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Model-Based Reconstruction for Real-Time
Phase-Contrast Flow MRI: Improved
Spatiotemporal Accuracy
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Purpose: To develop a model-based reconstruction technique

for real-time phase-contrast flow MRI with improved spatio-
temporal accuracy in comparison to methods using phase dif-

ferences of two separately reconstructed images with
differential flow encodings.
Methods: The proposed method jointly computes a common

image, a phase-contrast map, and a set of coil sensitivities
from every pair of flow-compensated and flow-encoded data-

sets obtained by highly undersampled radial FLASH. Real-time
acquisitions with five and seven radial spokes per image
resulted in 25.6 and 35.7 ms measuring time per phase-

contrast map, respectively. The signal model for phase-
contrast flow MRI requires the solution of a nonlinear inverse
problem, which is accomplished by an iteratively regularized

Gauss-Newton method. Aspects of regularization and scaling
are discussed. The model-based reconstruction was validated

for a numerical and experimental flow phantom and applied to
real-time phase-contrast MRI of the human aorta for 10
healthy subjects and 2 patients.

Results: Under all conditions, and compared with a previously
developed real-time flow MRI method, the proposed method

yields quantitatively accurate phase-contrast maps (i.e., flow
velocities) with improved spatial acuity, reduced phase noise
and reduced streaking artifacts.

Conclusion: This novel model-based reconstruction technique
may become a new tool for clinical flow MRI in real time.
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INTRODUCTION

Based on the physical relationship between a gradient-
induced phase shift and the velocity of spins in a corre-
sponding NMR (1) or MRI experiment (2) as well as

initiated by early seminal applications (3–5), there is

nowadays extensive clinical use of velocity-encoded
phase-contrast techniques for quantitative MRI studies
of blood flow. For relevant reviews see (6,7). More

recently, technical advances in real-time MRI (8), which
rely on regularized nonlinear inverse (NLINV) recon-
structions of highly undersampled radial gradient-echo

acquisitions (9–12), have been extended to cardiovascu-
lar applications (13–15) and, in particular, to phase-
contrast flow MRI (16–18). These and other accelerated
flow MRI studies (19,20) combine parallel imaging with

a phase-difference computation (21) of two complex
images with complementary velocity encodings, e.g., a
flow-compensated and a flow-encoded acquisition. As a

consequence, phase-difference maps present with exten-
sive phase noise in areas of low or no MRI signal (e.g.,
air). Although tolerable in many cases, the presence of

strong noise may complicate the definition of the true
vessel lumen and, therefore, affect quantitative flow
analyses, hamper the assessment of flow in small ves-

sels or, in case of radial undersampling, enhance resid-
ual streaking artifacts.

On the other hand, model-based approaches in MRI
are a well-introduced concept for a variety of postpro-

cessing problems, e.g., image segmentation. However,
less attention has been paid to model-based reconstruc-
tions, despite the fact that respective techniques have

previously been detailed in an excellent review (22).
While selected proposals deal with accelerated T2 map-
ping (23–25), fat-water imaging (26), inhomogeneity-

corrected T2* mapping (27), quantitative susceptibility
mapping (28) and reconstructions of the diffusion tensor
(29), preliminary attempts have also been made to use

constrained reconstruction techniques for accelerated
phase-contrast flow MRI (30,31). For example, Kwak
et al. (30) reconstructed flow-compensated and flow-

encoded images by regularizing the sparsity of the
complex-difference image (21). Alternatively, Sun et al.
(31) recently used the complex difference of the acquired
raw data in k-space directly as part of a signal model.

However, before the final calculation of the desired
phase-contrast (i.e., velocity) map, both approaches still
require the initial reconstruction of either the flow-

compensated and flow-encoded image, or the flow-
compensated and complex-difference image, and, there-
fore, do not offer a direct reconstruction of a phase-

contrast velocity map.
In contrast, the present work proposes a model-based

reconstruction technique for phase-contrast flow MRI
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that jointly computes a complex image, a phase-contrast
velocity map, and a set of coil sensitivities from every
pair of flow-compensated and flow-encoded datasets. In
particular, this initial description of a novel technique
focuses on real-time flow MRI applications where
respective datasets represent extremely undersampled
gradient-echo acquisitions (18) that allow for monitoring
blood flow at very high temporal resolution. Real-time
phase-contrast flow MRI thus refers to high-speed MRI
acquisitions at millisecond resolution as opposed to
electrocardiogram-synchronized MRI acquisitions which
extend over multiple cardiac cycles. The formulation of
the nonlinear inverse reconstruction problem for the pro-
posed signal model leads to an iterative solution which
directly offers a quantitatively accurate phase-contrast
map with improved spatial accuracy and much reduced
phase noise. At this stage, however, and in contrast to a
previous real-time phase-contrast flow MRI technique
(18), the numerical solution has been developed offline
for retrospective analysis.

