exchange of keys is, in this case, not an
onerous requirement because the number of servers is typi-
cally very low, with every server being set up for a specific
reason: to act as project server, or to act as network inter-
mediate on a cluster head node. The decentralized nature
of this overlay network allows the setup of links to remote
clusters on an as-needed basis even while a project is run-
ning.

2.3 Resource matching
A workload is matched and presented by a server to a

worker using several considerations. Upon startup, a worker
gets its platform from the user. This is usually a software
platform such as OpenMPI, but could be SMP for a high end
shared memory machine. The worker then calls an associ-
ated platform plugin. That plugin determines the available
resources, such as number of processing cores and amount of
RAM, either automatically or through user-defined options.
After that, the worker searches for all installed ‘executables’:
descriptions of how to execute specific command types for
a specific platform, along with optional binaries to execute.
These ‘executables’ contain the simulation-specific binaries,
such as the Gromacs binaries in the example of section 3.

Information about available resources and executables is
sent to the server the worker is set up to connect to, where it
is relayed to the first available server with commands. This
server matches the available executables to commands in its
queue, and constructs a workload that maximally utilizes the
available resources given the preferred resource requirements
of the commands.

When running, workers send ‘heartbeats’ to the server at
specified intervals (120 seconds by default, with a message
size typically less than 200 bytes), to report the status of
each subpart of the simulation. Heartbeat signals do not get
forwarded to other servers; when the worker’s server fails to
receive a heartbeat signal within twice the heartbeat inter-
val, it will assume that the worker has failed and signal this
to the project’s server. If the server the worker connects to
has access to the same file system as the worker, it will try to
return the worker’s output data to the project’s server, even
if the client itself is no longer online. This also allows com-
mands that do checkpointing, such as the Gromacs engine
we use in Copernicus, to have another client transparently



continue from the last checkpoint. This makes it possible
to schedule Copernicus runs even for very short periods of
time on unreliable systems, e.g. during cluster burn-in, and
still do useful work.

As described above, each worker client is typically a mas-
sively parallel simulation, and the degree of coupling be-
tween different worker clients is specified by the controller
in terms of the command length. On a high-bandwidth/low-
latency machine this could in theory be in the seconds range,
provided the controller has time to analyze all the results.
In contrast, the interval might be set to several days for
high-latency networks used in distributed computing. The
decentralized architecture also means we avoid propagating
unnecessary data (such as heartbeats) beyond the closest
server, which is highly useful even for supercomputers e.g.
when the project server and compute resources are located
on different continents.

3. FOLDING OF A PROTEIN IN 30 HOURS
The combination of massively parallel and ensemble sim-

ulation techniques makes it possible for Copernicus to scale
to hundreds of thousands of cores, but its main strength
is that parallel adaptive molecular dynamics on supercom-
puters can achieve extremely high absolute performance, as
described in the performance benchmark section. To illus-
trate the scaling, speedup, and drastically shorter time-to-
solution for a real problem that is achieved with Copernicus,
we have simulated protein folding of the villin headpiece mu-
tant 35-NleNle. This is a small single-domain protein that
has been used as a benchmark for recent high-performance
simulation platforms [7, 8, 19]. The MSM plugin in Coperni-
cus enables automated parallel adaptive simulation given a
user-specified number of starting structures. To optimize es-
timation of folding rates and mechanism, data from running
simulations are periodically clustered, simulations in well-
explored regions of phase space terminated, and new simu-
lations spawned from under-explored regions. The automa-
tion and parallelization of this process on HPC resources
enables us to reduce the time-to-solution to hours or days
rather than weeks or months. In addition, it enables any-
body with access to moderate amounts of supercomputing
resources – the present example used merely 500,000 core-
hours – to rapidly perform protein folding simulations, which
is a substantial advance.

