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ABSTRACT: Given the growing interest in designing targeted
covalent inhibitors, methods for rapidly and accurately probing
pKas�and, by extension, the reactivities�of target cysteines are
highly desirable. Complementary to cysteine, histidine is similarly
relevant due to its frequent presence in protein active sites and its
unique ability to exist in two tautomeric states. Here, we
demonstrate that nonequilibrium free energy calculations can
accurately determine the pKa values of both residues, often
outperforming conventional predictors. Importantly, we find that
(1) increasing the van der Waals radius of cysteine’s sulfur atom,
(2) modifying the backbone charges of histidine, and (3)
introducing effective polarization by downscaling the side chain
partial charges of both residues can all significantly improve pKa
prediction accuracy. Using the modified CHARMM36m force field on the full dataset reduces the prediction error from 2.12 ± 0.27
pK to 1.28 ± 0.15 pK and increases the correlation with experiment from 0.25 ± 0.09 to 0.58 ± 0.08. Similarly, using the modified
Amber14SB force field decreases the error from 3.21 ± 0.29 pK to 1.69 ± 0.23 pK and improves the correlation from 0.15 ± 0.10 to
0.36 ± 0.10.

■ INTRODUCTION
Cysteine is unique among the 20 proteogenic amino acids due
to the large atomic radius of its sulfur atom and the relative
weakness of the corresponding S−H bond. This imbues it with
remarkable nucleophilicity, facilitating spontaneous reactions
even under mild conditions.1 The inherent nucleophilicity of a
given cysteine is governed by its pKa, a value that implies the
favorability of the ionization state of the thiol. Solvent-exposed
cysteines have values near 8,2,3 while buried cysteines or those
located in a unique protein microenvironment can range from
3 to 12.4,5 Given their variable pKa values and unique
properties, cysteine residues play various functional roles in
redox and nucleophilic catalysis,6 metal binding,7 environ-
mental sensing,8 and structural formation.9,10

In recent years, interest has grown in targeting cysteine
residues with covalent inhibitors.11 To overcome poor target
selectivity and drug resistance, an electrophilic warhead moiety
may be incorporated into a reversible submicromolar inhibitor
to covalently bind a nucleophilic residue: this modification can
dramatically increase therapeutic potency.12,13 Members of this
class of reactive molecules are commonly referred to as
targeted covalent inhibitors (TCIs) and predicting their affinity
and reversibility is particularly desirable.14

A key step in a TCI binding and reaction landscape is the
deprotonation of the cysteine thiol and the formation of the
nucleophilic thiolate. Experimental exchange-rate studies have
shown that the equilibrium between the protonated and

deprotonated states of solvent-exposed cysteine side chains is
fast15 (i.e., 1012· M−1s−1) and that the protonation rate and pKa
are well correlated.15,16 That is to say, the pKa of a particular
cysteine provides the relevant information about the energy
required to form the nucleophilic thiolate and, by extension,
the propensity for covalent modification.
Experimental methods for determining the pKa value of a

cysteine can involve kinetic assays, spectrophotometric
titrations, or NMR spectroscopy; however, in a purely
computational in silico screen of potential covalent modifiers,
the ability to rapidly and accurately probe the reactivity of a
target cysteine under various conditions is highly desirable.
Theoretical approaches motivated by the thermodynamic cycle
given in Figure 1, present a compelling alternative to
experiment and can often be seamlessly integrated alongside
existing computational free energy workflows.
Here, we consider a cysteine residue in the protein and a

capped model peptide (i.e., ACE-Ala-Cys-Ala-NH2) in both
vacuum and water. We have the reference =Kp 8.55a

o and as

Received: January 9, 2025
Revised: February 23, 2025
Accepted: February 25, 2025
Published: April 2, 2025

Articlepubs.acs.org/JCTC

© 2025 The Authors. Published by
American Chemical Society

4095
https://doi.org/10.1021/acs.jctc.5c00031

J. Chem. Theory Comput. 2025, 21, 4095−4106

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

M
PI

 M
U

L
T

ID
IS

C
IP

L
IN

A
R

Y
 S

C
IE

N
C

E
S 

on
 M

ay
 6

, 2
02

5 
at

 0
2:

00
:2

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carter+J.+Wilson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vytautas+Gapsys"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bert+L.+de+Groot"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.5c00031&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00031?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00031?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00031?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00031?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00031?fig=agr1&ref=pdf
https://pubs.acs.org/toc/jctcce/21/8?ref=pdf
https://pubs.acs.org/toc/jctcce/21/8?ref=pdf
https://pubs.acs.org/toc/jctcce/21/8?ref=pdf
https://pubs.acs.org/toc/jctcce/21/8?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


such can neglect the free energy of moving a (de)protonated
residue from vacuum to water (Figure 1, left cycle). To
determine the pKa we then need only consider the free energy
difference of a deprotonation event in water and in the protein
(Figure 1, right cycle).
Recently we demonstrated that atomistic molecular

