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ABSTRACT: Within molecular dynamics simulations of protein]solvent
systems the exact evaluation of long-range Coulomb interactions is
computationally demanding and becomes prohibitive for large systems.
Conventional truncation methods circumvent that computational problem, but
are hampered by serious artifacts concerning structure and dynamics of the
simulated systems. To avoid these artifacts we have developed an efficient and
yet sufficiently accurate approximation scheme which combines the structure-
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Ž .adapted multipole method FAMUSAMM scales linearly with the number of
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Introduction

n many cases, dynamical processes contributeI Žessentially to protein function e.g., in ligand
.binding or in enzymatic reactions . Representing a

microscopic description of protein dynamics in the
framework of classical mechanics, molecular dy-

Ž . 1 ] 3namics MD simulations can serve as a tool to
interpret experimental data and to provide predic-
tions on hitherto unobserved processes.

MD simulations of protein dynamics pose a
computational challenge, because suitable simula-
tion systems have to include the native environ-

Ž .ment e.g., water and lipid molecules of these
biological macromolecules4 ] 7 and, therefore, typi-
cally have to comprise several tens of thousands of
atoms. Furthermore, they have to use femtosecond
integration time steps to enable smooth descrip-
tions of the fastest degrees of freedom. Simulations
of such systems are currently limited to nanosec-
onds even if the most powerful supercomputers
are employed. Although there are biochemically
important processes that actually take place on a
nanosecond time scale,8 and have been success-
fully described by MD simulations,9, 10 most bio-
chemical processes occur on time scales well above
nanoseconds and, thus, are inaccessible to conven-
tional MD methods.

In the MD approach the classical Newtonian
equations are solved numerically to obtain the
motion of all atoms.11 ] 13 For each numerical inte-
gration step, the Coulomb sum:

N q qi j Ž .U A 1Ý Ý < <r y ri ji j-i

Ž .between all pairs of atoms i, j with partial charges
q and positions r has to be evaluated. In commoni i
force fields for protein and solvent molecules most
atoms carry partial charges; therefore, the evalua-
tion of U dominates the computational effort in
MD simulations as it scales quadratically with the
number N of charged particles.

In truncation methods,14 which simply neglect
long range electrostatic interactions beyond a cut-

˚off distance of typically 8]10 A, the computation
of U scales with N instead of N 2 and, conse-
quently, such methods are widely used in MD
simulations. However, the truncation of electro-
static interactions leads to serious errors in forces,
energies, and other observables. These errors are

generally too large to be acceptable for descrip-
tions of protein dynamics.15 ] 18 For instance, using

˚a cutoff distance of 10 A the relative errors in the
computation of electrostatic forces are of the order
of 10%.19 One of the major artifacts concerning the
description of protein dynamics, that is entailed by
these sizable errors, is a suppression of dynamical
correlations between slowly fluctuating protein
modes, as these are mainly coupled by the ne-
glected long-range Coulomb forces.16, 18 Thus,
truncation of electrostatics trades a description of
protein dynamics which is computationally pro-
hibitive but adequate in the sense of basic physics
for a description which is computationally man-
ageable but physically inadequate.U

As a result of the above considerations, one of
the major tasks which has to be tackled in the
strive for improved MD methods is the design of
approximate algorithms for computationally effi-
cient and sufficiently accurate evaluation of long-
range Coulomb interactions and integration of the
Newtonian equations.

However, any attempt to solve the problems
just stated is confronted by two difficulties: First,
requiring efficiency and accuracy on equal footings
typically represents a contradiction, because ap-
proximate algorithmic schemes tend to gain com-
putational efficiency at the cost of accuracy; that is,
contradiction already has shown up in the above
discussion of truncation methods and has to be
taken care of in the design of any new approxima-
tion scheme. Second, it is much simpler to estimate
the computational complexity of an approximate
MD algorithm, because this is just a matter of
counting floating point operations, than to judge
its accuracy. In fact, as discussed in Refs. 16 and
20, the latter task is highly nontrivial due to the
complicated, nonlinear, and chaotic dynamics of
macromolecular systems and requires careful com-
parisons of a variety of statistical observables on
structural and dynamical properties that have to
be extracted from extensive sample simulations.
For instance, the particular artifact of the trunca-
tion method noted above, that is, the suppression
of dynamical correlations, became apparent only
after the progress of computer technology had
enabled simulations of sufficiently long duration.
To the extent that quality assessments of approxi-
mate MD algorithms will become necessary in the

UAlso the computation of van der Waals forces required in
MD simulations scales with N 2 ; however, as these forces decay
much more rapidly with increasing interaction distance than

˚the Coulomb forces, they can safely be truncated at about 10 A
and, therefore, are computationally inexpensive.
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present study, we will adopt the problem-adapted
approach developed in Refs. 16 and 20 and will
employ the procedures and some of the statistical
observables that have been suggested there as use-
ful and suitable tools to judge algorithmic accu-

Ž .racy see subsequent text .
Up to now various approaches have been sug-

gested that aim at a more efficient approximate
treatment of the long-range electrostatic interac-
tions in MD simulations. These approaches may be
classified into two categories: multipole18, 19, 21 ] 26

and multiple-time-step methods.16, 27 ] 33

Multipole methods approximate the long-range
forces originating from a group of point charges by
truncated multipole expansions of their electro-
static potential. Using a hierarchy of grids for
subdivision of space, nested on multiple scales,
and a corresponding hierarchical organization of
charge groups and multipole expansions,22 a com-

Ž .putational complexity of O N log N is achieved.
By additionally using a hierarchy of local Taylor
expansions for the evaluation of the electrostatic
forces acting on particles, Greengard and Rokhlin
have constructed the so-called fast multipole method
Ž . Ž .FMM that even scales with O N for large sys-
tems.23 ] 25 Several implementations of this method
suited for MD simulations have been reported.34 ] 36

For MD simulations of biomolecules, the FMM-
type grouping of charges, defined by a fixed and
regular subdivision of space, requires multipole
expansions of rather high order to achieve suffi-
cient numerical accuracy.24 If, instead, charge
grouping is adapted to structural and dynamical
properties of the simulated biomolecules, multi-
pole expansions can be truncated at low orders
without large sacrifices of accuracy.18, 19, 26 Accord-
ingly, such a structure-adapted multipole method
Ž .SAMM provides further substantial speed-up for
MD simulations.

Multiple-time-step methods are based on the
observation that forces between distant atoms gen-
erally exhibit slower fluctuations than forces be-
tween close atoms. Therefore, without significant
loss of accuracy, the more slowly fluctuating forces
can be treated with longer integration step sizes.
The required separation of forces can be imple-
mented, for example, by grouping atom pairs into
distance classes. Simple multiple-time-step meth-
ods define only two distance classes, an inner and
an outer one,27 whereas more advanced methods
employ a hierarchy of such classes.16, 28 ] 33

As one can expect from the general considera-
tions just presented, the enhanced efficiency of
multipole and multiple-time-step methods is ob-

tained at the cost of various kinds of algorithmic
artifacts. A typical example is the artificial intro-
duction of ‘‘algorithmic noise,’’ which arises from
discontinuous and discretized representations of
continuous and smooth functions and processes.
Such noise can effectively act like an uncontrolled
stochastic force on the atomic motion, and can turn
the simulated dynamics into a Langevin-type dy-
namics with the unwelcome property that the al-
gorithmic noise is not properly balanced by a cor-
responding friction term and, therefore, constantly
adds heat to the simulated system. By thorough
studies of sample simulations these artifacts have
been shown to be negligible in the case of the
SAMM method,18, 19, 26 and to be optimally small in
the case of a particular multiple-time-step proce-
dure, the so-called DC-1d extrapolation scheme,
which has been suggested and carefully compared
with other methods in Ref. 16.

