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It has been proposed that an observed inverse power-law dependence of the Markovian estimate for
the steady-state dissipation rate on the coarse-graining scale in self-similar networks reflects a scale-
dependent energy dissipation. By explicit examples, it is demonstrated here that there are in general
no relations between such an apparent power-law dependence and the actual dissipation on different
length scales. We construct fractal networks with a single dissipative scale and networks with a true
inverse energy-dissipation cascade, and show that they display the same scaling behavior. Moreover,
we show that a self-similar network structure does not imply an inverse power-law scaling but may
be mistaken for one in practice. When no dissipative cycles become hidden by the coarse graining,
any scale dependence of the dissipation estimate vanishes if the memory is correctly accounted
for in the time-reversal operation. A k-th order estimator is derived and necessary and sufficient
conditions are proved for a guaranteed lower bound on dissipation. These higher-order estimators
saturated in the order are proved to provide sharper lower bounds on dissipation and their scale
dependence signifies hidden dissipative cycles. It is shown that estimators not saturated in the
order may erroneously overestimate the microscopic dissipation. Our results underscore the still
underappreciated importance of correctly accounting for memory in analyzing coarse observations.

Measurements in complex systems usually have finite
resolution [1–4] or do not resolve at all relevant degrees of
freedom—they just probe some low-dimensional projec-
tions of the dynamics, where many microscopic states be-
come “lumped” onto the same observable ”state”. Typ-
ical examples are macroscopic observables in condensed
matter systems, such as magnetization [5], dielectric re-
sponse [6], and diverse order parameters [7–9], as well
as other observables (e.g. molecular extensions or FRET
efficiencies and lifetimes) in single-molecule [10–19] and
particle-tracking [20, 21] experiments.

It is well known that such coarse graining introduces
memory in the dynamics of the observable quantities [22–
25] (see [3] for the effect of a finite resolution). Much less
is understood about out-of-equilibrium systems that dis-
play memory. In particular, a consistent formulation [25–
35] and inference [34, 36–40] of dissipation in the presence
of slow dissipative hidden degrees of freedom is often a
daunting task. It is very difficult to reliably infer viola-
tions of time reversibility (i.e., the detailed balance) from
experiments on individual molecules [35, 37, 41].

Violations of detailed balance on the level of individual
stochastic trajectories Γt ≡ (xτ )0≤τ≤t may be quantified
via the steady-state dissipation (entropy production) rate

Ṡ. Given a physically consistent time-reversal operation
θ accounting for the highly-nontrivial (anti-)persistence

due to memory [35], Ṡ is defined as the relative entropy
between the probability measure of a path P[Γt] and its
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time reverse P[θΓt] per unit time [42–44], i.e.

Ṡ[Γt] = kB lim
t→∞

1

t

〈
ln

P [Γt]

P [θΓt]

〉
, (1)

where ⟨·⟩ denotes the average over dP[Γt] and kB is Boltz-
mann’s constant. When xt is an overdamped Markov dy-
namics, we simply have θΓt = (xt−τ )0≤τ≤t.Specifically,
for an ergodic Markov process on a discrete state space V
with transition rates Lji from state i to j and stationary
probabilities P s, Eq. (1) becomes [42–44]

ṠM[Γt] = kB
∑
i<j

(LjiP
s
i − LijP

s
j ) ln

Lji

Lij
. (2)

For thermodynamic consistency we must always have
Lji > 0 =⇒ Lij > 0 for any i, j ̸= i ∈ V [44]. We hence-

forth express all estimates of Ṡ in units of kB.
When a coarse-grained version X̂t of the process is ob-

served, where several microscopic states are lumped into
the same observable state, provided a physically consis-
tent time reversal θ [26, 32, 39, 45], the definition in

Eq. (1) with lumped paths Γ̂t = (X̂τ )0≤τ≤t still holds,

whereas Eq. (2) does not. The reason is that X̂t displays
memory (due to coarse-graining) which must be taken
explicitly into account [1, 32–34, 39, 47]. If one sim-
ply replaces the rate Lji between microscopic states in
the Markovian result (2) with the effective rates between
(mesoscopic) lumped states averaged over P s, i.e. assum-
ing (a potentially unphysical [33]) infinite timescale sep-
aration between dynamics within and between lumped
states, one finds [28] ṠM[Γ̂t] ≤ ṠM[Γt]. However, this in-

equality does not imply that a dependence of ṠM[Γ̂t] on
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the properties of the lumped state space carries any phys-
ical meaning since ṠM[Γ̂t] is not the dissipation rate of

the coarse-grained process, ṠM[Γ̂t] ̸= Ṡ[Γ̂t]. Thermody-

namic interpretations of ṠM[Γ̂t] (see, e.g. [5, 49–51]) may
lead to misconceptions, as we explicitly show below.

Energy dissipation is a critically important quan-
tity since it measures how the system deviates from
the equilibrium. It also sets the thermodynamic cost
of biological functions [52, 53] and transport phenom-
ena [54–61], such as molecular-motor mediated transport
of cargo [62, 63], biochemical oscillations [64, 65], er-
ror correction in biochemical reactions [66–68], or cellu-
lar computations [69]. These functions typically involve
many processes coupled over multiple spatial and tempo-
ral scales [5, 52, 53]. It is thus of great interest to unravel
how much energy is dissipated on different length scales.

To this end, recent works [5, 49–51] investigated how
the energy dissipation rate in self-similar non-equilibrium
reaction networks depends on the coarse-graining scale
λ ≡ n/ns (i.e. the total number of microstates n relative
to the number of mesoscopic states ns in a lumped sys-
tem) and observed a power-law dependence of the Marko-

vian estimate ṠM[Γ̂s
t ] ∝ λ−α [5]. These findings were

rationalized in terms of an “inverse cascade” of energy
dissipation on different scales. In the specific context of
active flows generated by the microtubule-kinesin motor
system [70], this amounts to the claim that the most en-
ergy is spent to generate and maintain the flow at smaller
length scales and only a tiny amount at large length scales
[5]. While the underlying calculations in Refs. [5, 49–51]
are technically sound, their interpretation is physically
inconsistent, as we show in this Letter.