THEORY

Model-based Reconstruction

Assuming the same magnitude image and the same coil

sensitivities for each pair (l ¼ 1;2) of flow-compensated

and flow-encoded datasets, the phase-contrast flow MRI

signal can be written as

yj;lðtÞ ¼
Z

rð~xÞ � ezð~xÞ�Sl � cjð~xÞ � ei~kl ðtÞ~x d~x with

j 2 ½1;N �; l 2 ½1; 2�:
[1]

Here, r is the complex image shared by the flow-

compensated and flow-encoding acquisition, z denotes a

complex map which contains the phase differences Df

in its imaginary part, while the real part is constrained

to be zero, cj is the sensitivity map of the jth coil, and ~klð
tÞ is the k-space sampling trajectory of the lth acquisition.

The indices S1 ¼ 0 and S2 ¼ 1 represent the flow-

compensated and flow-encoded acquisition, respectively.

The unknowns r, z, and cj in this nonlinear signal model

can be solved by the iteratively regularized Gauss-

Newton method (32,33) as previously introduced for

NLINV (8,9). It estimates the minimum of the cost

function

FðxÞ ¼ jjy � FðxÞjj22 with x ¼

r

z

c1

�

cN

0
BBBBBBBBB@

1
CCCCCCCCCA

[2]

Here, x is the unknowns and y is the measured k-space

data. According to Eq. [1] the forward operator F is

F : x 7!

P1 � Ffr � ez�0 � c1g

�

P1 � Ffr � ez�0 � cNg

P2 � Ffr � ez�1 � c1g

�

P2 � Ffr � ez�1 � cNg

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

[3]

with F the discrete Fourier transform and Pl the orthogo-
nal projection onto the lth trajectory. In this study, the
forward operation on the jth coil of the lth acquisition is
denoted as

Fj;lðxÞ ¼ Pl � Ffr � ez�Sl � cjg:

Due to the nonlinearity of this forward operator, the
iteratively regularized Gauss-Newton method (32,33)
firstly linearizes the model around the estimate xn from
the nth Newton step, which yields

F xn þ dxð Þ � F xnð Þ þ DF xnð Þdx

with DFðxÞ the Frech�et derivative. Thus, the cost func-
tion in Eq. [2] becomes

F dxð Þ ¼ jj½y � FðxnÞ� � DFðxnÞdxjj22;

which can be solved with use of the conjugate gradient
method. By adding Tikhonov regularization similar to
(9,10), the cost function of the linearized model is

F dxð Þ ¼ jjDF xnð Þdx � ½y � F xnð Þ�jj22
þanjjxn þ dx � p � x0jj22

[4]

with p the damping factor, an the Tikhonov regulariza-
tion parameter which decreases in every Newton step,
and x0 the initial guess. To solve this problem, two fur-
ther operators are needed. The first operator is the
Frech�et derivative of the forward operator DFðxÞ, which
can be calculated by applying the Jacobian matrix and
the linear property of the Fourier transform to F. Take
Fj;l as an example,

DFj;lðxÞ

dr

dz

dc1

�

dcN

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ PlFfez�Sl cj � drþ Slr � cj � dz þ r � dcj

� �
g

¼ dyj;l

[5]

where the product of DFðxÞ and dx maps dx to dy. The
second operator is the adjoint of the Frech�et derivative
DFH ðxÞ, which can be derived using the unitary property
of F ,
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DFH ðxÞ

dy1;1

�

dyN ;1

dy1;2

�

dyN ;2

0
BBBBBBBBBBBBBBB@
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XN
j¼1

c�j �
hX2
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ez�Sl
� �� � F�1fPH

l � dyj;lg
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[6]

where � denotes the point-wise complex conjugation and

= is the imaginary part of dz. The imaginary constraint

is necessary due to the assumption that the flow-

compensated and flow-encoded datasets only differ in

their phases. With the two operators derived above, the

solution to Eq. [4] is

dx ¼ ½DF xnð ÞHDF xnð Þ þ anI ��1fDF xnð ÞH ½y � F xnð Þ� þ anðx0 � xnÞg:
[7]

Scaling

When using first derivatives in a model-based iterative

reconstruction of multiple parameters, the relative scal-

ing of parameters should be considered to balance the L2

norm among all partial derivatives. A proper scaling

accelerates the iterative optimization process, while

maintaining quantitative accuracy, e.g., see (23–25). For

the model-based reconstruction of phase-contrast flow

MRI data as proposed here, scaling was accomplished by

introducing the index Sl
^ : Sl

^ ¼ s � Sl, so that the estimated

phase-difference map becomes

z
^ ¼ z=s [8]

with s being a scalar. From Eq. [6] the following property

can be derived using ẑ �Sl
^ ¼ z � Sl,

d z
^ / Sl

^

: [9]