dynamics simulations paired with nonequilibrium alchemical
free energy calculations are capable of accurately resolving the
pKa values of aspartate, glutamate, and lysine.17 Here, we assess
the ability of our pmx-based, nonequilibrium switching (NES)
approach to calculate the pKa values of 40 cysteines and 22
histidines across a range of wildtype and mutant proteins. We
compare our results to two conventional predictor methods
and the previously reported performance of three MD-based
approaches, replica-exchange thermodynamic integration,
constant-pH molecular dynamics, and free energy perturba-
tion. Taken as a whole, our results demonstrate that MD-
approaches, including NES, provide pKa prediction accuracy
comparable to conventional predictors; however, we also find
that this accuracy can be increased well above conventional
methods by employing parameters that are refit to more
accurately reproduce QM and experimental observables, i.e.,
(1) rescaling the vdW radii of cysteine sulfur thiolate and (2)
altering the backbone charges of histidine in Amber14SB, and
(3) charge-scaling CHARMM36m and Amber14SB. Using the
triple-modified Amber14SB force field we achieve an average
unsigned error of 2.37 ± 0.29 pK for cysteine and 0.50 ± 0.10
pK for histidine, whereas using charge-scaled CHARMM36m,
we achieve errors of 1.61 ± 0.21 pK for cysteine and 0.71 ±
0.16 pK for histidine.

■ METHODOLOGY
Cysteine Analogues: QM Simulations. Ab initio

molecular dynamics (AIMD) simulations were performed

within the Born−Oppenheimer approximation; where the
electronic structure of the system is solved using the Gaussian
plane-wave (GPW) approach to DFT,18,19 implemented in the
QUICKSTEP20 subroutine of CP2K.21 We used the standard
LIBXC library22 for the exchange and correlation of the
revPBE functional23,24 and applied Grimme’s DFT-D3
dispersion corrections with zero-damping.25 We use the
Goedecker−Teter−Hutter pseudopotentials26,27 optimized
for PBE to represent the core electrons and the TZV2P
basis set. Simulations consisted of an initial 10 ps equilibration,
followed by a production run in the NVT ensemble for another
200 ps. The temperature was maintained at 298 K by a massive
Nose-Hoover chain thermostat with a time constant of 3 ps.
We set an energy convergence threshold of 10−10 Ha and a
convergence tolerance for the SCF cycle of 10−6 Ha. Because
the ab initio simulations were to be performed in the NVT
ensemble, achieving an accurate initial box volume was
important. To this end, we performed classical molecular
dynamics implemented in GROMACS with the OPC water
model to produce an initial system configuration. OPC was
chosen because it more accurately reproduces the relevant bulk
properties of water compared to conventional 3-point models
(i.e., TIP3P).28 The result of these classical simulations was a
final cubic box size of L = 15 Å, containing 109 water
molecules and a methylthiolate molecule.
Cysteine Analogues: MD Simulations. Classical MD

simulations were performed in three types of boxes: one
identical to that used in AIMD simulations (i.e., L = 15 Å) and
two larger boxes: L = 30 Å and L = 60 Å (Figure S1). We
found no significant differences in the solvation structure when
comparing the 15 and 30 Å boxes (Figure S3a). This
observation was independent of the cutoff used for the
simulation of the larger box (Figure S4).
Solvation free energy calculations of the charged methyl-

thiolate molecule were performed in both a 30 and 60 Å box.
Importantly, we found no change in the calculated free energy
between the two box sizes (Figure S5a) which suggests the 30
Å box is sufficiently large to minimize the non-neutral
simulation cell artifact associated with the calculation.
GROMACS 202329 was used to run all simulations.

Simulations were carried out in the NVT ensemble with a
constant temperature of 298 K, maintained using a Nose−́
Hoover thermostat with 3 ps coupling time. In the 30 and 60 Å
boxes, long-range electrostatic interactions were calculated
using the Particle-Mesh Ewald method30 with a real-space
cutoff of 1.2 nm and grid spacing of 0.12 nm with CHARMM
and a real-space cutoff of 1.0 nm and grid spacing of 0.125 nm
with Amber. For CHARMM the Lennard-Jones interactions
were force-switched off between 1.0 and 1.2 nm, while for
Amber, a cutoff at 1.0 nm was used and a dispersion correction
was applied to the energy and pressure.
In the 15 Å box, electrostatic interaction cutoffs were 0.7 nm

with a 0.12 nm spacing with CHARMM and 0.7 nm with a
0.125 nm spacing with Amber. For CHARMM the Lennard-
Jones interactions were force switched off between 0.5 and 0.7
nm, while for Amber they were cut off at 0.7 nm and a
dispersion correction was applied to the energy and pressure.
We used the CHARMM TIP3P water model with the

nonzero Lennard-Jones parameters on hydrogen atoms (i.e.,
mTIP3P)31 and plain TIP3P32 for the CHARMM and Amber
systems, respectively. In the case of CHARMM we also
assessed the impact of using the OPC water model on the
solvation structure and measured free energies.