Here we construct explicit examples invalidating such
hypothesized implications between a power-law depen-
dence of the Markovian dissipation estimates ṠM and the
actual energy dissipated on different scales. In particular,
we present fractal networks dissipating (i) only on a sin-
gle (i.e., largest) length-scale and (ii) networks dissipat-
ing mostly on the smallest length scale and less on larger
scales (i.e., networks with an “inverse energy dissipation
cascade” [5]) whereby both display the same scaling of

ṠM. A self-similar network structure is shown to not even
imply a power-law scaling of ṠM, therefore there is gen-
erally no relation between the power-law scaling of ṠM

and the energy dissipated on a given scale. Moreover, the
observed (apparent) power-law exponent changes upon
progressively accounting for memory in the estimate for
Ṡ. The apparent power-law dependence of ṠM thus has no
relation to the actual energy dissipated on a given scale
and may simply be an artifact of an inconsistent time
reversal. Extrapolations to the microscopic scale λ = 1
are shown to be generally non-informative. Most impor-
tantly, when no dissipative cycles become hidden by the
coarse graining, any scale dependence vanishes entirely
once the memory is accounted for exactly when estimat-
ing Ṡ. Higher-order dissipation estimates are proved to
be reliable indicators of hidden dissipative cycles and, if
saturated in the order, provide guaranteed sharper lower

bounds. These results emphasize the importance of prop-
erly accounting for memory effects in analyzing measure-
ments from coarse observations.
Setup.—Let us consider continuous-time Markov pro-

cesses xt on a finite discrete state-space with Lji denoting
transition rates i → j. We are interested in the steady-
state dissipation rate Ṡ in Eq. (1) in situations where
one might only observe some coarse (i.e. lumped) ver-

sion of the process that we denote as X̂t. For simplic-
ity, and to align with the assumptions in [5], we assume
the absence of kinetic hysteresis [32, 33, 39], i.e., that
the coarse graining and time reversal commute. The ob-
served process is hence a non-Markovian jump process
on a partitioned “lumped space”, whereby the memory
duration is finite but may become arbitrarily long de-
pending on the coarse graining. In the following exam-
ples, the lumped process will correspond to a k-th order
semi-Markov process with the instantaneous state X̂t de-
pending on the previous k states [71]. Thus, k = 1 cor-
responds to a renewal process and, if the waiting time is
exponentially distributed, to a Markov process.
Guaranteed higher-order estimators.—We will esti-

mate Ṡ[Γ̂t] within the simplest Markov approximation
as in [5] as well as in terms of k-th order estimators [39]
that account for memory. For simplicity and without any
loss of generality we will neglect any potential waiting-
time contributions (for further details see e.g. [39]). If

we let γ̂
(ki:kj)
k denote a subsequence ki, ki+1, . . . kj of a

particular set of k + 1 consecutive observed states with

final state γ̂
(f)
k and for k ≥ 1, and P(γ̂(ki:kj)

k ) the proba-
bility to observe this set along a (formally infinitely long)

trajectory, then the k-th order estimator of Ṡ is given by

Ṡest
k ≡ 1

T

∑
γ̂k

P[γ̂(1:k+1)
k ] ln

P[γ̂(f)
k |γ̂(1:k)

k ]

P[(θγ̂k)(f)|(θγ̂k)(1:k)]
, (3)

where T is the average waiting time per state in the ob-
served trajectories, θγ̂k is the corresponding reversed set
of k+1 states, and the upper indices refer to the discrete
state sequence [7]. If Γ̂t is a n-th order semi-Markov pro-

cess then Ṡest
k = Ṡest

n , ∀k ≥ n (see proof in [73]), and if

Γ̂t = Γt is a Markov process we have Ṡest
1 = Ṡ. Notably,

we have that if the observed semi-Markov process Γ̂ is of
order n, then Ṡest

k for k ≥ n provides a lower bound to
the microscopic entropy production rate

Ṡ(Γ) ≥ Ṡest
k (Γ̂) ∀k ≥ n, (4)

implying, alongside Ṡest
k = Ṡest

n ∀k ≥ n, that the estima-
tor will reach a plateau upon increasing k once reaching
the correct order n. Furthermore, Ṡest

n (but not Ṡest
k<n)

always provides a lower bound on Ṡ(Γ) (see proof in [73];
see also [4] for results in discrete time). Crucially, no

statement can be made about the monotonicity of Ṡest
k

as a function of k for k < n; the inequality (4) may be
violated (see counterexample in Appendix A). Inferring
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FIG. 1. Model systems: (a) Cycle graph with transition rates ω and κ in counter-clockwise (+) and clockwise (−) direction,
respectively. Lumps L1, L2, . . . , Ln/λ are highlighted in blue.(b) Tree of depth d = 5 with lumps of depth l = 1 (shaded in
blue) and depth l = 2 (circled in dashed red). Transition rates down + and up − (cyclic with respect to the thick edge) are set
∝ ω and ∝ κ, respectively, chosen such that the cumulative transition rate between each level is ω − κ. Self-similarity becomes
obvious upon noticing that each tree consists of multiple smaller trees. Inset: Four fundamental cycles passing through the
highlighted subgraph on levels U3, U4 and corresponding transition rates. (c) Self-similar Sierpinski-type graph with lumps of
size λ = 12 indicated by the respective vertex coloring. A stationary current ω runs through the outer side of each polygon,
whereby the size of said polygons depends on the respective recursive depth. The depicted graph has recursion depth 5 and
n = 768 vertices. Inset: Element of recursion-depth 2 with all irreversible currents indicated by arrows. (d) Brusselator depicted
as a grid graph as in [5]. A portion of the total n = 450×450 states is shown with lumps of size λ = 2×2 and λ = 4×4 shaded
in blue and circled in dashed red, respectively.

the exact Ṡ from projected observations is generally not
possible because of dissipative cycles hidden in lumps.

Example 1: Cycle graph.—Consider Markovian dynam-
ics on a (trivially self-similar) simple cycle with n ≥ 4
states with forward and backward transition rates ω and
κ ̸= ω, respectively (see Fig. 1a). The system has a single
dissipative scale with an exact total dissipation rate

Ṡ = (ω − κ) ln
(ω
κ

)
. (5)

As in [5], we decimate the state space in n/λ coarse-
grained observable states (we assume n = 0modλ), with
“Markovian” forward and backward transition rates ac-
cording to [5] given by Ω(λ) = ω/λ and K(λ) = κ/λ,
respectively. We obtain a single dissipative cycle with
homogeneous steady-state current J = (λ/n)[Ω(λ) −
K(λ)] = (ω−κ)/n and affinity A = (n/λ) ln(ω/κ), yield-
ing the Markov estimate

ṠM = JA =
1

λ
(ω − κ) ln

(ω
κ

)
∝ λ−1, (6)

indeed an inverse power law according to [5]. However,
the microscopic system has a single dissipative scale, the
entire cycle. Thus, the scaling has no implications for
the energy dissipation on distinct length scales. In fact,
we now show that it is merely an artifact of inconsistent
time reversal in the presence of memory.