From a general point of view, multipole meth-
ods and multiple-time-step methods exploit differ-
ent regularities of Coulomb interactions as to ob-
tain enhanced computational efficiency: the former
make use of regularities in space, whereas the
latter exploit regularities in time. This complemen-
tarity led us to propose16 that a combination of
both concepts should be able to render additional
speed-ups. In view of the proven superiority of the
SAMM method as compared to fixed-grid FMM
procedures, on the one hand, and of the DC-1d
scheme as compared with other multiple-time-step
schemes, on the other hand, these two methods
appear to be natural candidates for the envisaged
combination. It is the purpose of the present work
to show how a suitable combination of these meth-
ods can be achieved and to demonstrate that the
resulting fast multiple-time-step structure-adapted

Ž .multipole method FAMUSAMM actually preserves
and combines the advantages of the parent meth-
ods with respect to enhanced computational effi-
ciency and to the lack of substantial algorithmic
artifacts. In particular, we will demonstrate, by
comparison of a combination of SAMM with other
multiple-time-step schemes, that the DC-1d proce-
dure is actually the method of choice.

Windemuth37 has recently presented a first step
toward a combination of multipole and multiple-
time-step methods; using a simple variant of a
multiple-time-step method with only two distance
classes and a conventional FMM algorithm he
achieved considerable speed-ups. Unfortunately, a
quality assessment is lacking in Windemuth’s
study. Zhou and Berne38 reported a more ad-
vanced combination of the multiple-time-step al-
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gorithm RESPA31 with a slightly modified fast
multipole method using a rectangular subdivision
of the simulation volume. Here, quality assess-
ments are based on short MD simulations in the
picosecond range. For MD simulations with peri-
odic boundaries39 ] 41 a fast method, based on a
combination of RESPA and the smooth particle
mesh Ewald method,42 has been described.43 The
latter method is particularly useful for simulations

Ž .of crystalline structures e.g., protein crystals .
Also, for the simulation of noncrystalline systems,
like in lipid-membrane-soluted proteins,4 periodic
boundaries have been used as an approximation
due to the availability of efficient algorithms. In
the latter case, however, it is not clear a priori

Žwhether that approximation is justified for a dis-
.cussion of possible artifacts see, e.g., Refs. 44]47 .

In our study, we develop an efficient algorithm to
speed up simulations of nonperiodic systems, in
which, typically, the environment is effectively in-
cluded through the use of appropriate boundary

Ž .forces see, e.g., Refs. 44 and 48 . We provide a
careful analysis of possible algorithmic artifacts
and their influence on structural and dynamical
properties of a test system.

We intend to achieve high efficiency by combin-
ing SAMM and a multiple-time-step scheme. To
that aim, we first outline the basic features of the
parent methods and, subsequently, present our
new algorithm, FAMUSAMM. As will be ex-
plained in the following sections, in our multipole
method, charge grouping will be based on the
specific structural features of macromolecules
rather than on fixed subdivisions of space as used
in the methods cited previously. In particular, our
combination of SAMM with a multiple-time-step
method is expected to be more efficient and less
memory consuming, because we intend to apply
the multiple-time-step scheme to local Taylor ex-
pansions of the electrostatic potential rather than
to Coulomb forces acting on individual atoms.
Having defined suitable methods to evaluate FA-
MUSAMM’s accuracy, we present the results of
our accuracy assessment. After documenting the
enhanced computational performance of our
method, we discuss and summarize our results.

FAMUSAMM Algorithm

As indicated previously, we intend to combine
two well-established methods for rapid evalua-
tion of long-range Coulomb interactions into a new

and improved algorithm. To enable an under-
standing of the computational strategy to be im-
plemented by our combination, we first sketch the
basic concepts of its parent methods, SAMM and
the multiple-time-step method DC-1d.

STRUCTURE-ADAPTED MULTIPOLE METHOD

The SAMM method18, 19, 26 exploits structural
features of biomolecules to define a hierarchical
grouping of partially charged atoms into local
charge distributions, whose multipoles are subse-
quently used for evaluation of electrostatic interac-
tions at large distances.

Figure 1 illustrates the hierarchy of charge dis-
Ž .tributions ‘‘objects’’ obtained by the SAMM-type
Ž .grouping left and the electrostatic representations

Ž .chosen for the resulting objects right . Both the
definition of the objects and the choice of their
electrostatic representations rest on the observa-
tion that covalently bound atoms within
biomolecules intrinsically form dynamically stable
local groups, which either carry integer elementary
charges or are uncharged, but dipolar. In case the
latter dipoles are small, the local groups are con-

FIGURE 1. Structure-adapted hierarchical description
of biological macromolecules. Filled circles represent
atoms, structural units are surrounded by a single-line
border, and clusters are surrounded by a double-line
border.
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sidered nonpolar and their electrostatics may be
neglected.18, 19

This observation suggests that, at larger dis-
tances, the lowest multipole moments of local
groups can provide an accurate description of the
electrostatics within biomolecules. Thus, charged
local groups should be described by monopoles
and dipolar groups by dipoles for the description
of their electrostatic interactions at large distances.
In the SAMM method that concept represents the
guideline for the definition of the object hierarchy
illustrated in Figure 1. As shown in the figure, at

Ž .the bottom of the object hierarchy level 0 , no
local groups are formed; instead, individual atoms
Ž .filled circles are considered as the basic objects
and are electrostatically represented by their par-

† Žtial charges. At small distances i.e., at distances
.smaller than a predefined distance D , their inter-1

actions are evaluated by means of the Coulomb
w Ž .xsum eq. 1 . For a description of electrostatic

interactions at larger distances covalently bound
atoms are grouped into structural units which are
compact, typically include three to ten atoms, and

Ž .form the first level of the object hierarchy level 1 .
According to their respective electrostatic proper-
ties, SAMM distinguishes three types of structural

Ž .units: 1 ‘‘neutral units’’ consist of uncharged
atoms only, and they need not be considered and

Ž .are therefore omitted in Figure 1; 2 ‘‘dipolar
Žunits’’ e.g., water molecules or peptide groups of

.a protein backbone are composed of partially
charged atoms, exhibit a vanishing net charge, and

Ž . Ž .are represented by a dipole arrow ; and 3
Ž‘‘charged units’’ e.g., charged side groups of amino

.acids carry an integer net charge and are repre-
Žsented by a monopole. At all higher levels level 2

.and further up pertaining to interactions at still
Žlarger distances i.e., at distances larger than a

.second, predefined interaction distance D objects2

of the preceding lower level are grouped into
clusters by means of self-organizing and adaptive
vector quantization techniques.49 For a predefined
number of clusters these techniques manage to
minimize cluster extension and, thereby, also the
approximation error caused by the truncation of
the multipole expansions.18, 19 Depending on their
total charge the clusters are represented either by

† In a heteronuclear molecule each atom carries a partial
charge; however, usual parameterizations of protein force fields
are chosen such that small partial charges are neglected while
the sum of partial charges is locally kept at integer values.