Figure 1. Complete pKathermodynamic cycle. The horizontal arrows
mark the transfer of a titratable residue between different environ-
ments: vacuum (left), water (middle), protein (right). The vertical
arrows denote the free energy difference between the deprotonated
and protonated form in a corresponding environment. For cysteine,
the free energy associated with proton transfer from vacuum to water
is known. By using this reference Kp a

o we need only consider the
rightmost cycle: the free energy difference of a deprotonation event in
water and in protein.
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Production simulations were 50 ns and the first 10 ns of
simulation were discarded as equilibration. From the remaining
40 ns: (1) radial distribution functions were computed; and
(2) 200 nonequilibrium transitions of 20 ps were generated.
Free energies were computed as described in the final
paragraph of the following section.
GROMACS/pmx: Nonequilibrium Alchemy. pmx33 was

used for system setup, hybrid topology generation, and
analysis. Initial protein structures were taken from the PDB
database and mutations were introduced using pdbfixer. In
total we consider 12 proteins and 40 cysteine residues and 22
histidines (Table S1). A double system in a single box setup
was used, with a 3 nm distance between the protein and
peptide (ACE-Ala-X-Ala-NH2); this ensured a neutral box at
every step of the alchemical transformation. To ensure that the
protein and peptide did not interact, a single Cα in each
molecule was positionally restrained. We used the
CHARMM36m34 (with mTIP3P31) and Amber14SB35 (with
TIP3P32) force fields, both having previously performed well
for simulations involving nonequilibrium alchemical calcula-
tions.
GROMACS 2023 was used to run all simulations. For all

systems, an initial minimization was performed using the
steepest descent algorithm. A constant temperature corre-
sponding to the reference experimental setup was maintained
implicitly using the leapfrog stochastic dynamics integrator36,37

with a friction constant of γ = 0.5 ps−1. The pressure was
maintained at 1 bar using the Parrinello−Rahman barostat38

with a coupling time constant of 5 ps. The integration time
step was set to 2 fs. Long-range electrostatic interactions were
calculated using the Particle-Mesh Ewald method30 with a real-
space cutoff of 1.2 nm and grid spacing of 0.12 nm. Lennard-
Jones interactions were force-switched off between 1.0 and 1.2
nm. Bonds to hydrogen atoms were constrained using the
Parallel LINear Constraint Solver.39

Production simulations were 50 ns in length and run in
quadruplicate. The first 10 ns of simulation was discarded as
equilibration and from the remaining 40 ns, 400 non-
equilibrium transitions of 200 ps were generated. Work values
from the forward and backward transitions were collected
using thermodynamic integration and these were used to
estimate the corresponding free energy with Bennett’s
acceptance ratio40 as a maximum likelihood estimator relying
on the Crooks Fluctuation Theorem.41 Bootstrapping was used
to estimate the uncertainties of the free energy estimates, and
these were propagated when calculating ΔΔG values.
As shown in Figure 1, we convert between the ΔΔG of

deprotonation and the protein pKa via:

= +K K
RT

p p
G

ln(10)a a
o

(1)

using the experimentally reported temperature and corre-
sponding reference values for cysteine =Kp 8.55a

o and
histidine =Kp 6.54a

o .3

Conventional Predictors. Based on popularity and
previously documented cysteine pKa prediction performance42

we considered only two methods: PropKa (v3.4)
43 and PypKa

(v2.9.4).44 PropKa is an empirical predictor where the ΔG
contributions are described by charge−charge, desolvation,
and hydrogen-bonding interactions. Default settings were used
when performing the calculation. PypKa uses Monte Carlo
simulations to probe the various side chain states and employs
DelPhi45 to resolve the PBE. Default settings were used, except
for the salt concentration, which was set according to the
experimental setup.
Recently, Molecular Operating Environment (MOE) was

used to calculate the pKa values of a large cysteine residue data
set.42 We compare NES with this method on the overlapping
20 residue data set.

Figure 2. Overall performance: original force fields and predictors. (a) Correlation between the calculated and experimental cysteine pKa values.
Marker color indicates deviation from experiment where yellow indicates a minimum AUE from experiment. Regression lines are shown in red, and
the gray error band represents a 1 pK unit deviation from experiment. Consensus is the average of CHARMM36m and Amber14SB. (b) Pearson
correlations (upper right triangle) and AUEs (lower left triangle) between ΔpKa estimates were calculated for each method over the entire data set.
Comparison with experiment means that the bottom row and rightmost column correspond to the overall performance.
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■ RESULTS
Overall Performance: Original Force Fields. Double

free energy differences (ΔΔG) were calculated for a set of 40
residues, allowing us to robustly evaluate performance on a
large data set.
Figure 2 summarizes the main findings: our NES approach

performs comparably to in silico predictors, with
CHARMM36m yielding an average unsigned error (AUE) of
2.92 ± 0.35 pK as compared to 3.09 ± 0.29 pK and 2.71 ±
0.29 pK for PropKa and PypKa, respectively. This performance
was also reflected in the Pearson correlation, which was 0.24 ±
0.09 with CHARMM36m compared to 0.31 ± 0.14 and 0.22 ±
0.12 with PropKa and PypKa, respectively. On the 20 residue
subset evaluated by MOE,42 MOE exhibited an improved
accuracy of 1.79 ± 0.24 pK as compared to 2.49 ± 0.46 pK and
2.95 ± 0.45 pK for CHARMM36m and Amber14SB,
respectively. With respect to accuracy, no method significantly
exceeds a null predictor, which assumes ΔpKa = 0.
Previous work has illustrated that an accurate determination

of the pKa may require accounting for residue coupling.46 With
respect to cysteine residues, often found at enzyme active sites,
the relevance of coupling is expected to become even more
pronounced. Elsewhere, we introduced a coupling formalism
that improved pKa prediction accuracy;46 here, we apply this
approach to 12 cysteine residues found near other titratable
groups. Consistent with previous work, the pKa values of
coupled residues were predicted with lower accuracy, when the
coupling was not explicitly accounted for. Accounting for
coupling, however, could in part remedy this (Figure S2). The
observed improvement was less pronounced for Amber14SB
(AUE without coupling: 3.85 ± 0.38 pK, AUE with coupling:

3.53 ± 0.37 pK) compared to CHARMM36m (AUE without
coupling: 2.92 ± 0.35 pK, AUE with coupling: 2.28 ± 0.28
pK). On the 20 residue subset evaluated with MOE,
accounting for coupling was even more pronounced for
CHARMM36m, shifting the accuracy from 2.49 ± 0.46 pK to
1.53 ± 0.29 pK.
Previous work has assessed the ability of different MD-based

approaches to predict cysteine pKa values
42,47 we can compare

our performance on the overlapping data sets. For 18 cysteine
residues, Awoonor-Williams and Rowley,47 found a thermody-
namic integration, replica-exchange scheme with the
CHARMM36 force field gave an AUE of 1.67 ± 0.40 pK
(compared to 1.64 ± 0.40 pK with CHARMM36m and NES).
More recently, Awoonor-Williams and coworkers42 found that
on 25 residues, a Monte Carlo, constant-pH approach paired
with CHARMM36m gave an AUE of 2.42 ± 0.36 pK
(compared to 1.70 ± 0.34 pK with CHARMM36m and NES).
Consistent with previous work, CHARMM36m performed

significantly better than plain Amber14SB (Figure 2); this large
discrepancy led us to investigate the underlying parameter-
ization differences.
Thiolate Reparameterization: Amber14SB-1.3σ. In the

Amber family of force fields, both the thiol and thiolate sulfur
atoms share the same atom type, while the partial charge
assignments between the two residues differ. Thiolate sulfur
has a more diffuse electron density and a larger ionic radius,
characteristics that will be reflected in the Lennard-Jones
parameters, particularly the σ-value.
Simulations of methylthiolate using both classical molecular

dynamics with Amber14SB and CHARMM36m, as well as ab
initio molecular dynamics, revealed substantially different

Figure 3. Thiolate reparameterization: Amber14SB-1.3σ. (a) Ab initio simulation setup with methylthiolate and ≈100 water molecules. (b) Radial
distribution function between the methylthiolate sulfur and water oxygen (left) and methylthiolate sulfur and water hydrogen (right). The ab initio
distribution is shown as a black line. (c) pKa prediction performance for CHARMM36m and Amber14SB on the DsbA test set as a function of σ-
value scaling. Amber14SB-1.3σ performance is marked in green. (c, inset) Correlation between the calculated and experimental pKa values on the
DsbA test set, with regression lines indicated. The gray error band represents a 1 pK unit deviation from experiment. (d) Correlation between the
calculated and experimental cysteine pKa values. Marker color indicates deviation from experiment where yellow indicates a minimum AUE from
experiment. Regression lines are shown in red, and the gray error band represents a 1 pK unit deviation from experiment. (e) Prediction
performance across the full data set, comparing the scaled Amber14SB force fields.
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hydration structures (Figure 3a,b). Specifically, Amber14SB
methylthiolate exhibited a radial distribution function (RDF)
peak backshift of 0.5 nm compared to AIMD, suggesting a
potentially erroneous hydration structure (Figure 3b). We note
that while the revPBE-D3 functional has previously been
shown to well reproduce the solvation structures of water48

and anions like chloride49,50 as a pure GGA functional it has a
tendency to overdelocalize electrons, which may shift the first
peak position of g(r) to a larger distance. Importantly, the
position of the first peak in our O−S RDF, i.e., r ≈ 3.16 Å is
consistent with that observed in two separate AIMD studies of
methylthiolate solvation which calculated values of r ≈ 3.20 Å
and r ≈ 3.10 Å, employing higher-level hybrid and range-
separated functionals.47,51

Given the significant discrepancy in prediction performance
between CHARMM36m and Amber14SB, as well as the
notable differences in RDFs, we rescaled the Lennard-Jones σ
value to improve agreement with the AIMD RDF and
potentially improve pKa prediction performance.
Exploring the matrix of rescaled σ- and ϵ-values within the

interval [0.5, 1.5] with 0.1 spacing, we found that a σ-value of
1.1 well reproduced the oxygen−sulfur RDF from the AIMD
trajectories (Figure 3b). Expanding the grid to include more
values yielded the same conclusion. Because adjusting the ϵ-
value led to only marginal enhancements (Figure S3b), we
refrained from unnecessarily fitting both parameters.
We performed a similar analysis to determine an optimal

value for predicting the solvation free energy of methylthio-
late.52 Consistent with the RDF analysis, we observed that
modifications to σ yielded more significant improvements than
changes to ϵ (Figure S5b); however, achieving an accurate
solvation-free energy required a σ-scaling of 1.3 (Figure S5a).
With the primary goal of improving pKa prediction

performance we probed the pKa values of wild type DsbA
and seven mutants. Because changes in ϵ had a limited effect
on solvent structure or solvation free energy, we decided to
only scan σ-values on the interval [0.8, 1.5]. We observed a
sigmoidal improvement in accuracy that was saturated for σ =

