
RNA-Seq data normalization using artifical spike-ins

Carina Demel and Julien Gagneur

June 6, 2016

Abstract

A common problem of RNA-Seq experiments is the normalization of different samples, especially
when they were also treated differently. A special case is the 4sU-labeling followed by deep-sequencing,
where two libraries are generated from each RNA fraction: First, in one part of the fraction, the 4sU-
labeled RNAs are pulled down and gives the labeled (“L”, called 4sU-Seq or TT-Seq) fraction of the
experiment for library preparation. Second, the total RNA (labeled and unlabeled, “T”) is used for
the preparation of another RNA-Seq library. As the RNA amount for library preparation is usually
stringent, the sequencing results do not reflect reality. Here, we have to account for the sequencing
depth of different samples and especially adjust the ratio of Labeled to Total RNA-Seq libraries.
Additionally, the labeled RNA extraction is not perfect and also a little bit of unlabeled RNA may
contaminate the labeled fraction. As the gene-expression also always varies a little bit for biological
samples, read counts from expressed genes might lead to confusing estimations. Therefore, we apply
our normalization approach only to artificial spike-ins from the External RNA Control Consortium
(ERCC), for which the initial amount of each spike-in is known and the same across all samples. Some
of the spike-ins were 4sU-labeled by in-vitro transcription, so the cross-contamination of unlabeled
spike-ins in labeled samples can be monitored. The goal of this package is to reliably estimate
sequencing depths and cross-contamination rates per sample, given 4sU-/TT-Seq and total RNA-Seq
data.

1

Contents

1 Background 2

2 Getting started 3
2.1 Input data . 3

3 Normalizing RNA-Seq samples using spike-in counts 4

4 Estimating gene-specific synthesis and degradation rates 6
4.1 Providing gene-wise dispersion estimates . 6
4.2 Gene-wise synthesis and degratation rate estimates . 7

5 Session Information 8

6 References 9

1 Background

As described in [?] 4sU-seq allows to monitor changes in the RNA metabolism. If cells are exposed to
4sU, they rapidly take up this Uridine analog and incorporate it into newly-synthesized RNAs. This way,
newly-synthesized RNAs are labeled and can be extracted from the total RNA in the sample. The longer
the labeling time, e.i. the time from 4sU addition to harvesting the cells, the bigger is the proportion of
labeled RNAs among all RNAs. Figure 1 shows how the amounts of total, labeled and unlabeled RNA
change over time in a typical 4sU experiment. The synthesis rate µ and degradation rate λ are assumed
to be constant over time.

0 20 40 60 80 100 120

0
50

0
10

00
15

00
20

00

Total, labeled and unlabeled RNA, µ=100, λ=0.05

Time

R
N

A

Total RNA (steady state)
Labeled RNA
Unlabeled RNA Total =

µ

λ

Labeled RNA =
µ

λ
 (1 − e(−λt))

T1 2 =
ln(2)

λ

Unlabeled RNA = Total RNA * e(−λt)

Figure 1: Time course of RNA amounts in a 4sU-experiment

2

2 Getting started

In this vignette, you will learn how to estimate sample specific sequencing depths and cross-contamination
rates from spike-in counts. These values can be used to normalize gene expression values obtained by
RNA-Seq and thus estimate gene-specific synthesis and degradation rates. Before starting, the package
must be loaded by:

library("RNAlife")

2.1 Input data

For the estimation of sample and gene-specific parameters, two count tables are required, namely a count
table with counts for the artificial spike-ins and a count table with counts for the genes (or features like
exons, introns etc). Those count tables should have the same number of columns, which represent the
different samples. The ”RNAlife” package provides some example data.

data(spikein.counts)

data(gene.counts)

spikein.counts

L A Rep1 L A Rep2 L B Rep1 L B Rep2 T A Rep1 T A Rep2 T B Rep1 T B Rep2

Spike12 18060 10089 945 13894 208559 11544 16075 158490

Spike2 1321853 1086426 86181 1323880 265385 16156 19920 190858

Spike4 1115970 1073272 96470 1282230 210573 12792 18299 176584

Spike5 13190 3969 801 3862 216795 10127 19261 191365

Spike8 1771066 1648524 200196 2075083 200196 12508 19825 191829

Spike9 7865 1462 382 1106 116795 5220 10704 106093

Before we start with the normalization, we also need to know the length of the spike-ins and which
of the artificial spike-ins were labeled by in-vitro transcription. This information should be provided by
single vectors. For the given example count table, the package also provides example vectors:

data(spikein.labeling)

data(spikein.lengths)

spikeins = rownames(spikein.counts)