Although s may heuristically be selected (23), this

work uses an automatic mechanism which takes advant-

age of Eq. [9] to derive the scaling. It is accomplished by

exploiting the complex-difference image (21)

jr1 � r2j ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1� cos Dfð Þ�

p
[10]

where M ¼ jr1j ¼ jr2j. It can then be proven to hold for

relatively small phase-differences

jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ½1� cosðDfÞ�

p
jj2 � jjDfjj2: [11]

When normalizing r1 and r2 by jjM jj2 and taking the

L2 norm of both sides, Eq. [10], i.e., the relation between

the norm of the complex-difference and that of the

phase-difference image, can be reformulated using Eq.
[11]

jjðr1 � r2Þ=jjM jj2jj2 � jjDfjj2: [12]

The norm of the complex-difference in image space is
equivalent to that in k-space, so the left-hand side of Eq.
[12] can be estimated from the gridded multi-channel k-
space data of the flow-compensated and flow-encoded
acquisitions y1 and y2, respectively,

s ¼ 0:5 � ðjjy1jj2 þ jjy2jj2Þ=jjy1 � y2jj2 � 1=jjDfjj2 [13]

where the scalar s directly quantifies the intensity ratio
between the magnitude image and phase-difference map
and 1 indicates the norm of the normalized magnitude
image. The scaling mechanism by means of the scalar s
not only balances the derivatives, but also ensures a
proper balance between the data consistency term and
the regularization term in Eq. [4] because the regulariza-
tion of z is implicitly controlled by s (see Eq. [8]).

Because real-time phase-contrast flow MRI is a
dynamic process, serial phase-difference maps (as well
as complex-difference images) may lead to different
scaling values as determined by Eq. [13]. This variation
is shown in Figure 1 for experimental data of the
human aorta (gray line). While s can be as large as 10
in case of very low phase-difference values, i.e., in the
absence of flow, such large values should be avoided as
they decrease the regularization strength and accumu-
late noise in the final estimate. Therefore, the following
steps are taken to dynamically determine the effective
scaling. Starting with a value of 5, s is calculated from
Eq. [13] for each frame and continuously updated by
any lower scaling. For studies of human blood flow this
typically means that s decreases until the real-time flow
MRI acquisition reaches the first systole (compare Fig-
ure 1, black line), so that quantitative analyses of real-
time flow MRI studies may eliminate the first cardiac
cycle.

Regularization

As shown in Eq. [4], Tikhonov regularization is used for
the solution of the linear problem with an a tunable reg-
ularization parameter, which starts with 1 and decreases
in each Newton step by a factor of 2. In this study, an is
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identical among all parameters. In addition, the model-

based image reconstruction adopts the L2-norm regulari-

zation on the high spatial frequencies of the coil sensitiv-

ity maps as used for NLINV (8–10,16–18), and uses a

temporal regularization of the current set of model

parameters (i.e., maps) with the respective maps of the

immediately preceding pair of datasets damped by a fac-

tor of 0.7. The reconstruction of the very first maps is

initialized using r ¼ 1, z ¼ 0, and cj ¼ 0.
The radial sampling pattern has a circular field-of-

view and thus encodes no information in the corners of

k-space. As a result, high spatial frequency signals,

which may appear as checkerboard artifacts in image

domain, have the freedom to accumulate during model-

based reconstruction. To avoid this problem, a k-space

filter (34) is added to the sampling pattern P which

penalizes signals in the undefined corners of k-space.

Pre- and Postprocessing

Before the iterative optimization, the datasets from multi-

ple receiver coils are first corrected for gradient delay

errors (18), and then compressed to 10 virtual coils by a

principle component analysis. This latter process must

apply the same transformation matrix on both the flow-

compensated and the flow-encoded datasets. Finally, the

data and the sampling trajectories are interpolated onto

Cartesian grids without density compensation, which is

not required for a nonlinear inverse reconstruction of

gridded radial data (10). After solving the nonlinear

inverse problem, the final complex phase-contrast maps

are given by

rPC ¼ jrj � ei�s�=ðẑÞ: [14]

METHODS

Numerical Flow Phantom

To ensure the quantitative accuracy of the proposed

reconstruction method, a numerical flow phantom was

built with superimposed ellipses, whose analytical Fou-

rier transform is known and can be evaluated at given k-

space trajectories. Moreover, 10 receiver coils were simu-
lated based on the Biot-Savart law and sinusoidal fitting

(35). To mimic phase-contrast flow MRI, the simulation

included one flow-compensated and one flow-encoded

acquisition with the same magnitude signal strengths.