1.3 with an AUE of 2.88 ± 0.24 pK (Figure 3c) and a Pearson
correlation of 0.31 ± 0.60. This accuracy was significantly
increased from unscaled Amber14SB which had an AUE of
5.21 ± 0.44 pK and a correlation of 0.00 ± 0.51 on the DsbA
test set.
Using Amber14SB-1.3σ on the full data set gave an AUE of

2.88 ± 0.35 pK and a Pearson correlation of 0.20 ± 0.11
(Figure 3d): markedly improved from the performance of plain
Amber14SB, but still worse than the accuracy previously
reported for aspartate, glutamate, and lysine. Using the σ-value
that maximized agreement with the ab initio determined
solvation structure (i.e., σ = 1.1), yielded an AUE of 3.60 ±
0.47 pK and a Pearson correlation of 0.17 ± 0.09 (Figure 3d).
Previous efforts to reparameterize the thiolate parameters for
cysteine targeted both the σ- and ϵ-values.51 Optimizing
against the AIMD solvation structure of methylthiolate, the
researchers found a scaling factor of 1.08 for σ and 1.40 for ϵ
provided the best agreement. Using these parameters we
observed a statistically significant AUE improvement over the
original Amber14SB of 0.38 pK (Figure 3e, Figure S7) which is
comparable to the ≈0.5 pK improvement reported using the
same parameters with Amber99SB on a different data set.42 As
discussed above, scaling σ by 1.1, which best matched our
AIMD solvation structure, resulted in a nonsignificant AUE
improvement of 0.25 pK, while further scaling to 1.3 did yield a
significant improvement of 0.97 pK (Figure 3e).
We performed an identical analysis for CHARMM36m,

which indicated that although a larger σ value (i.e., σ ≈ 1.15)
was required to achieve an accurate experimental solvation free
energy (Figure S5a), the default LJ parameters could effectively
reproduce the RDF data (Figure 3b) and maximize pKa
prediction accuracy on the DsbA test set (Figure 3c); this
observation led us to leave the σ parameter untouched. Using
the OPC water model (rather than mTIP3P) resulted in an
identical position of the first solvation shell (Figure S6a) and
suggested the same scaling factor was required to reproduce
the experimental solvation free energy (Figure S6b).

Figure 4. Histidine partial charges: Amber14SB-H. (a) Thermodynamic cycle corresponding to the pKa of histidine. (b) Correlation between the
calculated and experimental histidine pKa values. Marker color indicates deviation from experiment where yellow indicates a minimum AUE from
experiment. Regression lines are indicated in red, and the gray error band represents a 1 pK unit deviation from experiment. (c) Comparison of
backbone partial charges between Amber14SB and Amber14SB-H. (d) Correlation between calculated and experimental histidine pKa values for
the modified Amber14SB-H. Error bands and marker color scheme match panel b. (e) Comparative prediction performance across the considered
force fields. Consensus is the average of CHARMM36m and Amber14SB-H.
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In short, the default Amber14SB cysteine thiolate parame-
ters are erroneous and increasing σ or both σ and ϵ is required
to better reproduce QM and experimental observables.
Nevertheless, even with this modification, CHARMM36m
still exceeds the accuracy of Amber14SB−1.3σ.
Histidine Partial Charges: Amber14SB-H. In the course

of our coupling analysis, we found that histidine pKa values are
predicted significantly higher with Amber14SB than with
CHARMM36m (Figure 4b). We previously observed lower
accuracy for the prediction of lysine pKas with the Amber14SB
force field: this was traced to the partial charge difference of
the backbone between the charged and uncharged lysine
species.17 We hypothesized that this may also play a role for
histidine, as here too the backbone partial charges differ
between the doubly (denoted HSP) and singly protonated
histidine residues (denoted HSD and HSE). To further
investigate, we computed 22 histidine pKa values that were
taken from a full data set previously probed using equilibrium
free energy calculations.53 These calculations were performed
using both plain Amber14SB and a modified version, here
called Amber14SB-H, where the partial charges of the
protonated histidine backbone are those previously reported
by Best et al (Figure 4c).54

To account for the fact that two neutral histidine tautomers
can exist with the proton present on Nδ (HSD) or Nϵ (HSE),
we perform two sets of free energy calculations: HSP → HSD
and HSP → HSE, which yield two relative free energies of
deprotonation: ΔΔGδ and ΔΔGϵ. Taking their difference gives
the relative free energy of tautomer interconversion:

= =G G G G G( )prot pep

(2)

which we can combine with the absolute free energy of
tautomer conversion�determined from the experimental
microscopic pKa values as G 2.2 kJ/molpep 55�to get
the overall relative free energy of deprotonation (Figure 4a):