‡ ˚dipoles or by monopoles. We use D s 10 A and1
˚D s 16 A for the interaction distances associated2

with the hierarchy levels; that choice has been
demonstrated to guarantee highly accurate de-
scriptions.19

Computationally, the hierarchical multipole ex-
pansions of SAMM are defined and evaluated by a
bottom-up scheme: The monopoles and dipoles of
the structural units at level 1 are calculated from
the individual charges of their enclosed atoms; at
the second level, the monopoles and dipoles of the
clusters are obtained from the respective multipole
moments of their embodied structural units and so

Ž .forth for further details see Ref. 18 .
Note that conformational changes in the protein

or diffusive motions of solvent molecules would
lead to an increase of cluster sizes in the course of
an MD simulation, if the grouping of structural
units into clusters were to be chosen as fixed. As a
result, the accuracy of the electrostatic representa-
tion by the truncated multipole expansions would
decrease. To maintain the accuracy of description
SAMM periodically regroups the structural units
into new clusters applying the adaptive techniques
previously mentioned. In principle, such regroup-
ing represents a discontinuity of description and,
thus, is a source of algorithmic noise. However,
the chosen adaptive reclustering procedure assures
that the redistribution of structural units among
clusters is kept minimal, and, therefore, also mini-
mizes algorithmic noise.18, 19

In addition to the diligent choice of structural
units and of optimally compact clusters the SAMM
method provides a further means to reduce the
approximation error connected with the truncated
multipole expansions, i.e., the choice of optimal
reference points of the multipole expansions. This
strategy is based on the fact that the first nonvan-
ishing moment of a multipole expansion, in con-
trast to the higher moments, is independent of the
reference point. As SAMM considers only the first
nonvanishing moment, the truncation error can be
made optimally small by an adequate choice of the
reference point.18, 19

Whereas the original version of SAMM19 com-
prises solely a hierarchical multipole scheme, its
enhanced version26 also utilizes FMM strate-
gies.23, 24 Here, local Taylor expansions of the elec-

‡ In contrast to the original SAMM version, we now also
combine monopoles of opposite sign into dipolar objects at
higher levels, if the total charge of these objects vanishes. This
procedure allows representation of the electrostatics of neigh-
boring ion pairs at large distances as dipoles.
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trostatic potential originating from distant charge
distributions and their associated multipole mo-
ments are used to speed up the calculation of
forces acting on partial charges in a given neigh-
borhood. A careful analysis of sample simulations
has shown that the local Taylor expansion may be
safely truncated at second order, if the SAMM-
specific distance classes are applied, that is, if
forces originating from objects more distant than
D are considered.18, 26 Thus, the fast version of1
SAMM approximates the corresponding electro-

Ž .static potential F R at position R s R q r, withino
the volume of a structural unit or cluster in terms
of its value and derivatives at the optimized refer-
ence point, R , of that object by the local Tayloro
expansion:

3 31
L Ž .F R q r s F q K r q T r rÝ Ýo o a a a b a b2as1 a , bs1

Ž .2

where the expansion coefficients are defined by:

Ž . F R
Ž .F ' F R , K 'o o a  Ra RsR o

2 Ž . F R
Ž .and T ' 3a b  R  Ra b RsR o

Ž . Ž .In eqs. 2 and 3 , Greek indices enumerate Carte-
sian coordinates.

Figure 2 illustrates the FMM aspect of SAMM
for the lowest three hierarchy levels, H s 0, 1, 2.
As a function of object distance d it is shown how

Žobjects at different hierarchy levels contribute long
.arrows to the electrostatic force acting on a se-

vŽ .lected atom = in Fig. 2 . Three corresponding
Ž .distance classes d F D , D - d F D , D - d1 1 2 2

are separated by vertical dotted lines. Within these
distance classes the figure displays those objects
that contribute to the force acting on objects of the
respective hierarchy level. These objects, which
contain the selected atom and which we corre-
spondingly call selected objects, are shown within
the leftmost column. For the evaluation of the total
electrostatic force on the selected atom the follow-
ing algorithmic steps have to be performed in a
top-down fashion:

ŽStep 1: At the highest hierarchy level H s 2
.in Fig. 2 the electrostatic potential gener-

ated by the multipole moments of all those
clusters, which are separated from the se-

FIGURE 2. Algorithmic steps connected with the local
Taylor expansion in the force calculation of the fast
version of SAMM; the contributions to the force on a

v( )selected atom = originating from objects located within
various distance classes and associated to
corresponding hierarchy levels H are indicated by long
arrows; the reference points of the local Taylor

( )expansions are denoted by triangles ' for clusters
( ) ( ) ( )H = 2 and by squares B for structural units H = 1 ;
short arrows starting at a reference point indicate the
‘‘inheritance of local Taylor expansions.’’ For explanation
see text.

lected cluster by more than the second inter-
action distance D , is approximated within2
the selected cluster by a local Taylor expan-
sion of the electrostatic potential using the

Ž .reference point ' in Fig. 2 .
Step 2: Now the local Taylor expansion of the

Žselected cluster is transformed short ar-
.rows to local Taylor expansions of its em-

bodied structural units. This procedure is
called ‘‘inheritation,’’ and is the key to the
high efficiency of FMM schemes. The trans-
formation is accomplished by shifting the
reference point from the center of the se-

Ž . Žlected cluster ' in Fig. 2 to the centers B
. 18, 26in Fig. 2 of its embodied structural units.

The resulting Taylor expansions of the struc-
tural units now describe the same electro-
static potential as their ‘‘parent’’ local Taylor
expansion.

ŽStep 3: At the next lower hierarchy level H s
.1 in Fig. 2 we consider additional electro-

static interactions; that is, those of the se-
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lected structural unit with structural units in
a distance range between D and D . Their1 2
contribution to the electrostatic potential
within the selected structural unit is again
approximated by a local Taylor expansion
and is added to the local Taylor expansion
inherited from the higher levels. The result-
ing local Taylor expansion approximates the
electrostatic potential generated by all atoms
more distant than D .1

Step 4: At the lowest hierarchy level, H s 0,
the local Taylor expansion of the selected
structural unit is evaluated at the position of
the selected atom. Interactions with atoms at
distances smaller than D are calculated di-1
rectly from the corresponding Coulomb sum
w Ž .xeq. 1 and are added.

The above presentation of the FMM strategy
utilized by SAMM completes the outline of that
algorithm. We have seen how SAMM takes advan-
tage of structural properties of protein]solvent
systems and how this method exploits distance-
dependent spatial regularities of the corresponding
electrostatic potential to construct a computation-
ally fast, yet accurate approximation scheme.

MULTIPLE-TIME-STEP METHODS

Another class of approximation schemes, the
multiple-time-step methods,16, 28, 29, 32, 33 exploit
complementary properties of protein electrostatics
for the same purpose; they take advantage of tem-
poral regularities. The so-called distance class
methods, in particular, are based on the observa-
tion that forces originating from distant atoms
fluctuate more slowly than forces from atoms

Ž .nearby see Fig. 3 . The slowly fluctuating forces
may be evaluated less frequently than the fast
ones and may be extrapolated at the time steps in
between. Such extrapolation is required as the nu-
merical integration of the dynamical equations
needs all forces at every integration time step
t s 0, 1, 2, . . . , which discretizes the simulation
time t s tD t, where D t is the integration time
step size.§

The left part of Figure 3 illustrates how distance
classes j can be defined by a set of increasing radii

� 4R . The set of atoms m at positions r , satisfy-jq1 m
< <ing R F r y r - R , makes up the distancej l m jq1

§ In MD simulations, D t is usually set to 1 fs, which is short
enough to smoothly describe the fastest degrees of freedom in
protein simulations.

class j of particle l at position r . As is alsol
Ž .indicated in Figure 3 right part , for each particle l

the sum of forces F Ž j. arising from particles in
distance class j is calculated explicitly every n -thj

Ž .integration time step filled squares . Each of these
time steps is called a macrointegration step. A
common choice16 is n s 2 j. Correspondingly, thej
2 j y 1 elementary time steps within the cycle of a
macrointegration step are called microintegration
steps. As illustrated in Figure 3, at each step, F Ž j. is
estimated from two forces calculated at previous
macrointegration steps by:

Ž j. Ž j. Ž j. Ž j. Ž j. Ž .F s a F q b F 4n kqi i n k i n Žky1.j j j

using appropriate extrapolation coefficients, aŽ j.
i

and bŽ j.. The lower index of F denotes the absolutei
integration time-step number and is expressed in
terms of the macrointegration step k s 0, 1, 2, . . . ,
and the cyclic microintegration step i s 0, . . . ,
n y 1; F Ž j. and F Ž j. are explicitly calculated atj n k n Žky1.j j

the macrointegration steps k and k y 1.
The hierarchical extrapolation procedure shown

is capable of saving an enormous amount of com-
puter time as it frequently avoids the most time-

Žconsuming step i.e., the exact evaluation of all
.interactions . Here computational speed is gained

at the cost of an increased demand for memory: for
each atom and each distance class two previous
forces have to be kept in memory.