The simulated ellipses had zero phase in the flow-
compensated acquisition, while phase values of 150 �, -

100 �, and -15 � were added to the three ellipses in the

flow-encoded acquisition to represent different velocities

and directions. The simulations were performed for data-

sets with 45, 15, 7, and 5 radial spokes (symmetric ech-

oes, base resolution 170 pixels) each covering a view
angle of 360 �. Serial datasets used interleaved spokes in

five successive acquisitions similar to experimental con-

ditions. Complex white Gaussian noise with a standard

deviation of 0.1 was added to the data, so that the

signal-to-noise ratio decreased with the number of

spokes. While model-based image reconstructions of
numerical phantoms based on analytical Fourier trans-

form usually suffer from aliasing artifacts, these may be

suppressed by decreasing the Tikhonov regularization

parameter or by adjusting the sampling pattern (24).

Here, a damping factor of 1 for the z map was only used

for reconstructions of the numerical flow phantom.

Real-Time Phase-Contrast Flow MRI

This work presents real-time flow MRI data of the

ascending (and descending) aorta obtained at 3 Tesla (T)

(Magnetom Prisma, Siemens Healthcare, Erlangen, Ger-

many). The analyses include five volunteers without
known illness and two patients with combined aortic

valve insufficiency and partial stenosis previously stud-

ied with “conventional” real-time flow MRI (18) as well

as new experimental data from five additional healthy

subjects. All subjects gave written informed consent

before MRI in compliance with the regulations estab-
lished by the local ethics committee.

Real-time phase-contrast flow MRI was based on

extremely undersampled radial FLASH MRI (five or

seven spokes per image) with asymmetric gradient ech-

oes (18) using two sequential acquisitions of a dataset

with velocity-compensated gradients in all gradient axes
and with velocity-encoding of through-plane flow,

respectively. While studies of the experimental flow

phantom (VENC¼200 cm s�1) used the 64-channel head

coil, blood flow in the human aorta (VENC¼ 200 to

400 cm s�1) was studied during free breathing by com-

bining an 18-element thorax coil with 32 elements of the
spine coil. Acquisitions [repetition time/echo time (TR/

TE)¼2.38/1.59 ms, flip angle 10
�
] of the previously

described flow phantom (18) were performed at 1.4 mm

FIG. 1. Scaling values s for real-time phase-contrast flow MRI
(35.7 ms resolution) of the aorta of a healthy subject: Gray line

¼ according to Eq. [13], black line¼used for serial model-based
reconstructions.
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in-plane resolution (192 mm field-of-view, 6 mm slice

thickness) and 33.32 ms temporal resolution (7 spokes

for the flow-encoded and flow-compensated image,

respectively). All in vivo measurements (TE¼ 1.70 ms,

flip angle 10
�
) had 1.5 mm in-plane resolution, 320 mm

field-of-view, 6 mm slice thickness, and 35.7 ms (2� 7

spokes, TR¼2.55 ms) or 25.6 ms temporal resolution

(2� 5 spokes, TR¼ 2.56 ms) corresponding to 28 or 39

frames per second (fps), respectively. For both NLINV

and model-based reconstructions, the serial magnitude

images were subject to a temporal median filter, whereas

no temporal filter was applied to phase-contrast maps.
Online reconstruction and display of real-time NLINV

images was achieved by a parallelized version of the

NLINV algorithm (11) and a bypass computer (sysGen/

TYAN Octuple-GPU, Sysgen, Bremen, Germany)

equipped with two processors (CPUs, SandyBridge E5-

2650, Intel, Santa Clara, CA) and eight graphics process-

ing units (TITAN, NVIDIA, Santa Clara, CA). The system

was fully integrated into the reconstruction pipeline of

the commercial MRI system. Depending on image matrix

(i.e., resolution and/or FOV) the current reconstruction

speed ranges from 6 to 14 fps (i.e., magnitude images

and phase-contrast maps). At this stage, model-based

reconstructions were implemented on a single graphics

processing unit (GeForce GTX 580, NVIDIA, Santa Clara,

CA) and performed offline after data acquisitions. Typi-

cally, the current implementation takes approximately

4.5 s per frame.
Quantitative analyses of phase-contrast flow MRI data

were obtained with the use of CAIPI prototype software

(Fraunhofer MEVIS, Bremen, Germany), especially modi-

fied for the automated analysis of real-time MRI data,

i.e., vessel or myocardial segmentation throughout the

entire time series without the need for manual correc-

tions (36).

RESULTS

Validation Studies

To assess the quantitative reliability of the model-based

phase-contrast flow MRI technique, the mathematical

FIG. 2. NLINV (left) and model-based
(right) reconstructions of magnitude

images and phase-contrast maps as
well as phase-difference profiles (along
indicated reference lines) for a numeri-

cal flow phantom (complex white
Gaussian noise, standard deviation
0.1) and constant flow in three ellipses

corresponding to phase values of
150 �, -100 �, and -15 �. The results

were obtained for simulated acquisi-
tions with 45, 15, 7, and 5 spokes
(see Table 1). The Gibbs ringing arti-

fact around the 150 � ellipse in phase-
contrast maps stems from the numeri-

cal design of the phantom. It is less
well visible in NLINV reconstructions
because of the phase noise for zero-

flow pixels.
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approach was validated with the use of a numerical flow

phantom providing ground truth in the presence of noise.