3.1 Simulation setup
The run was started by specifying nine unfolded confor-

mations of villin2. Simulations were evaluated against the
native-state structure with PDB accession number 2F4K
[12], but no information from this structure was used in
Copernicus. Each unfolded conformation was solvated in a
cubic box containing 3036 TIP3P water molecules, and tasks
were run for 50 ns between clustering steps. Simulation pa-
rameters were used as previously published [7]. Initial ve-
locities were drawn from a Maxwell-Boltzmann distribution,
and the temperature was kept at 300 K with a Nosé-Hoover
thermostat with an oscillation period of 0.5 ps. A conserva-
tive simulation timestep of 2 fs was used. Long-range elec-
trostatics were treated with a reaction field, using a contin-
uum dielectric constant of 78. Coordinates were saved every
50 ps, giving 1000 conformations for each individual trajec-

2available at https://simtk.org/home/foldvillin
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Figure 2: Per-generation evolution of a selection of
villin trajectories in Copernicus, compared to the
native structure. Three of the starting configura-
tion trajectories are shown in black, followed for
one generation. Based on the first generation clus-
tering, new tasks were started. One of these is
shown in orange, but it did not yield any low RMSD-
conformations. A second trajectory resulted in the
first folded conformation (a, as low as 0.7 Å RMSD
from the native conformation). The red trajectory
was started from the clustering after four genera-
tions, and is the one from which it was first possi-
ble to predict the folded conformation without prior
knowledge of it (b, at 1.4 Å RMSD). This structure
is shown in blue in the inset, and the native state in
red, with the phenylalanine core shown explicitly in
sticks.

tory. The simulation engine employed inside Copernicus was
based on Gromacs version 4.5.3 [10] and the Amber03 force
field [6, 20].

3.2 Markov State Modeling
Markov State Models provide a natural way of under-

standing the nature of the free energy surface for any flexi-
ble molecule, such as a protein. The theory behind Markov
State Models (or MSM’s) have been outlined in detail else-
where [16], but we repeat a few of the key concepts. Markov
State Modeling is a kinetic clustering technique, in that it
groups together conformations that can interconvert quickly.
Thus, construction of a MSM requires a division of the high-
dimensional free energy landscape into metastable states: a
state partitioning.

In early phases of the simulation, the main task is identi-
fying these metastable states. Especially when starting from
unfolded conformations, much of conformation space is ini-
tially unexplored. Later in the simulation, the main task
becomes accurate statistical estimation of the transitions
between metastable states – determining the folding rate
and mechanism. For this reason, one of the user-settable
parameters for the Copernicus MSM controller is whether
to use even or adaptive weighting in spawning new trajec-
tories at each clustering step. Even weighting consists of
running a uniform number of trajectories from each confor-



Figure 3: Superposition of a frame from the sim-
ulation trajectory that yielded the first observed
folded villin structure (blue) with the experimen-
tally determined native structure (light grey). The

Cα RMSD between the structures is 0.7 Å.

mational cluster in the state partitioning. This is desirable
when state partitioning is highly unstable, because then the
limiting uncertainty is the state definitions themselves. As
the state partitioning stabilizes, it becomes more advanta-
geous to use adaptive weighting. This weights the number of
trajectories started from each cluster by the uncertainty in
the transitions between clusters. Once a set of stable state
definitions has been achieved, adaptive weighting optimizes
convergence of the kinetic properties of the model, which can
boost sampling efficiency twofold compared to even weight-
ing.

25 individual simulation tasks were generated for each un-
folded configuration, giving a total of 225 50-ns trajectories
in the first iteration. As soon as one trajectory finishes, it is
reported back to the controller. The controller then extends
the run by another 50 ns. After a sufficient number of trajec-
tories have finished, the MSM controller performs clustering
and adaptive sampling, marking trajectories for termination
and spawning new trajectories as indicated. The number of
new trajectories and the frequency of clustering and adap-
tive sampling are user-settable parameters, as is the num-
ber of clusters to generate and the time separation between
structural snapshots. In this work we used 10,000 clusters
and snapshots taken every 1.5 ns in each trajectory. Future
versions will allow the values to be changed dynamically,
since the optimal settings depend on the available compute
resources, a fluctuating quantity on multi-user systems.