= + +G G e
1

ln(1 )( G G G )

(3)

from which we can determine the pKa via eq 1.
Compared to plain Amber14SB, using Amber14SB-H

significantly reduced the AUE from 2.06 ± 0.33 pK to 0.64
± 0.11 pK and increased the Pearson correlation from 0.65 ±
0.14 to 0.88 ± 0.05 (Figure 4d,e). Unlike previously observed
for aspartate, glutamate, and lysine, we found a consensus
estimate for CHARMM36m and Amber14SB-H resulted in an
predictor that exceeded the performance of either method
alone (i.e., AUE: 0.24 ± 0.04 pK, Pearson correlation: 0.98 ±
0.01). This level of accuracy exceeded that achieved using
FEP+ (i.e., 0.39 pK) on the same 22 pKa data set (Figure
4e).53

Our results suggest that NES can resolve histidine pKa values
as accurately as FEP+ and further supports our previous
suggestion that free energy calculations, in particular pKa
calculations, with Amber14SB should employ the more recent,
Best et al. partial charges.54 We note that this partial charge
suggestion may also apply to Amber19SB, which utilizes the
same backbone charges as Amber14SB.
Effective Polarization: CHARMM36m-ECC. Traditional

MM force fields do not explicitly account for electronic
polarizability. While the Drude56 and AMOEBA57 force fields
explicitly introduce this missing electronic polarization, it can
also be introduced implicitly. The electronic continuum
correction (ECC) models the simulated system as a collection

Figure 5. Effective polarization: CHARMM36m-ECC. (a) Charge scaling scheme where the side chain unit charge is scaled while the backbone
remains fixed. (b) AUE on the DsbA test set as a function of scaling factor. The value of 0.70 for which the error saturates is marked in blue. (b,
inset) Correlation between the calculated and experimental DsbA test set pKa values. Regression lines are shown, and the gray error band represents
a 1 pK unit deviation from experiment. (c) Correlation between the calculated and experimental cysteine pKa values. Marker color indicates
deviation from experiment where yellow indicates a minimum AUE from experiment. Regression lines are indicated in red, and the gray error band
represents a 1 pK unit deviation from experiment. (d) Prediction performance comparison between the unscaled (empty bars) and charge-scaled
(filled bars) force fields. (e) Solvation structure of charge-scaled methylthiolate with and without σ-scaling on the sulfur atom.
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of point charges embedded in a medium.58,59 This medium has
a dielectric constant of ≈2, corresponding to the high-
frequency dielectric of most condensed phase environments.59

Applying this as a screening factor into the Coulomb equation
effectively scales charges by 0.71

2
. In condensed-phase

calculations, like the ones considered here, the ECC
approximation is reasonable and has been shown to improve
thermodynamic and kinetic observables across diverse
biomolecular systems.60−62 Given that sulfur is significantly
more polarizable than oxygen and nitrogen, we hypothesized
that the notably poorer pKa prediction performance for
cysteine�compared to glutamate, aspartate, histidine, and
lysine�stems from inaccurately modeled electrostatic inter-
actions between the cysteine thiolate and its protein-residue
neighborhood. By reintroducing the missing polarization
implicitly, we aimed to refine the representation of this local
environment and, in turn, improve the accuracy of our free
energy calculations.
We rescaled all full unit charges (i.e., charged side chains and

ions) (Figure 5a) on the interval [0.60, 1.00] with a 0.05
increment in CHARMM36m and recomputed the pKa values
of the DsbA test set. CHARMM36m was chosen because of its
higher accuracy in predicting cysteine pKa and because recent
charge scaling efforts have successfully employed this force
field.61

We observed the accuracy saturated to an AUE of 1.42 ±
0.14 pK for a scaling of 0.70 (Figure 5b), very close to 0.75,
which is the value often used within ECC scaling frameworks
(e.g., prosEECo75). Applying this 0.70 scaled CHARMM36m
force field on the entire cysteine data set reduced the AUE
from 2.92 ± 0.35 pK to 1.78 ± 0.21 pK and increased the
correlation with experiment from 0.24 ± 0.09 to 0.51 ± 0.09
(Figure 5c,d). Accounting for residue coupling improved the
accuracy of CHARMM36m-ECC even further, shifting the
overall AUE from 1.78 ± 0.21 pK to 1.61 ± 0.21 pK (Figure
S2). Compared to plain CHARMM36m, CHARMM36m-ECC
did not significantly improve the already strong histidine pKa
prediction performance (i.e., 0.69 ± 0.16 pK vs 0.71 ± 0.16
pK). Charge-scaling did also not completely resolve the
significant pKa underestimation observed for YopH tyrosine
phosphatase (PDB: 1YPT) (Figure S8a). While we could
exactly reproduce the relative effects of two nearby mutations
(Figure S8c), the absolute pKa values were downshifted by ≈4
pK units (Figure S8b).
Having scaled down the charge of cysteine, we have also