Figure 2 compares the results obtained for NLINV recon-

structions with subsequent calculation of a phase-

difference map and direct model-based reconstructions for

simulations with a decreasing number of spokes per image.

For high degrees of undersampling, the model-based

phase-contrast maps present with visibly better signal-to-

noise ratio and sharper “vessel” definition. The quantita-

tive analyses in Table 1 confirm the excellent accuracy of

phase (i.e., velocity) values obtained by the proposed

model-based reconstruction, even for acquisitions with

only seven or five spokes per image. Most importantly,

this not only applies to mean values, but also to the stand-

ard deviations which for highly undersampled acquisitions

are much smaller than for NLINV-based reconstructions.
Similarly, Figure 3 shows the results for an experimen-

tal phantom providing constant flow at two different

velocities (i.e., depending on tube diameter) and two

opposing flow directions (forward versus backward

flow). Again, the most apparent feature is the almost

noise-less appearance of the model-based phase-contrast

map which benefits from the a priori knowledge of zero

phase for all pixels without flow or no MRI signal. In

contrast, all “conventional” flow MRI techniques, which

rely on the phase-difference calculation of two inde-

pendent complex images with differential flow encod-
ings, yield arbitrary phase values (and corresponding
phase differences) in zero-signal pixels as well as some
tissue-dependent phase in pixels with stationary signal.
In relation to this advantageous zero-phase property,

Table 1
Quantitative Flow Evaluations for a Numerical Flow Phantoma

Spokes

per
image

True phase
difference

NLINVb

reconstruction
Model-basedc

reconstruction

150 150.0 6 1.7 150.1 6 1.4
45 �100 �100.0 6 1.4 �100.2 6 1.0

�15 �15.0 6 1.3 �15.1 6 0.6

150 150.0 6 5.5 149.8 6 2.5
15 �100 �100.0 6 5.2 �100.2 6 2.3

�15 �15.0 6 4.4 �15.0 6 1.6
150 146.4 6 36.0 149.6 6 5.7

7 �100 �100.8 6 12.0 �102.7 6 5.3

�15 �15.6 6 10.6 �15.5 6 3.1
150 131.7 6 73.8 150.6 6 8.8

5 �100 �101.6 6 18.6 �103.8 6 6.5

�15 �15.4 6 14.5 �15.9 6 3.7

aResults represent mean values 6 standard deviation.
bNLINV reconstructions with subsequent calculation of a phase-
difference map.
cDirect model-based reconstruction of phase-contrast map.

FIG. 3. NLINV (left) and model-based

(right) reconstructions of magnitude
images (top) and phase-contrast maps
(middle) as well as velocity profiles

(along indicated reference lines) for an
experimental flow phantom with con-

stant (bidirectional) flow (tubes 1 to 4
from left to right, compare Table 2).
The results were obtained for real-time

phase-contrast flow MRI at 33.3 ms
resolution and VENC¼200 cm s�1.

Residual streaking artifacts in the
NLINV phase-contrast map are
reduced in the model-based recon-

struction which further improves the
spatial definition of all tubes (compare

Table 2).
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Table 2
Quantitative Evaluations of an Experimental Flow Phantom

Tubea Method

Tube size magnitude

imageb mm2
Tube size phase-contrast

map mm2
Peak velocity

cm s�1
Flow volumec

L min�1

1 NLINV 255 360 55 6.5

Model-based 239 243 63 6.8
2 NLINV 76 131 � 189 � 7.3

Model-based 71 75 � 180 � 6.5

3 NLINV 78 139 181 6.9
Model-based 73 75 185 6.9

4 NLINV 255 302 � 52 � 7.0
Model-based 235 233 � 58 � 6.8

aTubes 1 to 4 are shown in Fig. 3 from left to right.
bEstimated sizes from high-resolution MRI are about 250 mm2 (tubes 1, 4) and 70 mm2 (tubes 2, 3), respectively.
cThe flow volume as determined by a flow meter was 6.3 L min�1.

FIG. 4. NLINV (left) and model-based
(right) reconstructions of systolic mag-

nitude images and phase-contrast
maps (magnified views) (top) as well as
velocity profiles (along indicated refer-

ence lines) for real-time phase-contrast
MRI of aortic blood flow in a healthy
volunteer at 35.7 ms resolution and

VENC¼200 cm s�1.
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which is effective as an additional constraint, the model-
based reconstruction reduces the strength of residual
streakings extending from the high-flow tubes in the
phase-contrast maps shown in Figure 3.