We tested how well the parallel adaptive molecular dy-
namics performed in a number of ways. Historically, ob-
taining a native-like conformation from an unfolded starting
structure has been used as the measure of success in protein-
folding [5]. After three generations of sampling (taking 30
h on our system), we obtain trajectories with conformations

as low as 0.6–0.7 Å Cα RMSD of the native state, as shown
in Fig. 3.

Such a metric, although used in many studies, of course
requires prior knowledge of the native state and is somewhat
artificial. To show the power of our adaptive simulation ap-
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Figure 4: Time evolution of cluster populations in
the microstate MSM. At 0 ns, all conformations are
in one of the nine unfolded states. The emergence of
a folded state is visible as a thicker black line. By 2
µs, a total 66% of the population has folded (within

3.5 Å of the native state).

proach, we also identify the native state in a ”blind” fash-
ion. In Copernicus, the lowest free energy conformation can
be predicted from the largest-population cluster at equilib-
rium, which is computed by examining distribution of the
microstate transition matrix after it has achieved a station-
ary state. This cluster is scored by measuring the RMSD
between the cluster and the native state, estimated as the
average of five random samples. After eight generations of
runtime (corresponding to 80-90 hours), the method pre-

dicts an equilibrium folded state approximately 1.4 Å from
the native state (Fig. 2). A more detailed analysis shows
that this cluster derived predominantly from a trajectory
spawned in the fourth generation, which was then extended
over three more generations (150 ns). It should be noted
that by this time some other clusters were closer to the na-
tive state than the one predicted by this method; however,
they could not be identified in a blind fashion.

An important strength of a converged kinetic model is that
it allows prediction not only of the equilibrium distribution
of states but also folding rates, mechanism, and any kinetic
or thermodynamic quantities that we can compute on the
individual structures. Here we are primarily concerned with
computing this model as fast as possible and performing ba-
sic validation; more detailed examples of mechanistic insight
from MSMs and ensemble simulation are given elsewhere [7,
11, 21, 3]. To validate the villin folding model, we examine
the kinetics of folding. Starting from the unfolded states,
we can calculate time evolution of the Markov State Model
using the transition probability matrix T(τ) calculated with
a Markovian lag time τ ,

p(t+ τ) = p(t)T (τ). (1)

For the microstate MSM built by Copernicus, we observe
the t1/2 for formation of a folded state to be approximately
500–600 ns (Fig. 4), in good agreement with the experimen-
tally characterized folding time for this 35-NleNle variant of
villin, which is around 700 ns. To do this, we constructed a
Markov State Model with a lag time of 25 ns (a sensitivity
analysis showed that the system became Markovian for lag
times of 20 ns or greater). Analysis was performed on the
largest connected subset of the Markovian transition matrix.
Conformations within 3.5 Å RMSD of the native state were
considered folded.
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Figure 5: Time evolution of the average Cα RMSD
from native for the villin ensemble. Error bars rep-
resent one standard deviation.

Despite the visual appeal of watching a single protein fold-
ing event, there is an increasing consensus in the field that
quantitatively robust comparisons to experiment are needed.
Indeed, the main strength of parallel adaptive molecular dy-
namics is its efficiency for computing ensemble properties
such as are measured in experiments. As an example, Fig-
ure 5 illustrates the time evolution of the ensemble average
of the Cα RMSD, including the statistical error.

4. PERFORMANCE
The all-encompassing goal for Copernicus has been to sig-

nificantly reduce biomolecular simulation time-to-solution
beyond the previous state-of-the-art. This requires good rel-
ative scaling, but we cannot afford to compromise absolute
performance: in the real world, computational resources are
scarce and have to be shared between projects and users.
Copernicus has been designed to use Gromacs for molecular
dynamics, with either multicore nodes or GPUs being used
to maximize performance of individual simulations. As il-
lustrated in Fig. 6, this provides Copernicus with several
levels of parallelization. For the core nonbonded interac-
tions we have manually written single-instruction multiple-
data (SIMD) assembly kernels for a number of architectures
(x86, PowerPC, BlueGene, IA64, etc.), and the kernels can
also be executed on GPUs. On the intermediate level, mul-
tithreading is employed for multi-core nodes, and explicit
message-passing (MPI) used for inter-node communication.
This provides unmatched performance for a fixed number of
cores, and when combined with parallel adaptive molecular
dynamics implemented by message passing on the highest
Copernicus level, it also scales to several orders of magni-
tude more cores than what has been possible before.