Each of the experimental samples should also be explained by a vector giving the experimental condi-
tion (e.g. treatment, time point), the labeling condition (“L” or “T”), and the replicate number. In case
no replicates are available just use the same integer for all samples. For the given example, the samples
data.frame contains those three vectors:

data(samples)

samples

conditions conditions.labeling replicates

1 A L 1

2 A L 2

3 B L 1

4 B L 2

5 A T 1

6 A T 2

7 B T 1

8 B T 2

3

3 Normalizing RNA-Seq samples using spike-in counts

The sample specific parameters like sequencing depth and cross-contamination rate are estimated from
spike-in counts only. Therefore, we fit a generalized linear model (GLM) of the Negative Binomial family
with a log link function. The response of the GLM are the observed spike-in counts, and the terms that
specify the linear predictor of the response are comprised of:

• a sample specific factor (that reflects the sample specific sequencing depth),

• a labeled sample specific factor (that reflects the control for cross contamination (only estimated
for unlabeled spike-ins in labeled samples)), and

• a spike-in specific factor to allow for some spike-in specific variation e.g. due to sequence biases.

Additionally, the length of each spike-in is used as an offset, i.e. a known slope for the covariate.
The GLM works on a dataframe, consisting of nxm rows, where n is the number of spike-ins and m is

the number of samples. For every observed count of every spike-in in every sample, the data.frame holds
the information about the spike-in, the labeling status of the spike-in, the (log) length of the spike-in, the
sample name, and the labeling status of the sample. This data.frame can be generated by the following
function for visualization, but when the normalization procedure is called (below), the data.frame is
created inside the function.

sample.names = apply(samples,1,paste,collapse=" ")

mat = spikein.dataframe(counts=spikein.counts, spikeins=spikeins,

spikein.lengths=spikein.lengths,

spikein.labeling=spikein.labeling,

samples=sample.names,

conditions.labeling=samples$conditions.labeling)

summary(mat)

spike length spike.labeled sample sample.labeling

Spike12:8 Min. :1023 L:24 A L 1 : 6 L:24

Spike2 :8 1st Qu.:1023 U:24 A L 2 : 6 T:24

Spike4 :8 Median :1038 A T 1 : 6

Spike5 :8 Mean :1051 A T 2 : 6

Spike8 :8 3rd Qu.:1061 B L 1 : 6

Spike9 :8 Max. :1124 B L 2 : 6

(Other):12

counts control.for.cross.contamination ccc log.length

Min. : 382 F:36 F :36 Min. :6.93

1st Qu.: 11334 T:12 L 1 : 3 1st Qu.:6.93

Median : 53050 L 2 : 3 Median :6.94

Mean : 324224 L 3 : 3 Mean :6.96

3rd Qu.: 209062 L 4 : 3 3rd Qu.:6.97

Max. :2075083 Max. :7.02

head(mat, n=10)

spike length spike.labeled sample sample.labeling counts

1 Spike12 1023 U A L 1 L 18060

2 Spike2 1023 L A L 1 L 1321853

3 Spike4 1033 L A L 1 L 1115970

4 Spike5 1042 U A L 1 L 13190

5 Spike8 1124 L A L 1 L 1771066

6 Spike9 1061 U A L 1 L 7865

7 Spike12 1023 U A L 2 L 10089

8 Spike2 1023 L A L 2 L 1086426

9 Spike4 1033 L A L 2 L 1073272

10 Spike5 1042 U A L 2 L 3969

control.for.cross.contamination ccc log.length

1 T L 1 6.93

4

2 F F 6.93

3 F F 6.94

4 T L 1 6.95

5 F F 7.02

6 T L 1 6.97

7 T L 2 6.93

8 F F 6.93

9 F F 6.94

10 T L 2 6.95

For the Negative Binomial GLM we use the implementation of the MASS package:

glm.nb(counts ~ offset(log.length)+sample+ccc+spikein, data=mat, link="log")