Most importantly, however, model-based phase-con-
trast maps yield a spatially much more accurate definition
of the flow signal (i.e., vessel lumen) than obtainable by
conventional NLINV reconstructions. In fact, the spatial
information of the model-based phase-contrast map in
Figure 3 precisely matches the magnitude image informa-
tion, whereas flow areas in NLINV phase-contrast maps
are larger compared with both the true lumen sizes. These
qualitative observations are confirmed by quantitative
analyses summarized in Table 2. In contrast to NLINV,
model-based reconstructions not only yield almost identi-
cal flow areas in magnitude images and phase-contrast
maps, but are also in close agreement with estimates of
tube sizes as obtained by high-resolution MRI. Neverthe-
less, flow evaluations reveal good agreement between both
flow MRI methods with respect to peak velocity as a direct
(although focal) result of the phase-contrast determina-
tion, while flow volumes tend to be slightly larger than a
determination by a flow meter.

Human Studies

Qualitative comparisons of NLINV and model-based
phase-contrast MRI are depicted in Figure 4 for a normal

subject and in Figure 5 for a patient with aortic valve

insufficiency and partial stenosis (Supporting Videos S1

and S2, which are available online), respectively. In line

with results for the experimental flow phantom, the sys-

tolic phase-contrast maps obtained by the model-based

reconstruction yield a much better spatial definition in

regions with non-zero flow (i.e., vessels). Here, this par-

ticularly applies to the descending aorta whose phase-

difference presentation is in close agreement with the

vessel lumen in the magnitude image. In quantitative

terms, the analysis of peak systolic frames from 10 con-

secutive heartbeats of the subject shown in Figure 4

revealed 445 6 16 mm2 (781 6 20 mm2) for the lumen of

the descending (ascending) aorta in model-based phase-

contrast maps versus 569 6 41 mm2 (880 6 18 mm2) for

NLINV reconstructions.
In addition, the implicit a priori knowledge of zero

phase in pixels without flowing spins precludes the iter-

ative optimization process to generate residual streaking

artifacts in areas around vessels with maximum systolic

flow, i.e., for signals with high temporal and spatial fre-

quencies that are most severely affected by k-space

undersampling. Quantitative results for both NLINV and

model-based reconstructions are summarized in Table 3

for five subjects and two patients studied previously (18)

and found to be in general agreement. In comparison to

Untenberger et al. (18) all analyses were performed with

FIG. 5. NLINV (left) and model-

based (right) reconstructions of
systolic magnitude images (top)

and phase-contrast maps (bot-
tom) (magnified views) for real-
time phase-contrast MRI of a

patient with aortic valve insuffi-
ciency and partial stenosis at

35.7 ms resolution and
VENC¼400 cm s�1.
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an extended gradient-delay correction (unpublished
results) and evaluated with an updated software package
for automatic vessel segmentation (CAIPI Prototype Soft-
ware). In more detail, while peak velocities obtained by
NLINV and model-based reconstruction reveal excellent
agreement, stroke volumes (and cardiac output) which
rely on integrated velocities over space and time are
slightly lower for model-based reconstructions. This
observation reflects the sharper (i.e., smaller) definition
of the vessel lumen and must not be considered a flaw
but an advantage.

The spatiotemporal improvement achievable by model-
based phase-contrast flow MRI may be invested into

even faster acquisitions. As already suggested by the
numerical simulations presented in Figure 2 and Table
1, Figure 6 advances NLINV and model-based phase-con-
trast flow acquisitions from seven spokes per image and
35.7 ms total acquisition time (Supporting Videos S3
and S4) to five spokes and 25.6 ms resolution (Support-
ing Videos S5 and S6). At peak systole, the findings of
excellent vessel definition with almost no phase noise
and residual streakings confirm the expectations from
numerical and experimental validations. Together, these
findings clearly support the notion that the use of five
spokes represents an extreme but feasible approach to
real-time flow MRI at high temporal resolution. This is

FIG. 6. NLINV (left) and model-based (right) reconstructions of systolic magnitude images and phase-contrast maps (magnified views)

for real-time phase-contrast MRI of aortic blood flow (VENC¼200 cm s�1) in a healthy volunteer using seven spokes per frame at 35.7
ms resolution (top) and five spokes at 25.6 ms resolution (bottom). Note the improved delineation of the superior vena cava (upper

arrow) and the small azygos vein (lower arrow) in model-based phase-contrast maps.

Table 3
Quantitative Flow Evaluations of the Ascending Aorta of Healthy Volunteers and Patients With Valve Insufficiencya

Subject
Reconstruction

technique
Peak

velocity cm s�1
Flow per

heartbeat mL
Flow

volume L min�1
Regurgitation

fraction %

1 NLINV 120 6 3 99 6 4 5.7 6 0.4 2 6 1
Model-based 121 6 4 91 6 5 5.2 6 0.4 1 6 1

2 NLINV 114 6 8 124 6 6 6.9 6 0.3 1 6 1
Model-based 114 6 7 112 6 5 6.3 6 0.2 1 6 1

3 NLINV 69 6 3 61 6 3 4.0 6 0.2 2 6 1
Model-based 76 6 4 62 6 2 4.1 6 0.2 1 6 1

4 NLINV 112 6 5 131 6 4 8.1 6 0.3 2 6 1

Model-based 111 6 4 123 6 4 7.6 6 0.3 2 6 1
5 NLINV 100 6 5 107 6 3 6.2 6 0.1 3 6 1