increased the effective radius of the side chain atoms, in
particular sulfur. Comparing the solvation structure of charge-
scaled methylthiolate to the AIMD simulations, we found a
slight increase in the position of the first RDF peak (Figure
S9a). Scaling the sulfur σ by 0.91 maximized overlap between
with the MD and AIMD RDF curves (Figure 5e, Figure S9b).
As a cross check we also computed solvation free energies of

charge- and σ-scaled methylthiolate. Within the ECC frame-
work, absolute free energies cannot be compared directly with
experiment but must be adjusted to account for the scaling
(see SI methods). After adjusting the values, we found that
similar to unscaled CHARMM36m, a slightly larger σ scaling is
required to reproduce the experimental solvation free energy
(Figure S9b).
Applying the charge-scaled and σ-scaled CHARMM36m

force field on the 1A2L test set showed no significant

improvement (Figure S9c); we did not probe the entire data
set with this doubly modified force field.
As an alternative to scaling all unit charges, we charge-scaled

only the probed cysteine and balanced the missing negative
charge by scaling the ions in solution. Computing the pKa
values on the DsbA test set revealed a similar improvement
trend as observed for global charge scaling, but nevertheless
yielded a slightly poorer accuracy at a 0.7 scaling (Figure S11).
This difference is quite small and would seem to suggest that
charge-scaled interactions of the probed cysteine itself and not
that of other charged species is the major determinant of
improved accuracy. In certain highly charged contexts (i.e.,
enzyme active sites), the accuracy improvement from charge-
scaling other nearby residues is likely to play a larger role.
As a complete alternative to charge-scaling we also

considered the more traditional reparameterization approach
of redistributing the charge on the side chain. We found that
altering the proportion of charge on the Cβ carbon and sulfur
did not improve pKa prediction accuracy on the DsbA test set
(Figure S10).
Given the success with CHARMM36m, we also investigated

charge-scaling with Amber14SB and Amber14SB−1.3σ. Amber
presents difficulties because unlike CHARMM the side chain
does not carry a full integer charge and cannot be simply
scaled. Instead we linearly interpolate between the protonated
and deprotonated cysteine to get a charge-scaled residue.
Charge scaling Amber14SB improved prediction accuracy on
the DsbA test set but failed to meaningfully saturate on the
interval [1.00, 0.60], while charge-scaling Amber14SB-1.3σ
improved prediction accuracy which was maximized for 0.80
and appeared to degrade for further scaling (Figure S11).
Probing Amber14SB-1.3σ with 0.80 charge scaling on the
entire data set improved the accuracy from an AUE of 2.88 ±
0.38 pK to 2.45 ± 0.27 pK (Figure 5c,d); this improvement
was smaller than that observed for CHARMM36m. Account-
ing for coupling also pushed the accuracy slightly higher to
2.37 ± 0.29 pK. Compared to plain Amber14SB-H, charge-
scaling did improve histidine pKa prediction accuracy
decreasing the average unsigned error from 0.64 ± 0.11 pK
to 0.50 ± 0.10 pK.
To assess structural effects of charge-scaling on the

simulated ensembles (e.g., unfolding) we analyzed the
fluctuation profiles of the end-state ensembles. To compare
the unscaled and scaled force fields we calculated the absolute
difference between the residue-wise RMSF profile: |RMSFA −
RMSFB|/RMSFB and took the average. This measure varied
between proteins but was roughly ≈0.15 Å (Figure S12),
which was comparable to the difference observed between
unscaled Amber14SB and CHARMM36m. While a compre-
hensive validation of charge-scaled force fields against their
unscaled counterparts is beyond the scope of this work, our
observations�along with previous work demonstrating the
stability of charge-scaled force fields in larger systems over
longer time scales62�we suggest that charge-scaling is unlikely
to deleteriously destabilize folded protein systems.
Taken as a whole, our results suggest charge scaling is a

viable, force field independent method for improving or
maintaining the already strong performance of nonpolarizable
force fields in pKa-related, free energy calculations.
Overall Performance: Modified Force Fields. Figure 6

summarizes the main findings: on the full dataset our NES
approach with the modified CHARMM36m force field and
residue coupling accounted for, significantly exceeds the
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performance of plain CHARMM36m reducing the average
unsigned error from 2.12 ± 0.27 pK to 1.28 ± 0.15 pK and
increasing the correlation with experiment from 0.25 ± 0.09 to
0.58 ± 0.08. For Amber14SB, our force field modifications
decrease the error from 3.21 ± 0.29 pK to 1.69 ± 0.23 pK and
increase the correlation from 0.15 ± 0.10 to 0.36 ± 0.10. On
the same dataset PropKa and PypKa gave errors of 2.25 ± 0.24
pK and 2.02 ± 0.23 pK, and correlations of 0.19 ± 0.12 and
0.18 ± 0.12, respectively. The average unsigned error of a null
model was 1.89 ± 0.19 pK. Considering cysteine predictions
within a certain tolerance, CHARMM36m-ECC correctly
predicts 39 ± 8% of residues within 1 pK and 73 ± 7%
within 2 pK, compared to 22 ± 6% and 44 ± 8% with PypKa
and 15 ± 6% and 34 ± 7% with PropKa. We also note that
CHARMM36m-ECC exceeds the AUE of a null model by 0.72
± 0.21 pK or 0.91 ± 0.27 pK depending on whether coupling
is accounted for.
Considering general determinants of accuracy we ob-