The following function combines the generation of the data.frame, the fit of the glm and the formatting
of the results and returns all the fitted factors.

norm.res = spikein.normalization(spikein.counts, spikeins,

spikein.lengths, spikein.labeling,

samples=colnames(spikein.counts),

samples$conditions.labeling)

summary(norm.res)

Length Class Mode

results 3 data.frame list

intercept 1 -none- numeric

sequencing.depth 8 -none- numeric

cross.contamination 8 -none- numeric

spike.specific.bias 6 -none- numeric

fitted.counts 48 -none- numeric

norm.res$sequencing.depth

L A Rep1 L A Rep2 L B Rep1 L B Rep2 T A Rep1 T A Rep2 T B Rep1 T B Rep2

1.00000 0.90453 0.08914 1.10879 0.16871 0.00919 0.01453 0.14209

norm.res$cross.contamination

L A Rep1 L A Rep2 L B Rep1 L B Rep2 T A Rep1 T A Rep2 T B Rep1 T B Rep2

0.01200 0.00445 0.00721 0.00411 1.00000 1.00000 1.00000 1.00000

Figure 2 shows that the measured counts can be explained by the fitted variables.

5

●

●●

●

●

●

●
●●●

●

●

5e+02 5e+03 5e+04 5e+05

5e
+

02
5e

+
03

5e
+

04
5e

+
05

Correlation of fitted and measured Spike−in Counts

Measured Counts

F
itt

ed
 C

ou
nt

s

●

●

●

●

●

●

Spike12
Spike2 (4sU)
Spike4 (4sU)
Spike5
Spike8 (4sU)
Spike9

●

●

A L 1
A L 2
B L 1
B L 2
A T 1
A T 2
B T 1
B T 2

Figure 2: Correlation of fitted and measured spike-in counts, different colors indicate different spike-ins,
different symbols indicate different samples

4 Estimating gene-specific synthesis and degradation rates

4.1 Providing gene-wise dispersion estimates

For each gene, a single dispersion estimate for all 4sU-Seq samples and for all Total RNA-Seq samples is
needed. Here, we can use the method provided in the DESeq2 package [?]. The wrapper function estimate-
GeneDispersion applies the DESeq2 algorithm to all genes, while separating the count table according
to the RNA-Seq protocol (labeled or total RNA). It is possible to choose between all provided DESeq
dispersion estimates, namely the genewise maximum likelihood dispersion estimate (“dispGeneEst”), the
smooth curve fitted through the gene-wise disperion estimates (“dispFit”) and the genewise dispersion
estimates shrunken towards the fitted curve (“dispMAP”, default). The input for the estimateGeneDis-
persion function is therefore only a n*m matrix, providing count data for n genes under m conditions,
and a vector of length m, indiciating for each condition if it was a labeled 4sU-Seq sample (“L”) or a total
RNA-Seq sample (“T”). The function returns a matrix consisting of n rows and 2 columns, the Labeled
(“L”) and Total (“T”) dispersion estimates for all n genes.

The gene counts in the following example are randomly generated read counts for 12 genes, under the
same experimental settings as used before.

data(gene.counts)

dispersion = estimateGeneDispersion(gene.counts, samples$conditions.labeling,

samples$conditions)

head(dispersion)

L T

gene_1 0.268 0.00289

gene_2 0.210 0.00249

gene_3 0.217 0.00212

gene_4 0.249 0.00210

6

gene_5 0.203 0.00218

gene_6 0.209 0.00220

Note that, if a gene’s dispersion cannot be estimated (due to only 0 counts in all relevant samples),
it is set to the median dispersion values across all other genes. If you don’t have replicates or there are
not multiple conditions to test, please estimate dispersions across labeled and total samples together, by
setting all conditions.labeling to the same value (e.g. ”T”).