Various choices for the extrapolation coefficients
aŽ j. and bŽ j. have been discussed16, 33, 37; both thei i

Ž .linear extrapolation illustrated in Fig. 3 and the
so-called DC-1d algorithm have been found to be
promising.16 Although the linear extrapolation, de-
fined by:

i
Ž j. Ž j. Ž j. Ž .a s 1 q and b s 1 y a 5i i in j

entails smaller discontinuities for the extrapolated
forces than the DC-1d algorithm, it leads to a
larger energy transfer into a simulation system by
algorithmic noise.16 The DC-1d scheme employs
the coefficients:

3n2 y 2n q 1 n y 1j j jŽ j.a s y 3ii Ž . Ž .n n q 1 n n q 1j j j j

Ž j. Ž j. Ž .and b s 1 y a 6i i

It is not clear a priori, whether the quoted prop-
erties of these extrapolation schemes will pertain if
they are combined with the SAMM procedure into
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( )FIGURE 3. Left: Distance classes j = 0, 1, 2, . . . , defined for an atom central dot by a set of radii R generating aj+1
series of spherical shells. Right: For each distance class the temporal evolution of the total force F ( j ) acting on the

( )selected atom originating from all atoms in the respective distance class, along with the exact forces solid line and
( ) ( )their exact values filled squares . In addition, linear force extrapolations dotted lines and resulting force estimates

( )empty squares are depicted.

our new FAMUSAMM scheme, which will be ex-
plained in the next section. Therefore, using test
simulations we will subsequently check both ex-
trapolation methods for their suitability within our
combination method.

COMBINATION OF SAMM WITH A
MULTIPLE-TIME-STEP METHOD

Before starting with the detailed outline of our
FAMUSAMM method we annotate some of the
important progress concerning its implementation
as compared to that of SAMM: The first two SAMM
versions18, 19, 26 made use of only two hierarchy
levels, which restricted their applicability to
medium-sized systems comprising less than about
5000 atoms. To gain substantial speed-ups for
larger systems also, we decided upon the design of
FAMUSAMM to implement a fast SAMM method

with an arbitrary number of hierarchy levels. That
number is now determined by the number of atoms
in a given simulation system and is chosen auto-
matically in the start-up phase of a simulation.50

Basic Concepts

Our FAMUSAMM algorithm has been designed
to further reduce the computational effort for the
evaluation of Coulomb forces by exploiting regu-
larities of these forces in space and time. The basis
of its development has been the identification of
the most time-consuming steps within the fast
SAMM algorithm. Only upon such an analysis
may one expect that a combination with a multi-
ple-time-step method can render additional speed-
ups. A detailed inquiry of fast SAMM has shown50

Ž .that the essential time-consuming steps are: i the
calculation of contributions to the local Taylor ex-

VOL. 18, NO. 141736



FAMUSAMM ALGORITHM

Ž . Ž .pansions see Fig. 2, steps 1 and 3 ; and ii the
calculation of the electrostatic forces for the inner-

Ž .most distance class see Fig. 2, step 4 . Therefore,
we have focused our efforts on these two steps.

Multiple-Time-Step Extrapolation of Local
Taylor Expansions

Ž .We first consider step i and remember that the
hierarchy of interactions, which is employed for
the evaluation of the local Taylor expansions and
depicted in Figure 2, is defined by a hierarchy of
distances. This hierarchy of distances is intimately
related to the particular concept of distance classes
underlying the multiple-time-step schemes as dis-
cussed above. Therefore, an attempt to combine
these methods seems natural.

In multiple-time-step methods, the total force,
F Ž j., acting on a selected atom originating from
distance class j is extrapolated. Because we now
want to use a multipole method, we have to iden-
tify a corresponding expression for this force. As
we have seen in our outline of the SAMM algo-
rithm, the total force originating from outer dis-
tance classes and acting on elements contained in a
cluster or a structural unit is computed by means
of a local Taylor expansion. Such a local Taylor
expansion for an object on a given hierarchy level
is—except for the topmost level—made up of two

Ž .components: a a contribution inherited from the
Ž .next higher hierarchy level see Fig. 2, step 2

comprising the electrostatic interactions with ob-
Ž .jects in all outer distance classes; and b contribu-

tions from objects within the same hierarchy level.
From the latter one can calculate the desired total
force, F Ž j., and, therefore, we apply multiple-time-
step extrapolations to these contributions. Here,
instead of extrapolating the forces directly, we
extrapolate the coefficients F , K , and T of the0 a a, b

local Taylor expansions, from which the forces
derive.¶

Inner Class Force Extrapolation

˚Because of the choice of 10 A for the interaction
distance D rendering quite a few, typically about1
400, interaction partners for a given partial charge

Ž .within the innermost distance class H s 0 of
SAMM, the second essential time-consuming step

¶Note that this strategy also saves computer memory, be-
cause the local Taylor expansion of a selected object is used to
calculate the forces on all particles contained in that object;
storage of all these forces would inevitably consume much
more memory.

Ž .ii of that method is the calculation of electrostatic
w Ž .xforces by the Coulomb sum eq. 1 . In fact, this

step is equivalent to the one carried out in conven-
tional truncation methods using a cut-off distance
D . To reduce that effort by application of a multi-1
ple-time-step method, we split this SAMM dis-
tance class into two new distance classes, j s 0

˚and j s 1, with the respective radii R s 5 A and1
˚R s 10 A. Within these new distance classes we2

extrapolate forces directly by a multiple-time-step
scheme as described in the previous section. Dis-
tance classes of similar size have been successfully
used previously.16

Due to the introduction of these new distance
classes, the expensive computation of about 400
interactions per particle is now performed only at
every second integration time step, whereas, in dis-
tance class j s 0, only a few interactions, about 50,
have to be evaluated at every integration step.
Hence, the overall computational effort for the
innermost SAMM distance class is reduced nearly
by a factor of two.

Interaction List Updates

Generally, MD methods which are based on
distance classes use interaction lists to elimin-
ate the need for time-consuming interaction part-
ner searches at each integration time step.32 In
FAMUSAMM, that strategy is adopted as follows:

ŽFor each object at a particular hierarchy level atom,
.structural unit, cluster an associated interaction

list points to all objects which belong to the same
hierarchy level and meet the distance criterion

Ž .described previously cf. Fig. 2 . Because distances
between atoms, structural units, and clusters vary
during an MD simulation, the interaction lists have
to be updated from time to time and are likely to
change upon these updates. As a result, the forces
generated by changing numbers of objects within a
given distance class will change discontinuously.
The reclustering procedure of SAMM mentioned
above causes similar discontinuities. However, the
occurrence of such discontinuities disables the ap-
plication of multiple-time-step extrapolation pro-
cedures, because the latter are based on strict
smoothness assumptions: Only if the interaction
lists and cluster compositions are kept fixed for a

Žsufficiently large 4 4, see Initialization subsec-
.tion number of integration time steps, multiple-

time-step extrapolations may be applied. Test sim-
ulations have shown that, for our FAMUSAMM
interaction lists, update periods covering up to 128
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integration steps can be used; reclustering periods
may be even longer and are chosen as integer
multiples of the former periods.

Verification of Local Taylor
Expansion Smoothness

As described above, an essential new feature of
FAMUSAMM, as compared with previous multi-
ple-time-step schemes, is the extrapolation of local
Taylor expansion coefficients for outer distance
classes instead of the extrapolation of forces acting
on individual atoms. To verify the validity of this
approach it remains to be verified whether the
smoothness conditions required for multiple-
time-step extrapolations actually hold for the local
Taylor expansion coefficients. Extended test simu-
lations have demonstrated that such is the case,
and that local Taylor expansion coefficients exhibit
decreasing amplitudes and curvatures with in-
creasing hierarchy level H.