One reason for picking villin as an example application is
the small size of the molecular system, a challenge for achiev-
ing strong scaling. At 9,864 atoms, Gromacs would reach a
performance around 200 ns/day with 100 cores (or even 0.5
µs/day with long time steps, which were not used here),
but this is roughly the limit of strong scaling on general-
purpose hardware. If parallel adaptive molecular dynamics
can employ thousands of cores for this system, it will scale
to hundreds of thousands of cores for larger biomolecules.

Two different hardware resources were used for the villin
benchmark: A Supermicro cluster of 180 24-core 2.1 GHz
AMD Istanbul (4 6-core CPUs) nodes connected through
QDR Infiniband (at roughly 2.7 GB/s), and a Cray XE6
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Figure 6: Scaling through multi-level parallelism in
Copernicus. The nonbonded kernels use handtuned
single-instruction multiple-data assembly, threads
are used within nodes that share memory, and each
Copernicus task is a massively parallel message-
passing simulation that typically communicates over
Infiniband. The average as well as peak bandwidth
used for the villin example project is indicated. Be-
yond the point of efficiently scaling individual sim-
ulations, we employ hundreds of worker tasks on
a typical cluster or supercomputer, and these in
turn communicate with other resources through ad-
ditional servers. Top-level servers interact with con-
trollers to determine what tasks to execute. This hi-
erarchical architecture adapts to successively higher
latency, for instance when clusters on multiple con-
tinents are contributing to a project.

with 1516 24-core 2.1 GHz AMD Magny Cours nodes (2 12-
core CPUs) connected with a Gemini 3D-torus (9.6 GB/s).

The complete project required only 100 hours of wallclock
time, using 64–80 nodes on the Infiniband system and 96–
144 nodes on the Cray simultaneously: a total of 3840–5376
nodes during that time. Successive MSM generations took
10-11 hours each, and the first folded villin conformation
(see Fig. 3) was observed after roughly 30 hours of run time.

In our view, the most interesting property is the absolute
performance – measured as time-to-solution – as a function
of the total amount of hardware resources used. To compute
this, we additionally benchmarked simulations with different
numbers of cores and then simulated the controller’s activity
given different numbers of cores per task and total resources
allocated. We used the time to observation of the first folded
conformation as a stop criterion; the more realistic case of
predicting the native state without a priori knowledge of it
corresponds to roughly a factor 2.5 more time.

Fig. 7 shows the scaling efficiency of the villin run for dif-
ferent numbers of cores assigned to individual simulations.
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Figure 7: Scaling efficiency of the villin folding run
as a function of total number of cores. The different
lines represent different numbers of cores assigned
to the individual Gromacs simulations, ranging from
1 to 96. While the relative efficiency of a single task
is lower when it is parallelized over more cores, it
significantly increases the total number of cores we
can use use for Copernicus simulations.

There is a limit to how many simulation tasks we can use
efficiently for parallel sampling of small molecules (we only
used 225 tasks for villin), which causes the parallel efficiency
to drop rapidly once this point is reached. The scaling ef-
ficiency is calculated as tres(1)/[Ntres(N)], where tres(n) is
the time it takes for n cores to run the entire set of MSM
commands (tres(1) = 1.1 · 105 hours).