4.2 Gene-wise synthesis and degratation rate estimates

To estimate gene-specific synthesis and degradation rates, we use the same assumption as for the spike-in
read counts. The number of counts for each gene i in a sample j is dependent on the gene’s length
Li, the labeled and unlabeled amounts of RNA for gene i, the sequencing depth of the sample σj , the
cross-contamination rate in the sample εj and the number of cells N . The labeled RNA amount αi and
the unlabeled RNA amount βi for each gene i is then optimized such that the difference between the
expected read counts and the observed read counts for gene i is minimized.

data(gene.lengths)

seq.depths = norm.res$sequencing.depth

cross.cont = norm.res$cross.contamination

fittingres = estimate.rates(gene.counts, dispersion, gene.lengths, samples$conditions,

samples$conditions.labeling, samples$replicates, cross.cont, seq.depths, N=1,

consider.replicates=TRUE, lab.time=c(5,5), alpha.initial=1, beta.initial=1,

gene.indices=1:12)

names(fittingres)

[1] "alpha" "beta" "loss" "exp.counts.L"

[5] "exp.counts.T" "mu" "lambda" "half.life"

[9] "alpha.initial" "beta.initial"

Synthesis rates

head(fittingres$mu)

A B

gene_1 1444 3938

gene_2 1164 1109

gene_3 240 301

gene_4 220 356

gene_5 371 301

gene_6 553 473

Degradation rates

head(fittingres$lambda)

A B

gene_1 1.35 1.52

gene_2 1.34 1.33

gene_3 1.04 1.09

gene_4 1.04 1.13

gene_5 1.14 1.11

gene_6 1.21 1.18

Note: The estimation can be performed for single genes or a subset of genes when setting the
gene.indices to the corresponding row number in the count matrix gene.counts. Estimates can also
be obtained for only one of the replicates by setting consider.replicates=FALSE and indicating with
rep=1 the replicate to be considered (as named in the experimental matrix samples).

The correctness of the fit can be checked by comparing the estimated read counts with the observed
read counts.

7

1e+00 1e+02 1e+04 1e+06

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Observed Genes Counts

E
st

im
at

ed
 G

en
e

C
ou

nt
s

Labeled Gene Counts
Total Gene Counts

Figure 3: Correlation of fitted and measured gene counts in Labeled (red) and Total (blue) RNA-seq
samples.

5 Session Information

The session information records the versions of all the packages used in the generation of the present
document.

sessionInfo()

R version 3.1.0 (2014-04-10)

Platform: x86_64-apple-darwin13.1.0 (64-bit)

locale:

[1] C/de_DE.UTF-8/de_DE.UTF-8/C/de_DE.UTF-8/de_DE.UTF-8

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] RNAlife_0.5 DESeq2_1.6.3

[3] RcppArmadillo_0.6.500.4.0 Rcpp_0.12.3

[5] GenomicRanges_1.18.4 GenomeInfoDb_1.2.5

[7] IRanges_2.0.1 S4Vectors_0.4.0

[9] BiocGenerics_0.12.1 MASS_7.3-45

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.28.2 BBmisc_1.9 BatchJobs_1.6

[4] Biobase_2.26.0 BiocParallel_1.0.3 DBI_0.3.1

[7] Formula_1.2-1 Hmisc_3.17-1 RColorBrewer_1.1-2

8

[10] RSQLite_1.0.0 XML_3.98-1.3 XVector_0.6.0

[13] acepack_1.3-3.3 annotate_1.44.0 base64enc_0.1-3

[16] brew_1.0-6 checkmate_1.7.0 cluster_2.0.3

[19] codetools_0.2-14 colorspace_1.2-6 digest_0.6.9

[22] fail_1.3 foreach_1.4.3 foreign_0.8-66

[25] genefilter_1.48.1 geneplotter_1.44.0 ggplot2_2.1.0

[28] grid_3.1.0 gridExtra_2.0.0 gtable_0.1.2

[31] iterators_1.0.8 lattice_0.20-33 latticeExtra_0.6-26

[34] locfit_1.5-9.1 magrittr_1.5 munsell_0.4.2

[37] nnet_7.3-11 plyr_1.8.3 rpart_4.1-10

[40] scales_0.3.0 sendmailR_1.2-1 splines_3.1.0

[43] stringi_1.0-1 stringr_1.0.0 survival_2.38-3

[46] tools_3.1.0 xtable_1.8-0

6 References

9