The coarse process is non-Markovian, to be precise, it
is a 2nd-order semi-Markov process (see also [33]). This
means that the waiting time within, and probability for
a forward/backward transition from, a lump depends on

the previous state. The exact Ṡ may be determined in

terms of J and the two-step affinity A2 [1, 33, 39]

Ṡest
2 = JA2 = J ln

(
Φ+|+

Φ−|−

)
= Ṡ, (7)

where Φ±|± denotes the conditional stationary probabil-
ity for a step in the ± direction given that the previous
step was also in the ± direction, and the proof of the
last equality is given in the SM. These results are veri-
fied via simulations in Fig. 2a. Equality, as opposed to
a lower bound, emerges because no dissipative cycles be-
come hidden, and the waiting time contribution vanishes
(see SM). Consistent time reversal and hence thermody-
namics thus remove the artefactual scaling behavior.
Example 2: Tree graph.— We now consider a perfectly

self-similar network with a single dissipative scale (i.e.
the system size) but multiple (equivalent) dissipative cy-
cles each with a stationary current Jc (see Fig. 1b). In
this binary tree of depth d, every edge is bidirectional
with rate ∝ ω in the “down” (+) and ∝ κ in the “up” (−)
direction, respectively, such that the cumulative transi-
tion rate between each level is ω − κ. This way, the rates
along adjacent edges in consecutive levels in both direc-
tions ± are halved (see Inset in 1b). The detailed math-
ematical construction is described in the SI. The exact
entropy production of the system in the cycle basis C
with 2d basis cycles reads (see proof in SM)

Ṡ =
∑
c∈C

JcAc =
d+ 1

2d+1 − 1
(ω − κ) ln

(ω
κ

)
, (8)

where the basis-cycle current (see [6] for details on cycle
bases) is Jc = (ω − κ)/2d(2d+1 − 1).
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b)a)

FIG. 2. Entropy-production estimates for different coarse-
graining scales: (a) Ṡest

k for the ring graph with n = 60 states.
Higher-order estimators (k ≥ 2) allows for correct inference of

Ṡ (green, blue), while omitting memory leads to an artefactual
power law (black and red lines). Analytical results are fully

corroborated by simulations. (b) Ṡest
k for the tree of depth

d = 23, i.e. n = 16777215. Higher-order estimators allow for
correct inference of Ṡ (green, blue), whereas ignoring memory
leads to a spurious inverse energy cascade (black line), which
may be easily mistaken for a power law (red dashed fit). In
both cases, we considered 100 independent stationary trajec-
tories each visiting 109 microscopic states.

We lump the tree into mesoscopic states each having
a depth l < d (see Fig. 1b). The Markovian estimate ṠM

for such a lumped system reads (see derivation in [73])

ṠM=
d+ 1

2d+1 − 1

ln(2)

ln(λ+ 1)
(ω − κ) ln

(ω
κ

)
∝ 1

ln(λ+ 1)
, (9)

where λ = n/ns = 2l+1 − 1. Now there is in fact strictly

no power-law scaling of ṠM in λ despite a perfectly self-
similar network structure. However, one may in prac-
tice identify a power-law ∼ λ−0.36 (see Fig. 2b) as in [5].
Meanwhile, the microscopic system has a single dissipa-
tive scale, the system size. An observed power-law thus
has no relation with energy dissipation on distinct scales
and may not even be a power law. It is an artifact of
inconsistent time reversal in the presence of memory.

The lumping yields a 2nd-order semi-Markov process
and hides no dissipative cycles. By accounting for mem-
ory via Ṡest

k≥2 [1, 33, 39] we, therefore, recover the exact

microscopic result (see derivation in [73])

Ṡest
2 =

ω − κ

2d+1 − 1

d+ 1

l + 1
ln

(
Φ+|+

Φ−|−

)
= Ṡest

k>2 = Ṡ, (10)

where Φ±|± is the conditional probability for a transition
between two lumps (at given coarseness) in the ± direc-
tion given that the preceding step occurred in the ± di-
rection. According to the last equality, consistent time re-
versal (and hence correct thermodynamics) removes the
artefactual scaling behavior. The analytical results are
confirmed by simulations (see 2b) and generalized to the
more complex tree-diamond graph in Appendix C.

Example 3: Sierpinski-type graph.— As our next ex-
ample, we consider a self-similar graph composed of
nested polygons in the spirit of the Sierpinski fractal (see
Fig. 1c). The rates are set such that each nested poly-
gon is driven with ω. Hence a polygon with recursive

b)a)

FIG. 3. Entropy-production estimates for different coarse-
graining scales: (a) Ṡest for Sierpinski-type graph for recur-

sion depth 7 (n = 12288 vertices). We find ṠM ∝ λ−1 while

higher-order estimators Ṡest
k≥2 yield a power law with α = 0.93,

corroborating numerically that the lumped process is a 2nd

order semi-Markov process. (b) Ṡest for the Brusselator with
n = 202500 vertices. The virtual power law for the Markov
estimate Ṡest

1 ∝ λ−0.52 is faster decaying than Ṡest
k≥2 ∝ λ−0.31

obtained by accounting for memory. For simulation details
see [73].

depth l has affinity Al = 3l lnω (see derivation in [73]).
The depth l = 1 corresponds to innermost triangles. The
detailed construction is described in [73]. In contrast
to the previous examples, this network is designed to
indeed display a scale-dependent energy dissipation rate
Ṡ, whereby most energy is dissipated on the smallest and
less energy on larger scales (for quantitative statements
see [73]). For networks with a recursive depth larger than

3, we are not able to determine P s
i (and hence Ṡ) analyt-

ically and therefore resort to numerical methods to com-
pute Ṡ (see [73] for details). The system with recursive
depth 7 (12288 microscopic states) was coarse-grained
into lumps with recursive depth l, such that the lumped
graph perfectly preserves the original fractal structure
(see Fig. 1c). However, in stark contrast to the previ-
ous examples, the coarse graining here hides dissipative
cycles. We determine ṠM via Eqs. (2-3) (with k = 1)

and Ṡest
k≥2 using Eq. (3) from 108 simulated steady-state

trajectories each with a total duration 5× 108 steps.