Initialization

A prerequisite for the application of the multi-
ple-time-step extrapolation at a given time step in
a simulation is the accessibility to two previously
explicitly calculated forces or local Taylor expan-
sion coefficients. As these are absent in the start-up
phase of a simulation or, due to the associated
discontinuities, cannot be used after an update of
the interaction lists, special precautions have to be
taken for these periods.32 To be specific, the ex-
trapolation of forces or of local coefficients for
distance class j requires their values at two previ-
ous macrointegration steps, which are separated

j Ž .by 2 y 1 integration steps see Fig. 3 . To provide
these values for the initialization periods FAMU-
SAMM performs exactly T s 2 j conventional fastj

Ž .SAMM steps until all necessary forces for j s 1
Ž .or local coefficients for j G 2 are explicitly calcu-

lated. Obviously, the initialization periods, after
which multiple-time-step extrapolations can be ap-
plied, have different durations, T , for the variousj

distance classes. For the computationally most ex-
pensive distant classes, j s 1 and j s 2, the initial-
ization lasts only two and four integration steps,
respectively. From these numbers it is clear that
the efficiency loss due to the initialization phases
is negligible, if periods of 64 or more steps are
used for the update of the interaction lists.

FAMUSAMM Algorithm

Figure 4 illustrates the multiple-time-step
scheme of FAMUSAMM by which long range
Coulomb interactions are evaluated. For a simula-
tion period well after an initialization phase three
hierarchy levels, H, and a sequence of 20 integra-
tion steps are shown. Filled squares indicate ex-
plicit fast SAMM force calculations, empty squares
indicate extrapolations. The dashed line separates

Ž .the Coulomb sum interaction classes j s 0, 1 from
distance classes, which interact by multipole ex-

Ž .pansions j G 2 . For class j s 1 the extrapolation
of forces is used, that is, the respective forces are
evaluated only at every second integration step
and are extrapolated otherwise; whereas, the elec-
trostatic interactions of partially charged atoms

˚ Ž .closer than R s 5 A see Fig. 3, j s 0 are calcu-1
lated at every integration step.

For distance classes j G 2, which correspond to
hierarchy levels H G 1, the multiple-time-step
scheme is applied to the local Taylor expansion
coefficients. Here, the local Taylor expansion coef-
ficients of lower hierarchy levels have to be recal-
culated more often than those of higher hierarchy
levels, which, in turn, can be extrapolated more
often. As suggested in a previous multiple-time-
step method,16 explicit recalculation is performed
every 2 j-th integration step.

Appendix A summarizes the FAMUSAMM al-
gorithm using a pseudo-code description. The al-

FIGURE 4. Extrapolation scheme of FAMUSAMM. t
denotes the integration step, H the SAMM hierarchy
level, and j the multiple-time-step distance class; filled
squares mark the integration steps at which forces
originating from objects in distance class j are explicitly
calculated, whereas empty squares indicate
computationally inexpensive extrapolations. The dashed
line separates the regime of force extrapolation in

( )distance class j = 1 H = 0 from the regime of local
Taylor expansion extrapolation in the outer distance

( )classes j G 2 H G 1 ; forces originating from partial
charges in the innermost distance class j = 0 are never
extrapolated.
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gorithm has been implemented in the MD simula-
tion program EGO VIII51 in a sequential and a
parallelized version; the latter is suited for dis-

Žtributed memory parallel computers e.g., IBM SP2,
Cray T3E, Parsytec CC, and workstation clusters

.under PVM or MPI . Details on the parallelization
strategy will be given in a forthcoming publica-
tion.52

As is apparent from the large number of empty
squares depicted in Figure 4, FAMUSAMM re-
places quite a few explicit force or local Taylor
expansion calculations by extrapolations for the
sole purpose of computational efficiency. As noted
already in the Introduction, in MD simulations the
inaccuracies associated with these FAMUSAMM
approximations may effectively act as sources of
uncontrolled algorithmic noise. It is the aim of the
remaining sections of this article to verify to what
extent such numerical artifacts can affect the MD
description of structural and dynamical properties
of proteins.

Methods of Quality Assessment

To estimate the quality of the numerous approx-
imations utilized by FAMUSAMM and to measure
the gain of computational efficiency we carried out
a series of test simulations. We have applied two
versions of our method, one employing the linear
extrapolation, which we call FAMUSAMMrlinear,
and one using the DC-1d extrapolation scheme,
which we correspondingly denote FAMUS-
AMMrDC-1d. To enable comparisons with estab-
lished methods, we have also performed test simu-
lations using a cutoff method,14 the fast SAMM
algorithm,26 and the slow but exact evaluation of

w Ž .xthe Coulomb sum eq. 1 , which we use as the
reference method.

As discussed in the Introduction, the compli-
cated and chaotic nature of protein dynamics ren-
ders quality assessments of approximate MD algo-
rithms a nontrivial task. For example, comparisons
of system trajectories or of other atomic details
obtained from simulations carried out with differ-
ent approximation schemes are useless for that
purpose, because possible observed deviations
merely reflect the chaotic character of these details
and thus do not allow derivation of accuracy mea-
sures. Instead, following the arguments and sug-
gestions in Refs. 16 and 20, we will apply a set of
so-called ‘‘relevant’’ statistical observables for our

intended estimates of algorithmic quality. These
observables have been selected according to the

Žconditions that they should exhibit regular i.e.,
.nonchaotic temporal behavior, and that they

should refer to functionally important properties
of proteins.16, 20

MODEL SYSTEMS AND TEST SIMULATIONS

Our study is divided into two parts. The first
part studies effects which are observable within
simulation times covering a few picoseconds, and
addresses questions like the accuracy of force ap-
proximation and the size of the energy drift caused
by algorithmic noise. As our sample system, we
have chosen the small protein bovine pancreatic

Ž .trypsin inhibitor BPTI , which is frequently used as
a test system for evaluation of simulation meth-
ods.3, 7, 53, 54 We embedded BPTI in a water shell of

˚27-A radius, comprising a total of 7147 atoms.
The second part serves to estimate algorithmic

accuracy with respect to effects on longer time
scales. For this purpose, the sample system intro-
duced is prohibitively large as far as the intended
reference simulations are concerned, because these
require the computationally very expensive evalu-

w Ž .xation of the Coulomb sum eq. 1 . Therefore, we
had to choose here a much smaller sample system,
namely BPTI in vacuo comprising only 568 atoms.
The test simulations from which we have extracted
regular statistical observables for our quality esti-
mates covered 1.2 ns each.

Because it is well known that, for realistic pro-
tein simulations, the natural environment has to be
included,4, 6, 7, 55 a note on our choice of an in vacuo
test system is necessary: Concerning our long time
simulations we do not aim to evaluate the quality
of the physical model of the protein, which, here,
may be poor. Rather, we want to check to what
extent our algorithmic approximations affect the
molecular dynamics of our given model. For that
purpose, the physical model used here does not
necessarily have to be very accurate as long as
possible artifacts in realistic applications are likely
to show up in our test simulations also.

All test simulations were carried out with the
MD program EGO VIII,51 which employs the
CHARMM force field.14 Nonpolar hydrogen atoms
were represented by compound atoms,14 and the
lengths of chemical bonds involving polar hydro-
gen atoms were fixed using the SHAKE algorithm.3

An integration step size of 1 fs was used. Water
molecules were described by the TIP3 model.56
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The interaction list was updated every 64th inte-
gration step. For the cutoff simulations, a cutoff

˚ 57distance of 9 A and a switching function were
chosen. Translations and rotations of the protein
were eliminated as described in Refs. 58 and 59.
Prior to the test simulations, BPTI in vacuo and the
BPTI]water system were equilibrated for 50 ps
and 70 ps, respectively, using the reference method.
For the long time simulations of BPTI in vacuo the
temperature was kept fixed at 300 K by weakly
coupling the system to a heat bath using a cou-
pling constant of 10y13 s as defined in Refs. 60 and
61. In contrast, the short time simulations of the
large BPTI]water system were carried out in the
microcanonical ensemble to enable an estimate to
what extent algorithmic artifacts entail violations
of energy conservation.

