Residual dipolar couplings and orientational effects

Markus Zweckstetter Max-Planck-Institute for Biophysical Chemistry, Göttingen mzwecks@gwdg.de

1) Why do we want to use dipolar couplings in solution NMR?

Nucleic acids – global structure

Protein-Protein complexes

2) RDC theory

$$D^{PQ} = D^{PQ}_{max} < P_2(\cos\vartheta) > \text{ with } D^{PQ}_{max} = -\mu_0 \gamma_p \gamma_q h / (8\pi^3 < r_{pq}^3 >) P_2(x) = \frac{1}{2} (3 x^2 - 1)$$

$$D^{PQ} = D^{PQ}_{max} \sum_{ij} S_{ij} \cos \phi_i^{PQ} \cos \phi_j^{PQ} \text{ with}$$

$$S_{ij} = 1/2 <3 \cos \theta_i \cos \theta_j - \delta_{ij} >$$

$$(i,j = x, y, z; \delta_{ij} = 1 \text{ for } i = j, \delta_{ij} = 0 \text{ for } i \neq j)$$

S: Saupe matrix, alignment tensor
Real, symmetric, traceless 3x3 matrix
→ five independent elements

 B_0

principal alignment frame, i.e. diagonalization of $S \rightarrow S^d$ eigenvectors of S^d are axes of alignment tensor

 $D^{PQ} = \frac{1}{2} D^{PQ}_{max} [A_a (3 \cos^2 \theta - 1) + 3/2 A_r \sin^2 \theta \cos(2\phi)]$ with

 A_a and A_r the axial, $S_{zz}^{\ d}$, and rhombic, 2/3 ($S_{xx}^{\ d} - S_{yy}^{\ d}$), components of the diagonalized alignment tensor S^d ($A_a \sim 10^{-3}$)

 $D^{PQ} = D_a^{PQ} \left[(3 \cos^2 \theta - 1) + 3/2 R \sin^2 \theta \cos(2\phi) \right]$

 $D_a^{PQ} = \frac{1}{2} D^{PQ}_{max} A_a$: magnitude of alignment tensor ($D_a^{NH} \sim 10 \text{ Hz}$) $R = A_a/A_r$: rhombicity of alignment tensor; $R \in [0; 2/3]$ θ, ϕ : polar coordinates of vector PQ relative to alignment tensor

3) How to get partial alignment of biomolecules

Dilute nematic liquid crystals

Alignment media

requirement: liquid crystalline at < 10% w/v → order of biomolecules: ~ 0.002 (aqueous, stable at different ionic strength, not too strongly charged < 0.5 e/nm²)

- bicelles (steric !; $r < d/(2V_f)$)
- filamentous phage (Pf1,fd; -0.47 e/nm²; r < d/ $\sqrt{(4V_f)}$)
- alkyl poly(ethylene glycol) based media
- polyacrylamide gel
- cellulose crystallites, purple membrane fragments, cetylpyrimidinium-based media, ...

Gaemers & Bax JACS 2001

Pf1 bacteriophage

http://www.asla-biotech.com/asla-phage.htm

Pf1: magnetic field induced order

Attenuation of alignment strength by increasing the ionic strength

ubiquitin at 450 mM NaCl in 20 mg/ml Pf1

Modulation of alignment tensor orientation by ionic strength changes

Orientational degeneracy of RDC – use of multiple media

 $D^{PQ} = D_a^{PQ} [(3 \cos^2 \theta - 1) + 3/2 R \sin^2 \theta \cos(2\phi)]$

Ramirez & Bax JACS, 1998

4) RDC measurement

NOESY

Accuracy of measured splitting: $\Delta J = LW/SN$

required accuracy < 5% * Da

¹J_{HN} [1]: IPAP-HSQC, DSSE-HSQC, 3D HNCO ¹J_{C'Cα} [5]: 3D HNCO (CSA(C') → ~ 500 MHz optimum) ¹J_{C'N} & ²J_{C'HN} [8.3]: 2D HSQC, 3D TROSY-HNCO ¹J_{CαHα} [0.5]: 2D J_{CH}-modulated HSQC, (HA)CANH, HN(CO)CA ¹J_{CH} (side-chain): 2D J_{CH}-mod. HSQC, CCH-COSY, SPITZE-HSQC ¹H-¹H: COSY, CT-COSY, HNHA, 3D SS-HMQC2 (long-range)