Despite having properties that are “orthogonal” to the
previous examples—featuring a scale-dependent energy
dissipation rate and dissipative cycles becoming hidden
by the lumping—it resembles the same power-law scaling
of the Markovian estimate ṠM ∝ λ−α (red line Fig. 3a)
in fact with the same exponent α ≈ 1 as in Eq. (6). This

shows once more that a power-law scaling of ṠM, and in
particular also the exponent, does not give any indica-
tion about dissipation on different lengths scales. More-
over, the exponent α changes to ≈ 0.9 upon account-
ing for memory via Ṡest

k≥2 (blue line Fig. 3a), and the

lumping yields a 2nd-order semi-Markov process, since
adjacent lumps are connected by exactly one microscopic
transition (see proof in [73]). Accordingly, the numeri-

cal results show Ṡest
1 ̸= Ṡest

2 = Ṡest
3 = Ṡest

4 . The fact that

Ṡest
k≥2 < Ṡ (i.e. equality not reached) is because dissipa-

tive cycles are hidden by the coarse graining.



5

Example 4: Brusselator.—Finally, let us consider the
Brusselator model [76–78] (see Fig. 1d) as in [5], here
with 202500 microscopic states. We perform the coarse
graining as was done in [5], two levels of coarse grain-

ing are highlighted in Fig. 1d. We estimate Ṡ, ṠM, and
Ṡest
k≥2 from 25 simulated stationary trajectories each hav-

ing 109 steps (skipping 109 initial steps). Using Eq. (3)

with k = 1 we infer ṠM that agrees with the results in
[5] (red triangles in Fig. 3b). In particular, we reproduce

the apparent power-law scaling ṠM ∝ λ−α with the same
exponent as in [5], i.e. α ≈ 0.52. Coincidentally, it is of
the same order as the virtual power-law of the tree and
tree-diamond with α ≈ 0.3 (see Appendix C), which in
reality is not a power law at all (see Eq. (9)).

We now account for memory in the time-reversal via
Ṡest
k≥2. The lumped process is apparently 2nd or 3rd order

semi-Markov as Ṡest
2,3 = Ṡest

4 . The fact that Ṡest
k≥2 < Ṡ is

a consequence of dissipative cycles that become hidden
by the coarse graining. Higher-order estimates also dis-
play an apparent power-law scaling albeit with a smaller
exponent Ṡest

≥2 ∝ λ−0.31 for considered ω, κ. However, ac-
cording to previous counterexamples, we must conclude
that these power laws in fact have no implications about
energy dissipation on different length scales.

Interpreting scalings under consistent time reversal.—
An apparent power-law dependence of ṠM on the coarse-
graining scale λ generally has no relation with the mi-
croscopic dissipation mechanisms. However, meaningful
information about the underlying dynamics may still be
inferred from coarse-grained data under consistent time
reversal. More specifically, if we can find an order n such
that Ṡest

n+k = Ṡest
n for any k ≥ 1. If for such n, k we find

that Ṡest
n+k ∝ λ−α for some α > 0, one concludes that the

coarse graining hides dissipative cycles (this is not true

for a scaling of ṠM). If in addition, we have information
supporting a self-similar network structure, we may also
assume that most energy is dissipated on the smallest
and less energy on larger scales.

It is important to emphasize that generally no such
conclusion can be drawn if we observe a coarse-graining
scale independence, i.e. Ṡest

n+k ∝ λ0 for λ > 1. Only if
we observe independence extending to λ = 1 we may
conclude that no dissipative cycles become hidden by the
coarse graining. Extrapolations λ → 1 generally yield
erroneous conclusions about the microscopic dissipation
time scales (for a detailed discussion, see Appendix B).

Conclusion.—Several explicit examples that invali-
date the recently proposed relation between an appar-
ent power-law dependence of Markovian estimates for the
energy dissipation rate ṠM from coarse-grained observa-
tions and the actual dissipation on different length scales
were presented and analyzed. We constructed fractal net-
works with a single dissipative scale and self-similar net-
works with an “inverse energy dissipation cascade” [5],
where most energy is dissipated on the smallest and
less energy on larger scales. Both systems exhibit the
same scaling behavior of the energy dissipation at dif-

ferent scales. The apparent scaling exponent gradually
reduces upon accounting for memory in the dissipation
estimates. The hypothesized power-law scaling [5] has
already been considered in experiment but could not be
observed [79]; our results may explain why not. When no
dissipative cycles become hidden by the coarse graining,
any scale dependence vanishes as soon as the memory
is accounted for exactly in the time-reversal operation
and we can infer the microscopic dissipation. Therefore,
an inverse power-law dependence of the dissipation rate
generally has no implications for scale-dependent energy
dissipation and may simply be an artifact of inconsistent
time reversal in presence of memory. However, it may
still be possible to infer meaningful information about the
microscopic dynamics, e.g. the presence of hidden dissi-
pative cycles, via higher-order dissipation estimators es-
tablished here. These incorporate a consistent time rever-
sal in the presence of memory and, if (and only if) satu-
rated in the order, yield experimentally accessible sharper
and guaranteed lower bounds on dissipation, further high-
lighting the importance and benefits of accounting for
memory in analyzing data from coarse observations.
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Appendix A: Overestimation of Ṡ with insufficient-
order estimators.—While we proved that the saturated-
order estimator always provides a lower bound on the
microscopic entropy production rate, this was not pos-
sible for estimators of insufficient order. It is thus nat-
ural to ask whether a too-low-order estimator may lead
to an overestimation. Indeed, we construct a process in
Fig. 4a where overestimation occurs: The entropy pro-
duction rate of the n > 3 order lumped process is clearly
overestimated with Ṡest

2 . In particular, we see that this
is not an undersampling artifact (occurring for estima-

tors Ṡest
k of higher order k ≥ 8, where the standard de-

viation increases and estimates from a trajectory with
Nsteps = 107 state changes diverge from those inferred
from a trajectory of Nsteps = 109).

While we prove that Ṡest,uncond
k (see SI) is monotone

in k, the estimator Ṡest
k is in particular not, as this ex-

ample shows. However, it is necessary to use—as defined
in Eq. 3—the splittings rather the joint probabilities, so
that we have robustness to overestimation (see SI).