For the first part of our quality estimates we
will compare results of simulations obtained by
the supposedly exact reference method with re-
sults obtained by SAMM, FAMUSAMMrlinear,
and FAMUSAMMrDC-1d. Here, comparisons with
the cutoff method are superfluous, because related
accuracy tests comparing the various versions of
SAMM with that method have been published
previously.18, 19 By these tests, the superiority of
the SAMM algorithms, as compared with the con-
ventional cutoff procedure, has been convincingly
demonstrated. Thus, it solely remains to be veri-
fied to what extent our FAMUSAMM approach
preserves the advantages of its parent method.

For the second part we have performed 1.2-ns
test simulations utilizing all methods under con-
sideration. Here we have included the cutoff ap-
proach, because related investigations have not yet
been published. Due to the statistical nature of our
observables a second 1.2-ns test simulation was
necessary for the reference method to enable an
estimate of the sizes of statistical fluctuations. Only
upon such estimates can algorithmic artifacts be
identified and distinguished from inevitable fluc-
tuations of the necessarily statistical observables
compared. The initial conditions of the first refer-
ence simulation and of the test simulations for the
approximate methods were chosen as the atomic
positions and velocities obtained after equilibra-
tion. For the second reference simulation these
initial positions were modified by extremely small
random amounts. Note that the chaotic character
of protein dynamics ensures complete decorrela-
tion of the two reference simulations within a few
picoseconds.

SHORT TIME OBSERVABLES

To measure the numerical accuracy of the force
approximation we follow the suggestion in Ref. 19.

Ž .We consider the root mean square rms error of
forces:

1r22N a p pr o x r e fŽ . Ž .Ý F t y F tis1 i iŽ . Ž .h t s 72N r e f Ž .Ý F tis1 i

a p pr o xŽ . r e f Ž .where F t and F t denote the approxi-i i
mated and the exact Coulomb force, respectively,
acting on atom i at time t, and where the forces
are calculated using the trajectory of the reference
simulation. As an accuracy measure we take the

² : Ž .mean h of the rms error h t for the simulated
Ž .trajectory. The rms error of FAMUSAMM, h t ,

will fluctuate in the course of a simulation, be-
cause, as is apparent from Figure 4, the accuracy of
the force approximation should vary from step to
step. The size of these fluctuations is measured by

²Ž ² :.2:1r2the standard deviation, s s h y h .h

Taking the point of view of numerical mathe-
² :matics one might expect that h and s representh

measures for the algorithmic noise associated with
a given approximation method. However, as dis-
cussed in Refs. 16 and 20, there are physical con-
siderations contradicting that expectation. For in-
stance, the DC-1d extrapolation scheme has been
designed to guarantee optimal energy conserva-
tion and other useful properties. Correspondingly,
that method has been demonstrated to entail
smaller algorithmic noise in the framework of pure
force extrapolation than the linear extrapolation

² :scheme, although it exhibits larger values of h
and s than the latter.16, 20 It remains to be seenh

whether this is also the case in our framework of
local Taylor expansion extrapolations. Therefore,
we also have to consider the size of uncontrolled
algorithmic noise. In the microcanonical simula-
tions at hand the estimation of that size is trivial.
As algorithmic noise is the sole cause for energy
transfer into such systems, one simply has to mon-
itor the drift of the total energy, D E rDT.t o t al

LONG TIME OBSERVABLES

To estimate the influence of the applied approx-
imations on the description of protein structure
and dynamics, we have extracted the following
observables from the long time simulations. As a
measure for the temporal evolution of a protein

Ž .structure we have chosen the rms deviations r ta
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of the intermediate configurations from the initial
Ž .structure. If r 0 are the atomic positions obtainedi

after the equilibration phase, the rms deviations of
Ž .the set, I , of heavy backbone atoms a s B andB

of the corresponding set, I , of side chain atomsS
Ž .a s S are given by:

1r2
1 2Ž . Ž . Ž . Ž .r t s r t y r 0 8Ýa i iNa igIa

where N denotes the number of atoms in thea

set I .a

To estimate approximation effects on protein
dynamics we monitor correlations between the
motions of atoms i and j by the normalized co-
variance matrix:

Ž ² :. ² :r y r ? r y r² :Ž .i i j j Ž .K s 9i j 1r22 2² : ² :r y r r y rŽ . Ž .¦ ;¦ ;i i j j

where the averages are taken over trajectory sec-
tions specified further below.

Subsequently, we compare covariance matrices
K A and K B from simulations A and B, respec-i j i j
tively, both by a graphical method and by a single
numerical observable. The latter is the rms differ-
ence of the cross-correlations; that is:

1r22B AÝ K y KŽ .i- j i j i j Ž .k s 102AÝ KŽ .i- j i j

whereas the former is an overlay of certain contour
plots pertaining to the K . These contour plotsi j
visualize histograms representing the frequencies

w xof values K g y1, 1 as functions of atomic dis-i j
tances r and will be called covariance plots.i j

As a technical point, we note that comparisons
of the type indicated above require that the trajec-
tories refer to one and the same conformational
substate of the protein considered. The reason is
that dynamical correlations may vary from sub-
state to substate, such that differences of these
correlations which are caused by the application of
different algorithms may be obscured.

Results of Quality Assessment

In this section, we present the results of our
study on the algorithmic accuracy of the FA-
MUSAMM method. First, we provide values for

the short time observables extracted from the asso-
ciated test simulations on the large BPTI]water
system. Subsequently, we present values for the
long time observables obtained for the simulations
on BPTI in vacuo.

SHORT TIME OBSERVABLES

Table I compares the accuracy of force calcula-
tions achieved by the approximation schemes
SAM M , FAM USAM M rD C-1d, and FA -
MUSAMMrlinear, respectively. As accuracy mea-

² :sures, Table I displays the time averages, h , and
Ž .standard deviations, s , of the rms errors, h t ,h

Ž .given by eq. 7 . These values have been extracted
from trajectories of 0.4-ps duration. In addition,
the values for the average energy drifts,
D E rDT , as calculated from trajectories oft o t al
DT s 60-ps duration, are given.

² :As can be seen, the average rms errors h of
force approximation are of about the same size
Ž . ² :1% for all three methods. The h values of the
FAMUSAMM algorithms are only slightly larger
than that of SAMM. Thus, the multiple-time-step
extrapolation procedures do not seem to sizably
reduce the quality of force approximation achieved
by SAMM. In contrast, as shown in Ref. 19, cutoff

² :methods exhibit errors h that are larger by at
least a factor of 10. Thus, as far as the quality of
force approximation is concerned, the FA-
MUSAMM procedures essentially preserve the ad-
vantageous properties of SAMM.