The corresponding wallclock time-to-solution for the pro-
ject is shown in Fig. 8. This illustrates the trade-off involved
in the scaling of individual commands vs. that of the run as
a whole to achieve high absolute performance. For a given
number of cores, the efficiency will drop slightly as com-
mands are parallelized over more cores for the small villin
system. However, the overall runtime will hit a limit im-
posed by the number of individual commands per genera-
tion that can meaningfully lead to a Markovian regime with
MSM sampling. When the number of commands exceeds
the number of commands per generation, the time to result
ceases to decrease as a function of total number of cores.
An easier way to think about this might be to compare to
classical scaling: By parallelizing over more cores we might
reduce efficiency slightly, but since it enables us to use more
resources it will reduce the time-to-solution. Seen this way,
Copernicus still achieves 53% scaling efficiency when using
20,000 cores to simulate folding of a 9,864-atom system.

Bandwidth and latency requirements are modest on the
ensemble level. While the massively parallel part of a single
villin simulation requires 500–2900 MB/s for 24 to 96 cores,
the average bandwidth used for ensemble synchronization
typically does not exceed 0.1 MB/s (Fig. 9). Because out-
put data is transmitted to the server controlling the project,
latency and available bandwidth do affect total run time
slightly since each worker must wait until it receives a new
workload. However, we estimate this time be no more than
30 seconds per day of running. In terms of the processing
algorithm, this delay is hidden because the data transfers
occur in parallel with project processing.

For bigger problem sizes, the strong scaling regime for
Copernicus will typically increase more than proportionally
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Figure 8: Total time to solution for folding of villin
as a function of the total number of cores, with dif-
ferent number of cores assigned to the lowest-level
simulations (colored lines). As long as there are
idle commands in the queue it is more efficient to
start additional simulations, but when this point is
reached it becomes advantageous to further decom-
pose individual simulations at a slight cost in rela-
tive scaling efficiency. The project reported in the
text was run with 5,000 cores; using 20,000 cores the
time to solution would have been just over 10h.
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Figure 9: Average ensemble-level bandwidth use as
a function of the total number of cores, for the same
runs as Figs. 7 and 8.

to the system size. First, the underlying molecular dynam-
ics implementation has close to ideal weak scaling [17], and
the number of cores in each simulation can thus increase in
proportion to the system size. Second, a larger system will
typically have significantly more complex dynamics, which
makes it possible to use many more parallel commands. We
therefore expect studies of realistic normal-size protein dy-
namics to effectively use at least an order of magnitude more
cores.

5. CONCLUSIONS
The parallel adaptive approach to molecular dynamics

presented here is a powerful combination of the strongest
aspects of parallel simulation, distributed computing, and
Markov State Models. We have shown that the Copernicus
framework effectively increases the scale at which biomolec-
ular molecular dynamics simulations can be performed from
a few hundred cores to many thousands and beyond, likely



reaching millions of cores for large molecules. In contrast
to custom hardware that parallelizes a single simulation,
Copernicus achieves this by using domain-specific knowledge
to focus on the desired results of biomolecular simulations:
quantitatively robust estimation of molecular reaction pa-
rameters. Our approach uses statistical mechanics knowl-
edge to drive a message-passing parallelization scheme, and
adapts this scheme to match the available computational
resources by maximizing CPU and bandwidth use simulta-
neously.

Copernicus provides an open – but authenticated – peer-
to-peer architecture for ensemble simulations in high perfor-
mance computing. Currently, Copernicus comes with plu-
gins to run Markov-State-Model-driven sampling and Ben-
nett Acceptance Ratio free energy perturbation calculations
[4]. In addition to the architectural improvements outlined
above, further development will focus on making available
controllers optimized for different sampling algorithms and
questions in statistical mechanics modeling of biomolecules.

By using Copernicus, we have demonstrated efficient use
of 5,376 cores to fold a small protein and predict the folded
state without a priori knowledge within 3.5 days of wallclock
time. As illustrated in the performance section, this could be
pushed significantly further with more available resources.
To obtain a similarly converged statistical model, a classical
simulation would have to exceed 50 µs/day for villin, which
is currently infeasible even with special-purpose hardware.
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