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The need to implement FAIR principles 
in biomolecular simulations
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In the Big Data era, a change of paradigm in 
the use of molecular dynamics is required. 
Trajectories should be stored under FAIR 
(findable, accessible, interoperable and 
reusable) requirements to favor its reuse by the 
community under an open science paradigm.

The communities that embraced data archiving efforts decades ago are 
now, in the era of data-driven biology, gaining the most from the AI revo-
lution. The structural biology community was a pioneer in this regard, 
establishing the Protein Data Bank in 1971 and making data accessible 
using the FAIR principles even before these were articulated1,2. The 
genomics and bioinformatics community has followed the example, 
establishing many widely used databases3,4. By contrast, molecular 
simulation has been anchored in usage paradigms dating back to the 
seventies, when molecular dynamics (MD) simulation was first applied 

to study biomacromolecules5. At that time, MD was used by theo-
retical physicists and chemists in proof-of-concept simulations, but  
50 years later, MD has evolved into a cornerstone molecular biology 
technique that can provide accurate, quantitative analysis and property 
prediction. MD is now employed by tens of thousands of researchers 
worldwide, accounting for roughly 15% of global supercomputer usage. 
Unfortunately, these rich and costly data are not systematically main-
tained, and when further analyses are required, simulations have to be 
rerun — an unacceptable situation from scientific, environmental and 
sustainability standpoints. In this letter, we argue for a collaborative 
endeavor to archive MD simulation data and describe ongoing efforts 
to establish cost-effective and sustainable data archiving strategies.

Advances in computer technology have made it possible to simu-
late large, realistic biological systems beyond the millisecond time-
scale, and we are seeing simulations in the 109-particle range, covering 
entire organelles and even minimal cells, resulting in a “deluge of data”6 
in a field that lacks agreed strategies for data storage. As in the seven-
ties, trajectories obtained after a huge effort are often ignored (or even 
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The challenges that lie ahead for the community are diverse. The 
technical ones —sustained data storage capacity, bandwidth, and 
processing capacity for analysis — can be alleviated by a distributed 
database policy following initiatives such as the EGA infrastructure 
(European Genome-Phenome Archive; https://ega-archive.org/) and 
by the commitment of funding institutions and high-performance 
computing centers, offering storage, bandwidth and processing capa-
bilities. Other key decisions such as quality requirements for storing 
and maintaining the data, the sparsity of the trajectory, the compres-
sion strategy, or whether stored trajectory should be dry or contain 
also solvent molecules should be taken by the community, keeping in 
mind that, while storing all the potential information derived by an MD 
simulation might be impossible, preserving as much data as possible 
should be a priority.

A centralized management entity should coordinate the feder-
ated nodes, defining required metadata (crucial for reproducibility, 
extension of trajectories, increase of the time density of snapshots, or 
meta-analysis), setting deposition policies, guaranteeing compliance 
of FAIR rules and providing a common entry point through web-based 
and programmatic representational state transfer (REST) API inter-
faces. The myriads of variants of MD programs, protocols, formats 
and simulation conditions lead to more complex problems. Recent 
MD repositories and databases11 are already prepared to manage not 
only plain MD trajectories but also Markov state models, ensembles, 
multiscale simulations (hybrid or combined approaches involving 
mesoscale, coarse-grained and atomistic methods, as well as quantum 
mechanics with molecular mechanics), constant pH, replica exchange, 
and MD trajectories biased with metadynamics or similar methods. 
NoSQL databases such as MongoDB (with the GridFS file storage and 
retrieving specification) allow efficient storing and querying of the 
diversity of outputs provided by MD engines and are already adopted 
by MD storage initiatives. However, much more work is required for 
an effective analysis framework that can manage an increasingly large 
number of MD variants and trajectory formats.

Data should be findable, with each entry registered with a per-
sistent identifier, ideally a DOI, ensuring a proper citation, following 
the example of the WorkflowHub registry (https://workflowhub.eu/). 
Furthermore, they should be stored in an interoperable manner, so that 
they can be read and exploited by current and future data scraping and 
machine learning algorithms. To this end, the community must reach 
an agreement to standardize MD data exchange formats with (i) effi-
cient trajectory compression, including simple system specifications 

deleted) after a hypothesis-driven analysis is presented in a scientific 
publication. For a field entirely based on sampling, and where the 
recipe for observations can be described exactly and critically assessed, 
this is a huge problem. Instead of being able to reanalyze, reuse, and 
potentially spot undetected artifacts or new features in data, readers 
are often expected to blindly trust the closed set of statements made 
by the authors in a paper. The lack of a systematic approach to storing 
data (and associated provenance and metadata) prevents new studies 
based on previous trajectories; impedes meta-analyses, extension of 
trajectories, training of machine learning approaches, optimization 
of force fields and simulation protocols, generation of new confor-
mations for modeling of reactivity; hampers the use of trajectories to 
train coarse-grained and mesoscopic models or generative models; 
and prohibits the integration of MD results into the rich ecosystem of 
biology databases. Some journals and funding institutions now require 
the deposition of trajectories. Without a centralized reference reposi-
tory, this has led to the use of existing generic repositories (for example, 
Zenodo, Figshare) and the creation of numerous small, independent 
databases. As a result, we may face vast amounts of dispersed and dis-
connected data, which are expensive to maintain and often useless for 
further analysis. It is clear that the community needs to escape from a 
paradigm that made sense in the seventies but now hinders progress, 
and move to an open science model.