Appendix B : Problematic extrapolation to microscopic
scales.—Assuming that the power-law scaling of dissi-
pation rate truly reflects dissipation on distinct length
scales, one may attempt to extrapolate ṠM ∝ λ−α and
Ṡest
k≥2 ∝ λ−α to microscopic scales, that is, to vanishing

coarse graining λ → 1 (see [5]). In the case of the cycle-
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FIG. 4. (a) 6-state Markov process coarse-grained to process
of order n > 3. The order is at least 3 because the next tran-
sition out of L3 depends on whether we arrived from lump L1

or L4 two state-changes before. Since multiple jumps between
L2 ↔ L3 may have occurred before, the order is in fact higher,
but the influence of these back-and-forth jumps vanishes ex-
ponentially. (b) Entropy production rate estimated with Ṡest

k

as a function of k from trajectories of different length. While
undersampling effects occur for higher orders (red and blue
lines do not agree for k ≥ 8), the overshoot for lower orders
is not an artifact of undersampling.

graph which has a single (i.e. macroscopic) dissipative
length scale this would coincidentally (and conceptually
somewhat paradoxically) yield the exact microscopic re-
sult (compare Eqs. (5) and (6) in the limit λ → 1). In

all other examples, extrapolating ṠM to λ = 1 would
yield a lower bound. This may be useful for bounding
Ṡ from below (the bound ṠM ≤ Ṡ was obtained in [28]).
However, there are strictly self-similar networks (e.g. the
tree and tree-diamond graph) which do not display a
power-law scaling of energy dissipation rate but where
one may nevertheless (erroneously) identify a power law.
It is conceivable that such examples may lead to an over-
estimation of Ṡ. Extrapolated values should thus be in-
terpreted with great care, especially when the underlying
microscopic topology of the network is not known. Simi-
larly, our examples in Fig. 3 show that one must also not
extrapolate apparent power-law scalings of higher-order
estimates Ṡest

k≥2 as these may lead to overestimating Ṡ.

Appendix C: Tree diamond graph.—We now consider
a non-trivially self-similar network with a single dissipa-
tive scale (i.e., the system size; see discussion in [73]) but
multiple (equivalent) dissipative cycles each with a sta-
tionary current Jc (see Fig. 5a). It corresponds to a “tree
diamond” obtained by merging two binary trees of depth
d such that they have the same set of leaves. Every edge
is bidirectional with a rate ∝ ω in + and ∝ κ in − di-
rection, respectively, such that the cumulative transition
rate between each level is ω − κ. This way, the edge en-
tering the root in + direction has rate ω, while the rates
along the remaining edges are split evenly amongst the
branches, (see Fig. 5a). The detailed mathematical con-

struction is described in [73]. The exact Ṡ of the system
in the cycle basis C with 2d basis cycles reads (see proof

d=5

a) b)

FIG. 5. (a) Tree diamond graph of depth d = 5 with lumps
of depth l = 1 (shaded in blue) and depth l = 2 (circled in
dashed red). Transition rates in down (+) and up (−) direc-
tion (cyclic with respect to the thick blue edge) are taken to
be ∝ ω and ∝ κ, respectively, chosen such that the cumulative
transition rates between each level is ω−κ. The self-similarity
becomes obvious upon noticing that each tree diamond con-
sists of multiple smaller tree diamonds. Inset: Four funda-
mental cycles pass through the highlighted subgraph of depth
d = 2. (b) Entropy-production estimates for different coarse-

graining scales; Estimators Ṡest
k provide an exact estimation

of Ṡ for higher orders (k ≥ 2), matching the analytical predic-
tion (yellow line). Ignoring memory leads to a virtual energy
dissipation cascade, which has no implications for dissipation
on different scales. The virtual cascade is actually not even a
power law, but may be mistaken for one.

in [73])

Ṡ =
∑
c∈C

= JcAc =
2d+ 1

n(d)
(ω − κ) ln

(ω
κ

)
. (11)

where n(d) = 2d+1− 1+2d− 1 = 3 · 2d− 2 is the number
of states in a diamond with depth d, and the basis-cycle
current (see [6]) reads Jc = (ω − κ)/n(d)2d.

We lump the network into lumps of depth l < d,
whereby the 2d−l distinct lumps on the “equator” are
treated separately (see Fig. 5b). The Markovian estimate
of such a lumped system is given by (see [73])

ṠM=
ω − κ

n(d)

2d− l + 1

l + 1
ln
(ω
κ

)
d≫l≫1∝ 1

l
∝ 1

ln(λ/3)
, (12)

where λ = n/ns now corresponds, by definition, to the
average lump size. As in the tree graph, there is in fact
strictly no power-law scaling of ṠM in λ despite a per-
fectly self-similar network structure. Moreover, as shown
in Fig. 5b, one may in practice easily identify a power-law
∼ λ−0.33 in agreement with [5]. As in the tree graph, the
microscopic system has a single dissipative scale, further
underscoring that an observed power law has no impli-
cations for energy dissipation on distinct scales and may
not even be a power law. It is an artifact of inconsistent
time reversal in the presence of memory.

The lumping yields a 2nd-order semi-Markov process
and no dissipative cycles become hidden. By accounting
for memory via Ṡest

k≥2 we recover the microscopic result



7

(see derivation in[73])

Ṡest
2 =

ω − κ

n(d)

[
2
d− l

l + 1
ln

(
Φ△

+|+

Φ△
−|−

)
+ln

(
Φ♢

+|+

Φ♢
−|−

)]
= Ṡ,

(13)

where Φ△
±|± is the conditional probability for a transi-

tion between two lumps (at given coarseness) in the ±

direction given that the preceding step occurred in the
± direction in the top and bottom part of the network
(the factor of two is due to symmetry), and Φ♢

±|± the

corresponding conditional probability for a transition in
the ± direction in any of the equatorial lumps. By the
last equality consistent time reversal (and thus thermo-
dynamics) removes the artefactual scaling behavior.
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I. NOTATION

Throughout we use the following conventions:

• For n ∈ N, we define [n] ≡ {1, . . . n}.

• L corresponds to the generator of the considered underlying/microscopic Markov process.

• For a graph G, V(G) denotes its vertex set.

• We omit kB and the temperature here for readability.

II. ANALYSIS OF HIGHER-ORDER ESTIMATORS

In this section, we show first that the defined higher-order estimators (saturated in the order) applied to the observed

(lumped) dynamics always provide a lower bound to the true entropy production rate Ṡ of the unobserved (detailed)
Markov process.

We then show that using a higher-order estimator beyond the intrinsic (semi-)Markov order of observed process is
not “harmful”, i.e. that a (k + n)-th order estimator for a k-th order process yields the same result for any n ∈ N0.
The higher-order estimators are thus robust against over-estimation.

A. Estimator yields lower bound on microscopic Ṡ from observed dynamics

Theorem 1. For an observed process Γ̂ of (semi-)Markov order k, the estimator satisfies

Ṡ(Γ) ≥ Ṡest
k (Γ̂),

i.e. the estimator recovers from the coarsely observed, lumped dynamics a lower bound on the entropy production rate
of the microscopic process.