Model-based 109 6 5 97 6 3 5.6 6 0.1 4 6 1
Pat 1 NLINV 264 6 14 56 6 6 3.0 6 0.3 55 6 3

Model-based 216 6 11 51 6 4 2.8 6 0.2 57 6 2

Pat 2 NLINV 222 6 12 82 6 5 5.3 6 0.3 18 6 2
Model-based 219 6 6 71 6 6 4.6 6 0.4 23 6 3

aData from Untenberger et al. (18). The results represent mean values 6 standard deviation for 10 consecutive heartbeats at 35.7 ms
resolution.
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further confirmed by the quantitative evaluations in
Table 4 summarizing peak velocities and flow rates for 5
additional subjects and acquisitions with seven and five
spokes. Regardless of possible intrasubject variability in
repetitive measurements, mean peak velocities and flow
volumes (10 heartbeats) in both the ascending and
descending aorta differ by less than 4% when comparing
35.7 ms acquisitions (7 spokes) with 25.6 ms acquisitions
(5 spokes).

DISCUSSION

This work demonstrates the successful development and
initial description of a novel model-based reconstruction
technique for real-time phase-contrast flow MRI and its
application to the assessment of cardiovascular blood
flow. When compared with a previous flow MRI method
based on NLINV reconstructions of two independent
flow-compensated and flow-encoded images (18), the
flow results are quantitatively accurate, while the images
and maps present with improved spatial acuity and
reduced residual streaking artifacts. Most importantly,
the desired phase-difference maps reveal much reduced
phase noise when compared with phase-difference maps
of two complex images with arbitrary phases, in particu-
lar in areas of low or no MRI signal. As a consequence,
the proposed method offers much better access to small
vessels such as the azygos vein (see Figure 6). On the
other hand, the improved image quality and vessel defi-
nition of the model-based phase-contrast method allows
for the use of only five spokes per image which pushes
real-time flow MRI to a temporal resolution of 25.6 ms or
a rate of 39 phase-contrast maps per second. Similar
degrees of radial undersampling (i.e., five spokes per
image) have already successfully been applied for real-
time MRI studies of high-speed tongue movements in
elite horn players (37) and experimentally been demon-
strated to provide excellent temporal fidelity for a rapid
motion phantom (12) when eliminating any temporal fil-
ter as done here for the velocity-encoded phase-contrast
maps.

At this time, the most relevant limitation of the pro-
posed method is the need for a time-consuming offline
calculation. Although conventional NLINV reconstruc-
tions are available online for immediate control (18), the

nonlinear inverse problem posed by the phase-contrast
flow MRI signal model requires new efforts for paralleli-
zation, GPU programming and implementation on the
existing bypass server to the host computer of our MRI
system. Nevertheless, such work will be mandatory to
provide an online version for extended clinical trials.

An advantageous extension of the current model-based
reconstruction may arise from the fact that the method is
applicable to arbitrary trajectories in k-space, and in par-
ticular, to different spatial encodings (i.e., sets of spokes)
for the flow-encoded and flow-compensated dataset. So
far, most if not all phase-contrast MRI acquisition techni-
ques including the one used here, use the same lines in
k-space when comparing phase differences between
flow-compensated and flow-encoded acquisitions. How-
ever, the use of complementary sets of radial spokes,
e.g., in two sequential acquisitions, offers at least two
advantages: First, it promises to increase the spatial reso-
lution (and computational robustness) of respective
model-based reconstructions. This can be seen from the
adjoint operator in Eq. [6], where the summation of indi-
ces l for dr and dz accumulates all available spatial sam-
ples. Second, the use of different encodings in k-space,
eventually in combination with two similar but sign-
inverted bipolar flow-encoding gradients, will allow for
a sliding-window approach where model-based recon-
structions are shifted by just one dataset (here seven or
five spokes) rather than two datasets and thereby
improve the effective temporal resolution by a factor of
two (here to approximately 18 or 13 ms). Along the same
idea, it seems reasonable to extend the model-based con-
cept from one-dimensional (i.e., through-plane) flow to
the analysis of phase-contrast MRI studies with three-
dimensional velocity encodings.