served�consistent with previous work17�that the pKa itself
is a reasonable predictor of accuracy: performance degraded as
a function of pKa (Figure S13a). Decreasing pKa also correlated
with solvent exposure i.e., buried residues tended to have lower
pKa values (Figure S13b) and, by extension, solvent
accessibility correlated with the prediction error (Figure
S13c). In this data set, buried residues are also more frequently
involved in coupling (Figure S13c, triangle markers). As noted
earlier, coupling is an important determinant of accuracy, with
poorer prediction performance observed for coupled residues
compared to uncoupled ones. As also noted earlier, this
discrepancy can be remedied by explicitly accounting for
coupling, which restores the accuracy to a level comparable to
that observed for uncoupled residues (Figure S2).
Taken together, this final comparison highlights that NES

pKa prediction accuracy can be significantly increased by
accounting for charge scaling and residue coupling. These
enhancements push the accuracy well above unscaled force
fields and conventional predictor methods.

■ DISCUSSION
Here, we assess the ability of nonequilibrium switching (NES)
free energy calculations to resolve the pKa values of 40 cysteine
and 22 histidine residues across 10 wildtype and mutant
proteins. Given the widespread use of free energy calculations
in lead optimization and the growing interest in designing
targeted covalent inhibitors, in silico methods for determining
the deprotonation free energy of specific cysteines in the
presence or absence of bound molecules is highly desirable.
Our results highlight three force field modifications that can

improve pKa prediction accuracy for cysteine and histidine: (1)
increasing the vdW radius of the deprotonated cysteine sulfur
in Amber14SB; (2) altering the backbone partial charges of
doubly protonated histidine in Amber14SB; and (3) charge
scaling all unit charges in CHARMM36m and Amber14SB.
Our investigation is not intended to provide definitive
parameters for either force field or an absolute strategy for
improving relative free energy calculations, particularly pKa
prediction, instead, we aim to highlight potential avenues for
further investigation and development.
On the full data set of 40 cysteines and 22 histidines, we

found the strongest performing force field, CHARMM36m-
ECC, to exhibit an AUE of 1.61 ± 0.21 pK for cysteine; this
accuracy exceeds conventional predictors and a null model.
While increasing the vdW of sulfur and charge-scaling both
improved the performance of Amber14SB in predicting
cysteine pKa values, the final accuracy of 2.36 ± 0.29 pK
remains lower than that of CHARMM36m, suggesting further
reparameterization of the residue would be required.
In the case of histidine, we found the accuracy could be

significantly improved by taking a consensus of the
Amber14SB-H and CHARMM36m charge-scaled force fields
which yielded an AUE of 0.24 ± 0.04 pK and a Pearson
correlation of 0.98 ± 0.01. Even standing alone, Amber14SB-H
with charge-scaling attained an accuracy of 0.50 ± 0.10 pK and
correlation of 0.85 ± 0.06, while CHARMM36m with charge-
scaling gave an accuracy of 0.71 ± 0.16 pK and correlation of
0.56 ± 0.15.
We note that while NES paired with the charged-scaled

CHARMM36m force field represents the strongest predictor
reported here, our results suggest inherent limitations of
conventional force fields in accurately capturing the local
electrostatic environment of the cysteine thiolate. The
deprotonated sulfur is significantly more polarizable than
oxygen or nitrogen, making pKa predictions particularly
sensitive to local electrostatics, hydrogen bonding, and
screening effects within the protein. These factors are not
fully accounted for and likely explain why prediction accuracy
is poorer compared to the less polarizable amino acids i.e.,
aspartate and lysine. In light of this, alternative approaches may
be necessary to improve physics-based cysteine pKa pre-
dictions. One potential avenue is the use of explicitly
polarizable force fields56,57 which could offer a more accurate
description of electrostatics compared to the implicitly
polarizable force fields employed here. Another potential
direction is the integration of MM/ML end-state correc-
tions.63,64 As machine learning potentials become more
capable of reliably modeling charged species at longer ranges,
they could be used to correct the solvent and protein branches
of the thermodynamic cycle in Figure 1, ultimately leading to
more accurate pKa estimates.

Figure 6. Overall performance: modified force fields. Combined
cysteine and histidinepKa prediction performance comparison
between unmodified and modified CHARMM36m and Amber14SB
force fields, with and without coupling accounted for, PropKa, PypKa,
and a null model.
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In summary we find MD-approaches, including NES, can
resolve the pKa values of cysteine and histidine residues with
accuracy that exceeds conventional methods; however, this
requires modification to the underlying MD force fields. The
largest accuracy improvement we observed was for charge
scaling the CHARMM36m force field, a result that will likely
extend to other force fields and could remedy the poorer
accuracy previously observed for predicting the effect of
charge-changing mutations on protein thermostability65 and
binding affinity.66 More work will help determine the
consequences of charge-scaling; however, this work and the
recent work of others61,62 seems to suggest that charge-scaling
may be a general method to enhance the accuracy of
nonpolarizable MM force fields with only minimal and
predictable costs.
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