But, considering the fluctuations s of the errorh

Ž .h t , a distinct difference between SAMM and the
FAMUSAMM schemes becomes apparent. Due to
the application of the multiple-time-step extrapola-
tion procedures, for FAMUSAMM the fluctuations
s are tenfold larger than for SAMM. Thus, theh

TABLE I.
Approximation Errors of Force Calculation for

²²²²² :::::Various Methods As Measured by Time Average h
[ ( )]of rms Error Eq. 7 and by Its Standard Deviation

( )s . Also Given Are Average Energy Driftsh

( )D E rrrrr DT Reflecting Algorithmic Noise.total

DE rDTtotal
² : [ ( )]Method h s kcal / mol psh

SAMM 0.70% 0.01% 4.8
FAMUSAMM /

DC-1d 1.04% 0.14% 9.2
FAMUSAMM /

linear 0.80% 0.08% 75
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question arises as to whether the slightly larger
² :values of h and the drastically increased values

of s for the FAMUSAMM methods are accompa-h

nied by comparable increases of algorithmic noise.
Consideration of the associated values for the

energy drifts in Table I reveals a slight increase for
FAMUSAMMrDC-1d as compared to SAMM,
which is in line with the corresponding increase of
² :h . In contrast, a dramatically enhanced algorith-
mic noise is apparent for the FAMUSAMMrlinear

² :approach, although in that case h is nearly as
small as for SAMM. Hence, the superiority of the
DC-1d scheme, as compared to the linear extrapo-
lation, is actually preserved despite the fact that, in
FAMUSAMM, extrapolations are applied to local
Taylor expansion coefficients representing approx-
imated forces instead of explicitly calculated exact
forces. Finally, we note that the s values are noth

correlated with the observed algorithmic noise;
this finding underlines the validity of the respec-
tive arguments presented in Refs. 16 and 20.

LONG TIME OBSERVABLES

To investigate the influence of approximation
schemes on the description of protein structure
and dynamics we first analyze the temporal evolu-

Ž . Ž .tion of the rms deviations r t defined by Eq. 8 .a

The graphs shown in Figure 5 have been obtained
from the various 1.2-ns simulations of BPTI in
vacuo. The graphs represent smoothened versions

Ž .of r t obtained by taking local averages of 5-psa

width.
Ž .The rms deviations, r t , of the side-chainS

atoms are always larger than the rms deviations,
Ž .r t , of the backbone atoms, because side-chainsB

are much more flexible than the protein backbone.
Ž .As can also be seen in Figure 5, both r t andB

Ž .r t increase with simulation time and generallyS
exhibit a series of jumps. The first jump reflects the
thermal fluctuations around the initial structure,
whereas later jumps, as shown by a closer inspec-

Ž .tion of the associated structures data not shown ,
arise from conformational transitions.

Furthermore, one recognizes from the top two
plots in Figure 5 that the time development of the

Ž .rms deviations r t distinctly differs for the twoa

reference simulations, indicating that, indeed, the
chaotic character of the system has led to a com-
plete decorrelation of the respective trajectories.
Yet the rms deviations resulting after 1.2 ns are of

˚ ˚similar size and measure r f 2 A and r f 3 A,B S
respectively. Within the first 200 ps our rms devia-
tions agree well with those obtained from other

BPTI simulations in vacuo of up to 210 ps in
length.2, 6

Inspection of the subsequent three plots in Fig-
ure 5 shows that, for SAMM and FAMUSAMM,

Ž .the overall behavior of r t is similar to thata

obtained for the two reference simulations. All
graphs exhibit jumps pointing toward conforma-
tional transitions, and after 1.2 ns the values of
Ž .r t are close to those of the reference simu-a

lations.
Ž .In contrast, r t exhibits a qualitatively anda

quantitatively different behavior for the cutoff
Žsimulation lower right plot; note the different

.scale . Here, one single, large conformational tran-
sition occurs after about 100 ps, and subsequently
conformational transitions are suppressed.5 As
shown by an analysis of the protein structure, the
transition was connected with a contraction upon

˚which its overall size was reduced by about 5 A.
Ž .In summary, as monitored by r t , no essentiala

differences can be detected between the reference
simulations, SAMM, and FAMUSAMM simula-
tions, whereas the cutoff simulation apparently
describes a different system.

We now turn to the investigation of dynamical
correlations as described by the covariance matri-

Ž .ces K defined in eq. 9 . As noted previously, ai j
comparison of such matrices requires that the tra-
jectories, from which the K values are calculated,i j
refer to identical or at least similar conformational
substates of the protein. Inspection of Figure 5
shows that one can identify a couple of sections
within the trajectories of the simulations pointing
to conformational substates that are stable for at
least 200 ps. These sections marked by capital
letters in Figure 5 were employed for evaluation of
associated covariance matrices.

Differences between the covariance matrices
calculated in this way can be due to various

Ž .sources: i they may represent pure statistical fluc-
Ž .tuations; ii they may reflect dynamical variations

associated with the individual conformational sub-
Ž .states; and iii they may be caused by the applica-

tion of deviating computational methods.
To disentangle these sources we first provide an

Ž .estimate for i the size of statistical fluctuations.
For this purpose we chose the two consecutive
200-ps sections of the second reference trajectory,

Ž .which are marked in Figure 5 top right, A and B .
As is indicated by the constancy of the r in thata

period, these sections refer to one and the same

5 To assure this observation, we have performed a second
cutoff simulation and have observed similar effects.
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FIGURE 5. Temporal evolution of backbone rms deviations, r , and side-chain rms deviations, r , for the twoB S
( )reference simulations REF1 and REF2 and the four approximation methods. Due to the flexibility of the side chains, rS

is always larger than r ; trajectory sections, which correspond to stable substates and are used for later evaluation ofB
the covariance matrices, are denoted by capital letters. For explanation see text.

conformational substate of BPTI. Figure 6a shows
an overlay of the two covariance plots calculated
from the covariance matrices associated with these
trajectory sections and displays the value of the
rms difference k between the covariance matrices.

As one can see, the two plots are nearly iden-
tical. They show strong positive correlations
between motions of neighboring atoms, which
reflect the rigidity of the covalently bonded struc-

˚ture. At intermediate distances around 12 A, anti-
correlations dominate, whereas correlations be-

˚come positive again at distances larger than 25 A.
The rms deviation, k , of the two cross-correlations
is 30%. Thus, deviations k have to be distinctly
larger than that value, and covariance plots have
to exhibit much more pronounced differences than
those in Figure 6a, to exclude mere effects of
statistical fluctuations and to prove the existence
of physical or algorithmic differences of the simu-
lated dynamics.

A measure for the alteration of correlations of
atomic motion, which is induced by a conforma-
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FIGURE 6. Covariance plots for comparison of BPTI dynamics within stable conformational substates simulated by
( )different methods see text for explanation .

wtional transition into a different substate see point
Ž .xii , is provided by Figure 6b. This figure also
shows covariance matrices extracted from the sec-
ond reference trajectory, but, in contrast to Figure
6a, trajectory sections referring to different sub-
states of BPTI are compared. Specifically, sections

Ž .B and C, as marked in Figure 5 top right , have
been chosen for comparison. In comparison with
Figure 6a, the covariance plots exhibit sizable dif-
ferences, and the rms deviation of cross-correla-
tions, measuring k s 48%, is larger. But note that,
apparently, the conformational transition from
state B to state C has had little influence on the
overall shape of the covariance plots.

Similar conclusions may be drawn if one con-
siders Figure 6c. This figure compares covariance

plots extracted from different trajectories calcu-
lated with the same computational method; that is,
sections B of the first reference simulation and
section B of the second reference simulation as

Ž .marked in Figure 5 top plots . These sections refer
to slightly different substates, which have been
selected according to a criterion of maximal struc-
tural similarity. Consequently, the good match of
the covariance plots in Figure 6c, as well as the
low value of k s 39%, indicates that closely re-
sembling structures exhibit similar dynamics.

To finally pin down the range within which the
rms deviations k of cross-correlations can vary
upon conformational transitions at a nanosecond
time scale, we have additionally selected a whole
set of 200-ps sections corresponding to stable sub-
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FIGURE 7. Further covariance plots for evaluation of our simulation methods.

states from the two reference trajectories. We found
that k never exceeded 70% and had a mean value
of 58%.

We now are in a position to use our long time
observables to distinguish algorithmic artifacts
from effects of statistical fluctuations and con-
formational transitions. For this purpose we will
select from the trajectories calculated with the ap-
proximate methods 200 ps sections with the fol-

Ž .lowing properties: a they should refer to stable
Ž .substates; and b the structure of that substate

should be as similar as possible to the structure of
one of the substates sampled in one of the refer-
ence trajectories.