The proof of Thm. 1 requires a careful technical treatment. The reason for this is as follows: While the dynamics
evolve in continuous time, the history is manifested in the discrete state sequence—e.g., for a k-th order process, we
need a tuple of k+1 observed mesostates, say γ̂k. Suppose for now that we fix the time window of observation to [0, t].
But the number of microscopic trajectories occurring in [0, t] corresponding to the mesoscopic observation γ̂k, is in
general infinite. That is, in general there can be any number of unobserved microscopic trajectories γ corresponding
to the observation γk. Fixing one such γ, its length m ≡ |γ| (number of microscopic states) is unbounded. This is
because there can be arbitrarily many unobservable microscopic transitions within any observable lumped mesostate.
To obtain the probability that such a microscopic γ occurs in time [0, t], we need an m-fold convolution of the
exponential microscopic waiting times. That is, we have m many integrals to convolve over the time span [0, t].
With this in mind, we recall that the entropy production rate (for the microscopic process) is defined as

Ṡ[Γt] ≡ lim
t→∞

1

t
E
[
ln

(
P [Γt]

P [θΓt]

)]
. (S1)

Motivation and need for a measure-theoretic approach If we coarse-grain the above from the microscopic dynamics
Γt to the mesoscopic dynamics Γ̂t we need an expression for the probability of all microscopic γ mappings to a
particular mesoscopic γ̂k. One may then try to use the log-sum inequality on the embedded Markov chain. However,
as described above, finding an expression for the probability of all microscopic γ mapping to a particular mesoscopic
γ̂k involves an infinite sum over an infinite number of integrals over the time span [0, t]. Further, we must only capture
microscopic trajectories of length t in this probability. After finding such an expression, one would have to take the log
ratios etc. and divide by t. Afterwards, evaluating the limit t → ∞ of this complicated object would still be required,
which is technically very hard. Such an approach was attempted for k ≤ 2 in ref. [1]. However, the mathematical
proof therein is not sound (see eqn. (41) and (50) therein); One must not simply replace the upper boundary in each
of the infinitely many integrals entering the convolution with “∞” and simply let the time go to infinity without
controlling the behavior the unbounded-fold integral. In particular, when replacing the t → ∞ limit by the number
of discrete jumps going to infinity, one has to carefully consider how these quantities interdepend and scale.

Here, we present a proof of Theorem 1 for any k which is guaranteed to be consistent with Eq. (S1). To do so,
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we use a measure-theoretic approach. The key point is that once this framework has been established, we can work
directly with measures and not with densities which already for fixed k may only be expressed by an infinite number
of integrals—an approach that would become extremely hard (at least) when evaluating the limit t → ∞.

Proof of Theorem. 1. . We first set up the probability space we are working in, then mathematically define ”lumping”,
and finally work in the probability space under lumping.

1. Filtered measure space

We consider continuous-time discrete-space Markov Chains. Let E be the discrete state space of the chain. We
make the (”thermodynamic consistence”) assumption:

Assumption 1. A state transition u → v has positive probability iff v → u does, for any u, v ∈ E.

Our measure space is

(Ω,F ,P), (S2)

where Ω ≡ D[0,∞) ≡ D(E × [0, t)) is the path space of càdlàg functions from [0,∞) to E. Let ξ ≡ P(E) be the
power set of E, such that (E, ξ) is a measurable space. The sigma-algebra F is on the path space defined as follows:
For time s ∈ [0,∞) consider the evaluation mapping

πs : D[0,∞) → E (S3)

πs(ω) ≡ ω(s) for a path ω ∈ D[0,∞), (S4)

and note that (πs : s ∈ [0,∞)) is a family of random variables. Then F is the σ-algebra generated by the family, i.e.
F is the smallest σ-algebra such that for each s ∈ R≥0, πs is ξ-measurable:

∀l ∈ ξ : {ω ∈ D[0,∞) : πs(ω) ∈ l} ∈ F . (S5)

Ft is the filtration generated from that family of random variables:

∀l ∈ ξ : {ω ∈ D[0,∞) : πs(ω) ∈ l} ∈ Fs. (S6)

In the following, we consider the resulting filtered probability space

(Ω = D(E × [0,∞)),F , (Ft)t≥0,P). (S7)

This induces the family of probability measures (Pt)t≥0 with

Pt : Ft → [0, 1] (S8)

∀F ∈ Ft : Pt[F ] ≡ P [F ] . (S9)

2. Time Reversal

For a fixed time t ∈ [0,∞), we can define the measure of the reversed path Pθ
t as

Pθ
t (ω) ≡ Pt(θω) (S10)

where θω(s) ≡ ω(t− s) is the reversed path (S11)

We note here that we take for θω a modification that yields a càdlàg function.
We define the Radon-Nikodym derivative of Pt with respect to Pθ

t :

Xt(ω) ≡
dPt

dPθ
t

(ω) (S12)

and note that this exists since by Assumption 1 (i.e. thermodynamic consistency), we have absolute continuity:

Pt ≪ Pθ
t (we even equivalence. i.e. Pθ

t ≪ Pt and hence Pθ
t ∼ Pt). By the Radon-Nikodym-Theorem, the function

dPt

dPθ
t

(S13)
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exists indeed, and is a Ft-measurable function Ω → [0,∞). Note that we may have Pt(ω) = 0 (and hence Pθ
t (ω) = 0)

for some realization ω. This may be avoided (w.l.o.g.) either by limiting the integration to the support of Pt(ω) (and

by equivalence to that of Pθ
t ) or by setting d Pt

d Pθ
t
(ω0) = 1 for all samples ω0 with Pt(ω0) = 0. For notational convenience

we will therefore suppress this point in the notation. Note also that we do not have issues with negativity, since
measures are always non-negative, so the Radon-Nikodym derivative is as well always non-negative.

3. Lumping

In the lumped setting we cannot observe the full state space E, but rather partitions thereof. This means, the
measurable space that the evaluation mapping maps onto is only

(E, ξ̂). (S14)

Notably, E remains the same as in the microscopic setting, but we now have a sub-sigma-algebra: ξ̂ ⊂ ξ = P(E)

contains only the partial information we observe. We call the filtration induced by lumping on path space as F̂t.
Note that F̂t ⊆ Ft. This shows directly that any F̂t-measurable random variable is also Ft-measurable, as desired; A
quantity expressible via the lumped dynamics can in particular be determined if we observe all the microscopic
dynamics.