Bax, Kontaxis & Tjandra Method Enzymol. 339, 127-174, 2001;

Chou & Bax JBNMR, 2001; Delaglio et al. JMR 2001; Wu & Bax, JACS, 2002;

RDC measurement: J splitting $({}^{1}J_{HN})$

Ottiger et al. JMR, 1998

5) Determination of a molecular alignment tensor

- 1) RDC distribution analysis
- 2) Back-calculation of alignment tensor
- 3) Shape-prediction
- 4) Shape/Charge-prediction

Estimate for alignment tensor

Back-calculation of alignment tensor

- singular value decomposition (SVD)
- →very stable & with a minimum of five RDCs possible

- iterative least squares procedure (Levenberg-Marquardt minimization) $\chi^2 = \sum_{i=1,..,N} [d_i^{PQ}(exp) - d_i^{PQ}(calc)]^2 / (\sigma_i^{PQ})^2$
- ➔ fixing of alignment parameters (e.g. rhombic component zero due to three-fold or higher symmetry)

Evaluation of uncertainty in backcalculated alignment tensors

Npc

Zweckstetter & Bax, JBNMR 2002

Steric model of alignment

no RDCs necessary !

Shape prediction of magnitude and orientation of alignment

Electrostatic model of alignment

Electrostatic potential

Shape & charge prediction of alignment tensor

- software for analysis of RDC

http://spin.niddk.nih.gov/bax

6) RDC applications

- validation of structures
- analysis of inter-domain motion
- structure refinement (proteins, nucleic acids, oligosaccharides)
- identification of multimerization state
- determination of relative domain orientations
- structure determination of protein complexes
- analysis of slow dynamics
- improved assignment
- rapid structure determination

• ...

Validation of structures

$$Q = \frac{rms (D^{obs} - D^{calc})}{rms (D^{obs})}$$

- use only for RDC not included in structure determination !
- no translational validation

Conformational differences in solution: calmodulin

Flexibility of the inter-domain linker in solution

Baber et al. JACS, 2000

NH-dynamics from RDC: Peti et al. JACS 2002

Qualitative analysis of inter-domain motion

Quantitative analysis of interdomain motion

Structure refinement

$$E_{dip} = k (D^{calc}_{PQ} - D^{obs}_{PQ})^2$$

k:
$$10^{-4} \rightarrow 1 \text{ kcal/Hz}^2$$

VEAN (intervector projection angles): Meiler et al. JBNMR, 2000

Chou, Li, Klee & Bax, Nature Struc Biol 2001

Determination of multi-module structures

in Lösung

im krystallinen Zustand

cyanovirin-N

Monomeric versus multimeric structures

Translational information from shapeprediction

Bewley & Clore JACS, 2000

Rapid structure determination

assignment

MGSSHHHHHHSSGLVPRGSHMNNS LDIKDVTTFYEEDKHLIFGYTPTC GTCKVSERMLDIANEILQLPLLKI DLNFYPQFCKDMQIMSTPILLLMN KDKEVKRIYAFKSVTDLLENLK

structure determination

3D IPAP-(HA)CANH

Improved NMR assignment with RDC

Secondary structure

Molecular fragment homology search

3D structure of molecular fragments

Zweckstetter & Bax JACS, 2001

References:

Tjandra, N. & Bax A., Science **278**, 1111 (1997). Bax, A., Kontaxis, G. & Tjandra, N., Method Enzymol 339, 127 (2001). Prestegard, J.H., Al-Hashimi, H.M., & Tolman, J.R., Quart Rev Biophys 33, 371 (2000).

Journal of American Chemical Society, Journal of Biomolecular NMR, Journal of Magnetic Resonance, ...