In conclusion, the present work introduces a novel
model-based reconstruction technique for velocity-
encoded phase-contrast flow MRI which simultaneously
estimates a proton density map, a phase-contrast map
and a set of coil sensitivity profiles from each pair of
flow-encoded and flow-compensated datasets. The solu-
tion to the resulting nonlinear inverse problem is accom-
plished with the use of the iteratively regularized Gauss-
Newton method. When based on highly undersampled

Table 4
Quantitative Flow Evaluations of Model-Based Reconstructions in the Ascending and Descending Aorta of Healthy Volunteersa

Ascending aorta Descending aorta

Subject
Spokes

per image
Peak

velocity cm s�1
Flow per

heartbeat mL
Peak

velocity cm s�1
Flow per

heartbeat mL

6 7 88 6 4 96 6 9 99 6 5 58 6 5
5 89 6 4 100 6 4 103 6 5 70 6 3

7 7 127 6 6 107 6 6 128 6 5 81 6 4
5 116 6 6 94 6 5 120 6 6 68 6 4

8 7 83 6 7 77 6 7 104 6 4 52 6 4
5 84 6 10 76 6 7 104 6 6 55 6 4

9 7 114 6 3 106 6 4 119 6 3 60 6 3

5 115 6 2 103 6 5 115 6 3 60 6 4
10 7 96 6 4 81 6 3 100 6 5 54 6 3

5 96 6 3 75 6 4 100 6 3 54 6 3

Diff. / % 7 vs 5 �1 6 4 �4 6 6 �1 6 4 2 6 13

aThe results represent mean values 6 standard deviation for 10 consecutive heartbeats at 35.7 ms and 25.6 ms resolution, respectively.

The bottom row presents percentage differences of mean values for acquisitions at 35.7 ms and 25.6 ms resolution.
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radial FLASH acquisitions, real-time applications benefit

from reduced noise and improved spatial accuracy of the

computed phase-contrast maps which, therefore, allow

for a temporal resolution of 25.6 ms per flow map.
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30. Kwak Y, Nam S, Akçakaya M, Basha TA, Goddu B, Manning WJ,

Tarokh V, Nezafat R. Accelerated aortic flow assessment with com-

pressed sensing with and without use of the sparsity of the complex

difference image. Magn Reson Med 2013;70:851–858.

31. Sun A, Zhao B, Li R, Yuan C. Complex-difference constrained recon-

struction for accelerated phase contrast flow imaging. In Proceedings

of the 23rd Annual Meeting of ISMRM, Toronto, Canada, 2015.

Abstract 79.

32. Engl HW, Hanke M, Neubauer A. Regularization of inverse problems.

London: Kluwer Academic Publisher; 1996.

33. Bakushinsky AB, Kokurin MY. Iterative methods for approximate

solution of inverse problems. Dordrecht: Springer; 2004.

34. Pruessmann KP, Weiger M, B€ornert P, Boesiger P. Advances in sensi-

tivity encoding with arbitrary k-space trajectories. Magn Reson Med

2001;46:638–651.

35. Guerquin-Kern M, Lejeune L, Pruessmann KP, Unser M. Realistic

analytical phantoms for parallel magnetic resonance imaging. IEEE

Trans Med Imaging 2012;31:626–636.

36. Chitiboi T, Hennemuth A, Tautz L, H€ullebrand M, Frahm J, Linsen L,

Hahn H. Context-based segmentation and analysis of multi-cycle real-

time cardiac MRI. IEEE Int Symp Biomed Imaging 2014;2014:943–946.

37. Iltis PW, Frahm J, Voit D, Joseph AA, Schoonderwaldt E,

Altenm€uller E. High-speed real-time MRI of fast tongue movements

in elite horn players. Quant Imaging Med Surg 2015;5:374–381.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article

Video S1. Model-based reconstructions of real-time phase-contrast MRI at
35.7 ms resolution (28 frames per second, seven spokes per image,
VENC 5 400 cm s21) of aortic blood flow of a patient with aortic valve insuf-
ficiency and partial stenosis: Magnitude images.

Video S2. Model-based reconstructions of real-time phase-contrast MRI at
35.7 ms resolution (28 frames per second, seven spokes per image,
VENC 5 400 cm s21) of aortic blood flow of a patient with aortic valve insuf-
ficiency and partial stenosis: Phase-contrast maps.
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Video S3. Model-based reconstructions of real-time phase-contrast MRI at
35.7 ms resolution (28 frames per second, seven spokes per image,
VENC 5 200 cm s21) of aortic blood flow of a young healthy volunteer:
Magnitude images.

Video S4. Model-based reconstructions of real-time phase-contrast MRI at
35.7 ms resolution (28 frames per second, seven spokes per image,
VENC 5 200 cm s21) of aortic blood flow of a young healthy volunteer:
Phase-contrast maps.

Video S5. Model-based reconstructions of real-time phase-contrast MRI at
25.6 ms resolution (39 frames per second, five spokes per image,
VENC 5 200 cm s21) of aortic blood flow of a young healthy volunteer:
Magnitude images.

Video S6. Model-based reconstructions of real-time phase-contrast MRI at
25.6 ms resolution (39 frames per second, five spokes per image,
VENC 5 200 cm s21) of aortic blood flow of a young healthy volunteer:
Phase-contrast maps.
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