Figure 6d clearly indicates that the cutoff
method is prone to algorithmic artifacts concerning
the description of dynamics. This conclusion is
validated, in particular, by the large value of 84%
for the rms deviation, k , which, in contrast to the

covariance plot, solely expresses dynamical prop-
erties; note that the contour plots additionally dis-
play distance information.

Quite in contrast to the cutoff method all ap-
proximate methods, which account for long range
Coulomb interactions by structure-adapted multi-
pole expansions, show excellent performance in
our test on dynamics. This is proven in Figure 7,
which displays the respective covariance plots and
the values of k . As monitored by the plots and by
k , in all cases, the substate dynamics calculated by
SAMM and FAMUSAMM resembles quite closely
the dynamics of a similar substate sampled by the
reference simulations. The comparisons are as close
as those between sections B of the reference simu-
lations shown in Figure 6c. Furthermore, we have
also selected a set of 200-ps sections referring to
arbitrary substates from the SAMM and FA-
MUSAMM trajectories for comparison with sub-
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( )FIGURE 8. Average computation time for one step using EGO VIII on a DEC-Alpha 3300L workstation 175 MHz for
simulation systems of varying size.

state sections from both reference simulations us-
ing k as the observable. Like in the comparison
among the reference sections noted further above,
no value larger than 70% was found for k . As a
consequence, concerning dynamics, no difference
has been detected between the exact evaluation of
long range Coulomb forces and our approximate
methods.

Summarizing the results of our study on the
accuracy of the various approximate MD algo-
rithms we can state that the FAMUSAMMrDC-1d

Ž .algorithm: a provides forces that are nearly as
Ž .accurate as those obtained with SAMM; b entails

Ž .comparably little algorithmic noise; and c also
passes our tests on the description of protein struc-
ture and dynamics with equally excellent results.
In contrast, FAMUSAMMrlinear is hampered by
pronouncedly increased algorithmic noise, whereas
the cutoff method exhibits unsatisfactory behavior
in every respect. In view of these results we have
discarded the linear multiple-time-step extrapola-
tion scheme from further consideration within FA-
MUSAMM. It remains to be seen the extent to
which the favorable algorithmic properties of FA-
MUSAMM are accompanied by a correspondingly
favorable computational performance.

COMPUTATIONAL PERFORMANCE

Here we show that FAMUSAMM actually pro-
vides an enhanced computational efficiency both
as compared to SAMM as well as to the reference
method with its exact evaluation of the Coulomb
sum. For this purpose, we first consider how the
computational effort of FAMUSAMM scales with
system size.

For a quantitative performance assessment we
have carried out a series of test simulations on
systems of varying size using the sequential ver-
sion of our MD program EGO VIII. The chosen
system sizes covered the range from 500 to 40,000
atoms. All simulations were executed on a DEC-

Ž .ALPHA 3300L 175 MHz workstation equipped
Žwith 96 MB RAM due to limitations of memory

we were unable to extend our tests to larger sys-
.tems . Figure 8 shows how the average computa-

tion time required for one MD integration step
scales with system size. The choice of an average
computation time for performance measurements
is necessary, because, in FAMUSAMM, the time
required for the force calculation varies from time

Ž .step to time step cf. Fig. 4 .
Figure 8 clearly shows that, for systems com-

prising more than about 1000 atoms, FAMUSAMM
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achieves linear scaling of computational effort with
size. The quadratic increase observed for very small
systems is in line with the fact that, in the inner-

Ž .most distance class H s 0 in Fig. 4 , forces are
calculated by use of the Coulomb sum with its
intrinsically quadratic scaling behavior. Thus, the
theoretically expected linear scaling of FA-
MUSAMM for large systems is actually obtained
in our implementation.

For performance comparisons with other meth-
ods consideration of system size is essential. Com-
pared with its parent method, SAMM, our new
algorithm achieves a speed-up by a factor of two
for small systems containing less than about 5000
atoms. This gain of efficiency is entirely due to our
multiple-time-step extrapolation of forces in the

Žinnermost SAMM distance class H s 0 see sub-
section ‘‘Inner Class Force Extrapolation’’ in sec-
tion Combination of SAMM with a Multiple-

.Time-Step Method, as well as Fig. 4 . Note that
SAMM had been previously demonstrated to per-
form for systems up to that size as efficiently as
the conventional cutoff methods.26 Thus, FA-
MUSAMM is more favorable than the cutoff
method in regard to efficiency.

For large systems comprising 36,000 atoms FA-
MUSAMM performs four times faster than SAMM
and as fast as cutoff. Here, the speed-up with
respect to SAMM is essentially achieved by the
multiple-time-step extrapolation of local Taylor ex-
pansions in the outer distance classes, and FA-
MUSAMM executes 60 times faster than the refer-
ence method based on the evaluation of the
Coulomb sum.

Summary and Conclusion

In this study we have combined the fast SAMM
method for approximate evaluation of long range
Coulomb interactions in MD simulations of pro-
tein dynamics with the DC-1d procedure designed
for the same purpose into a new and highly effi-
cient MD method. Upon extended test simulations
the resulting FAMUSAMM algorithm has been
demonstrated to preserve and combine the favor-
able properties of its parent methods concerning
accuracy, lack of sizable algorithmic artifacts, and
last, but not least, computational efficiency. Thus,
FAMUSAMM opens the way for extended MD
simulations which properly account for the long
range Coulomb interactions of large protein]
solvent systems comprising several tens of thou-
sands of atoms.

The algorithm has been implemented in the MD
program EGO VIII, which is based on the
CHARMM force field, in a sequential and paral-
lelized version, and is available via the internet.51

Whereas the current study is exclusively devoted
to the presentation and evaluation of our method,
a previously published application62 has already
demonstrated its suitability for the quantitative
analysis of experimental findings; there, the
method has enabled an atomic interpretation of
atomic force microscopy experiments on ligand-
receptor binding.63 As a verification of the FA-
MUSAMM MD simulation performed in Ref. 62,
the rms deviation from the x-ray structure of a

Žsolvated protein streptavidin in water, 10,969
.atoms has been monitored. After 0.5-ns simula-

˚tion, an rms deviation as small as 1.5 A was found,
showing that, indeed, FAMUSAMM provides real-
istic descriptions of solvated proteins.

Appendix: Pseudo-Code of FAMUSAMM

In this section we provide a summarizing
pseudo-code description of FAMUSAMM. For clar-
ity, we have omitted the special algorithmic steps,
which are necessary during the startup phase or
are associated with hierarchical grouping and re-
calculation of the interaction list. To decide
whether, in a given time step, forces or local Tay-
lor expansions have to be explicitly calculated or
may be extrapolated, we introduce a variable, M,
which denotes the highest hierarchy level, H, of
SAMM for which an explicit calculation has to be

Ž .performed cf. Fig. 4 . M is called the extrapola-
tion level. The following abbreviations are used:
LTE: local Taylor expansion; MM: multipole mo-
ments; and SU: structural unit. Indentation defines
the grouping of instructions.

For every integration step:
Set extrapolation level M.
Set all LTE coefficients to zero.

ŽCalculate MMs of all SUs hierarchy level
.H s 1 .

For H s 2 to H s H :m a x
Calculate MMs for each cluster on higher

hierarchy levels H.
For H s H down to H s 1:m a x

For every object at level H:
if H ) M:

Extrapolate LTE of hierarchy level H.
Else:

Sum up contributions to LTE at level
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H according to interaction list
If H ) 1:

Inherit LTE of level H to level H y 1.
For every atom:

ŽCompute nonelectrostatic forces forces van
.der Waals, chem. binding forces .

Add Coulomb forces from LTE of SU.
Add Coulomb forces from atoms in dis-

Ž .tance class j s 0 cf. Fig. 4 .
If integration step even:

Add calculated forces from distance class
j s 1.

Else:
Add extrapolated forces from distance

class j s 1.
Perform Verlet integration step.
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