Observation 1. We note that our sigma algebras behave “nicely” under time reversal. Since the lumping operation
and time-reversal (by the construction of the lumping) commute, we have that both P and Pθ work on the same sigma-

algebra, so in particular on the same measurable space (D, F̂T ), so that P ≪ Pθ is well defined, an the Radon Nikodym
derivative is well defined.

4. Framework

Let us denote the lumps in state space by S1, . . . , So (o being the number of lumps). These lumps induce the

subfiltration F̂t as described above. We define the index set Sl as all sequences in [o]l without repetition in subsequent
elements

Sl ≡ {(i1, . . . , il) ∈ [o]l | ∀1 ≤ j < n : ij ̸= ij+1}.

This ensures that we indeed consider only observable state changes; since we are in continuous time dynamics,
microscopic state changes within the same mesostate (i.e. without changing the mesostate) are invisible to the observer
and simply prolong the residence time in the mesostate).

We consider the resulting probability space (Ω,F , (Ft)t,P) and (F̂t)t. For ω ∈ Ω we define

n̂t(ω) ≡ #meso states in time [0, t] in path ω.

Note that n̂t is F̂t-measurable. We have (recall the suppressed convention on the support of Pt)∫
Ω

ln

(
dPt

dPθ
t

)
dPt

=

∫
Ω

dPt

dPθ
t

ln

(
dPt

dPθ
t

)
dPθ

t . (by Radon-Nikodym, noting that Pt ≪ Pθ
t )

We now consider the following elements of F̂t :

(Si1 , . . . , Sim)∗t ≡ {ω ∈ Ω : n̂t(ω) ≤ m ∧ ∃s < t s.t. ω(0) ∈ Si1 , . . . , ω(s) ∈ Sim} ∈ F̂t

and

(Si1 , . . . , Sil)t ≡ {ω ∈ Ω : n̂t(ω) = l ∧ ω(0) ∈ Si1 , . . . , ω(t) ∈ Sil} ∈ F̂t

Note that for any m ∈ N and t ∈ R+, the set

{(Si1 , . . . , Sim)∗t |(i1, . . . , im) ∈ Sm}
⋃{

(Si1 , . . . , Sil)t|1 ≤ l < m ∧ (i1, . . . , il) ∈ Sl
}
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forms a partition of Ω. We thus have

=

∫
Ω

∑
(i1,...,im)

1(Si1
,...,Sim )∗t

dPt

dPθ
t

ln

(
dPt

dPθ
t

)
dPθ

t +

∫
Ω

∑
l<m

(i1,...,il)

1(Si1
,...,Sil

)t

dPt

dPθ
t

ln

(
dPt

dPθ
t

)
dPθ

t

=
∑

(i1,...,im)

∫
(Si1 ,...,Sim )∗t

dPt

dPθ
t

ln

(
dPt

dPθ
t

)
dPθ

t︸ ︷︷ ︸
(I)

+
∑
l<m

(i1,...,il)

∫
(Si1 ,...,Sil

)t

dPt

dPθ
t

ln

(
dPt

dPθ
t

)
dPθ

t

︸ ︷︷ ︸
(II)

We treat both terms separately. For (I), we observe that it is of the form ϕ(Xt) for the Radon-Nikodym derivative
Xt ≡ d Pt

d Pθ
t

(I) =
∑

(i1,...,im)

∫
(Si1

,...,Sim )∗t

dPt

dPθ
t

ln

(
dPt

dPθ
t

)
dPθ

t

≡
∑

(i1,...,im)

∫
(Si1 ,...,Sim )∗t

ϕ(Xt)dPθ
t

We change the measure in order to use Jensen’s inequality

P̃
θ

t,(Si1
,...,Sim )∗t

(ω) ≡ 1

Pθ
t [(Si1 , . . . , Sim)∗t ]

Pθ
t (ω),

yielding

=
∑

(i1,...,im)

Pθ
t [(Si1 , . . . , Sim)∗t ]

∫
(Si1 ,...,Sim )∗t

ϕ(Xt)dP̃
θ

t

≥
∑

(i1,...,im)

Pθ
t [(Si1 , . . . , Sim)∗t ]ϕ

(∫
(Si1

,...,Sim )∗t

XtdP̃
θ

t

)
(Jensen)

=
∑

(i1,...,im)

Pθ
t [(Si1 , . . . , Sim)∗t ]

∫
(Si1

,...,Sim )∗t

dPt

dPθ
t

dP̃
θ

t ln

(∫
(Si1

,...,Sim )∗t

dPt

dPθ
t

dP̃
θ

t

)
(def. of ϕ(·) and of Xt)

=
∑

(i1,...,im)

∫
(Si1

,...,Sim )∗t

dPt

dPθ
t

(ω)dPθ
t ln

(
1

Pθ
t [(Si1 , . . . , Sim)∗t ]

∫
(Si1

,...,Sim )∗t

dPt

dPθ
t

(ω)dPθ
t

)
(def. of P̃

θ

t,...)

=
∑

(i1,...,im)

Pt[(Si1 , . . . , Sim)∗t ] ln

(
Pt[(Si1 , . . . , Sim)∗t ]

Pθ
t [(Si1 , . . . , Sim)∗t ]

)
. (by Radon-Nikodym, and since dPt ≪ dPθ

t )

While the above holds for any m ∈ N, t ∈ R+, we take m ≡ m(t). We specify the precise dependence later.
We note that since the underlying microscopic process is Markovian with discrete state space, we can describe the

observed discrete sequence of lumps. This is exactly the embedded chain of the lumped process (which is non-Markov).
When converting from a continuous time observation to the embedded chain observation—which is intrinsically discrete
in time—we need to pay attention that the observed time interval was large enough. In particular, for a growing
length m of the observed embedded Markov chain, the continuous in time observation interval [0, t) needs to grow
sufficiently fast for enough jumps to be observed. It cannot grow too fast either, since otherwise we discard too many
discrete jumps, and the lower bound we would get would converge to 0.