Establishing an archive for biosimulation data — upon quality 
assessment — would address these issues, democratize the field, and 
have a material impact of MD simulations on life science research. 
The traditional view held by the simulation community that storing 
and archiving is more expensive than recomputing, which might have 
been correct in the past, is no longer valid, as demonstrated by the 
massive Folding@home study on the SARS-CoV-2 main protease7, or 
for simulations with many millions of atoms8. However, the new sci-
ence that can be learned from stored trajectories is more important 
than the cost. For instance, the ABC Consortium9 was established in 
2004 as a community effort generating a multi-gigabyte database 
of DNA simulations, which had grown to hold 15 terabytes of data 
by 2019. The original goal of ABC was to study DNA polymorphisms, 
but the database has become crucial in other fields, such as force 
field refinement, the study of signal transfer in DNA and the devel-
opment of coarse-grained models. The current HexABC database 
contains 400 terabytes of data generated by 14 different groups to 
explore hexamer dependencies of DNA dynamics. However, its future 
use, which is difficult to anticipate, might be more important than 
the current goals of the project. Another example emerged during 
the COVID-19 pandemic10,11, when the Molecular Sciences Software 
Institute (MolSSI), in collaboration with European groups including 
BioExcel, European Open Science Cloud, European Bioinformatics 
Institute and Zenodo, created the COVID-19 Molecular Structure 
and Therapeutics Hub (https://covid.molssi.org). It went live in April 
2020, connecting scientists across the global biomolecular simulation 
community, as well as improving the connection between simulation 
and experimental and clinical data and their investigators. A further 
example is MDverse (https://mdverse.github.io/), an effort to make MD 
trajectories FAIRer by indexing and curating thousands of simulations 
scattered across the internet. Many other examples are now under 
development, highlighting the general belief of the community that 
the traditional paradigm from the seventies should be abandoned 
and all well-annotated, validated trajectories should be stored and 
integrated in a general data infrastructure to favor the advance of 
science and the optimization of computational resources.
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Fig. 1 | Data cycle workflow for implementing FAIR (findable, accessible, 
interoperable and reusable) principles in biomolecular simulations. The 
diagram highlights the added value that can be extracted from accessible  
open data.
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(for example, atom or residue names and connectivity); (ii) key-value 
trees storing high-level and full simulation settings metadata; and (iii) 
metadata-based ontology12, which would allow the user to search data-
bases on the basis of the contents, the nature or even the purpose of the 
simulations. Standardized provenance should be stored by means of 
data blocks specifying commands or operations used to generate the 
trajectory, together with names, stored hash sums of the complete files 
used for input, and specific software used (with precise versions). This 
would allow the user to reproduce all the different steps followed to 
prepare and run the simulation, including modeling of missing residues, 
physical conditions (for example, pH, salt concentration, temperature 
and pressure) and force fields, methodology used to obtain parameters 
involving non-standard molecules (for example, small molecules, mem-
brane systems, ionic coordination), and the equilibration and possibly 
sampling process. Minimum metadata should include system informa-
tion, simulation parameters, author(s), data license and copyright, 
and, importantly, the main purpose of the simulation. The definition 
of standardized protocols (that is, list of operations) for production 
run and analysis, including a troubleshooting section, could be added. 
These, along with a set of metadata-dependent quality control analyses, 
both general and system specific, are crucial requisites for gaining trust 
from the community and for defining deposition rules. A data repository 
following FAIR principles and the associated analysis tools will increase 
the impact and the reproducibility (complex at the binary level; that is, it 
is difficult to reproduce exactly the same trajectory owing to numerical 
errors) of MD in related fields in the life science data ecosystem, from 
genomics to structural biology and from protein and drug design to 
molecular biology. MD data would provide unique dynamic information 
of biological macromolecules fully complementary with the rich infor-
mation available from the Protein Data Bank. This could be integrated 
into the life science ecosystem following the approach of the Protein 
Data Bank in Europe Knowledge Base, designed for the integration and 
enrichment of 3D structure data and functional annotations13. All this 
information will contribute to knowledge democratization, helping 
research teams with limited resources and fueling further advances in 
artificial intelligence (AI) in the scientific domain14 (Fig. 1).

The MDDB project (https://mddbr.eu/) and similar initiatives aim 
to establish such a repository, allowing (i) data quality assessment 
metrics to increase the trust of the community in the deposited data; 
(ii) common data format, metadata requirements and ontologies to 
facilitate interoperability; (iii) a minimum set of information needed 
to store and reproduce the simulations, including data provenance, 
license and copyright; and (iv) a standard and robust infrastructure to 
store and share the data, with persistent identifiers and different ways 
to access them. We believe science will be better served by fully embrac-
ing this data-driven view of biomolecular simulation. Furthermore, 
data-driven initiatives such that supported by this Correspondence 
would help the interaction with other simulation communities, such 
as the materials science one, which share some of the problems the 
biomolecular simulation community is facing.
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