We denote by Pembed[A] the probability of the embedded chain to observe discrete (lump) state A. This is well-

defined, since the underlying microscopic Markov process is in its invariant measure. We further denote by Pembed[C |
(A,B)] the probability of the embedded chain to observe state C after observing the sequence (A,B). Well-definedness
thereof draws again from the invariance of the underlying microscopic processes. Note that the embedded process will
have in general memory. However, once we have reached the (semi-)Markov order of the process, say k, it suffices to
condition on the past k states only. That is, for any m > k

Pembed[Sim | (Si1 , Si2 , . . . , Sim−1
)] = Pembed[Sim | (Sim−k

, Sim−k+1
, . . . , Sim−1

)]
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for processes of order at most k.
We may combine these observations to obtain for a process of order k

Pt[(Si1 , . . . , Sim(t))
∗
t ]

=Pt[(Si1 , . . . , Sim(t))
∗
t | n̂(t) ≥ m(t)]P [n̂(t) ≥ m(t)]

=Pembed[(Si1 , . . . , Sim(t))]P [n̂(t) ≥ m(t)] (using that the process is initiated the invariant measure)

=Pembed[Si1 ]P
embed[Si2 | Si1 ]P

embed[Si3 | (Si1 , Si2)] · · ·P
embed[Sim(t) | (Si1 , . . . Sim(t)−1

)]

× P [n̂(t) ≥ m(t)]

=Pembed[Si1 ]P
embed[Si2 | Si1 ]P

embed[Si3 | (Si1 , Si2)] · · ·P
embed[Sim(t) | (Sim(t)−k

, . . . Sim(t)−1
)]

× P [n̂(t) ≥ m(t)] . (by assumption, the lumped process has order k)

Considering the log-ratio, this allows us to write

ln

(
Pt[(Si1 , . . . , Sim)∗t ]

Pθ
t [(Si1 , . . . , Sim)∗t ]

)
= ln

(
Pt[(Si1 , . . . , Sim(t))

∗
t | n̂(t) ≥ m(t)]P [n̂(t) ≥ m(t)]

Pθ
t [(Si1 , . . . , Sim(t))

∗
t | n̂(t) ≥ m(t)]P [n̂(t) ≥ m(t)]

)

= ln

(
Pembed[(Si1 , . . . , Sim(t))]

Pembed[(Sim(t) . . . , Si1)]

)

= ln

(
Pembed[Si1 ]

Pembed[Sim(t)
]

)
+ ln

(
Pembed[Si2 | Si1 ]

Pembed[Sim(t)
| Sim(t)−1

]

)
+ · · ·

+ ln

(
Pembed[Sim(t)

| (Sim(t)−k
, . . . , Sim(t)−1

)]

Pembed[Si1 | (Sik+1
, . . . , Si2)]

)
, (S15)

where each summand in the last term captures more and more memory up to order k.

We now note that weighting this sum by Pt[(Si1 , . . . , Sim(t)
)∗t ] and summing over all tuples (i1, . . . , im(t)) corresponds

to taking an expectation. Since we are in a (non-eq.) steady state system, we can align the indices for the summands
in Eq. (S15). We therefore obtain

1

t

∑
(i1,...,im(t))

Pt[(Si1 , . . . , Sim(t)
)∗t ] ln

(
Pt[(Si1 , . . . , Sim(t)

)∗t ]

Pθ
t [(Si1 , . . . , Sim(t)

)∗t ]

)

=
1

t
P [n̂(t) ≥ m(t)]

{ ∑
(i1,i2)

Pembed[(Si1 , Si2)] ln

(
Pembed[(Si2 | Si1)

Pembed[(Si1 | Si2)

)
+ . . .

+ (m(t)− k)
∑

i1,...,ik+1

Pembed[(Si1 , . . . , Sik+1
)] ln

(
Pembed[Sik+1

| (Si1 , . . . , Sik)]

Pembed[Si1 | (Sik+1
. . . , Si2)]

)}
(S16)

To bound the probability of making less than m(t) lump jumps by time t, that is P[n̂(t) < m(t)], from above, we
observe that jumps between lumps have a weighted exponential density. This is a narrow distribution in the sense
of Refs. [2, 3]. For bounding, we consider a system consisting of only copies of the ”slowest lump” (i.e. the lump
with the longest dwell time prior to an exit another lump from any possible entry point). Let us denote its counting
process as N(t). Then, we have (by construction) for any t

P [n̂(t) < m(t)] ≤ P [N(t) < m(t)]

We further have by [2, 3] for large t

E [N(t)] =
t

E [τslow]
+O(1)

Var [N(t)] =Ct+O(1)
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for a suitable constant C, where E [τslow] is the expected waiting time between changes of N(t) (that is, between
jumps of the slowest lump process). Choosing now m(t) = E [N(t)]− t2/3 (recall that we are free to choose), we have

P [N(t) < m(t)]

=P
[
E [N(t)]−N(t) > t2/3

]
≤P

[
|N(t)− E [N(t)]| > t2/3

]
≤Ct+O(1)

t4/3
→ 0 as t → ∞

where we used Chebyshev’s inequality in the last step. Here, m(t) = t
E[τslow] − o (t). If we instead consider a chain

consisting of only the fastest lumps, we would have m(t) = t
E[τfast] − o (t). Thus, there is a constant τ such that

E [τfast] < τ < E [τslow], so that with m(t) = t
τ − o (t) we have convergence. For the particular choice of τ , note

that n̂(t) will, by the central limit theorem (recall that we have a narrow distribution), concentrate around its mean.
Therefore, the constant τ will be the average time per lump.

Returning to Eq. (S16) we have with m(t) = t
τ − t2/3:

=P [n̂(t) > m(t)]

[
1

t


∑

(i1,i2)

Pembed[(Si1 , Si2) ln

(
Pembed[(Si2 | Si1)

Pembed[(Si1 | Si2)

)
] + . . .

︸ ︷︷ ︸
k − 1 many terms


+

m(t)− k

t

∑
i1,...,ik+1

Pembed[(Si1 , . . . , Sik+1
)] ln

(
Pembed[Sik+1

| (Si1 , . . . , Sik)]

Pembed[Si1 | Sik+1
. . . , Si2)]

)]

= P [n̂(t) > m(t)]︸ ︷︷ ︸
→1 as discussed above

[
O
(
t−1
)
+

(
1

τ
+O

(
t−1/3

))]
∑

i1,...,ik+1

Pembed[(Si1 , . . . , Sik+1
)] ln

(
Pembed[Sik+1

| (Si1 , . . . , Sik)]

Pembed[Si1 | Sik+1
. . . , Si2)]

)

→1

τ

∑
i1,...,ik+1

Pembed[(Si1 , . . . , Sik+1
)] ln

(
Pembed[Sik+1

| (Si1 , . . . , Sik)]

Pembed[Si1 | Sik+1
. . . , Si2)]

)
.

This is exactly our estimator. Since we have for term (II), where we can apply the same measure-theoretic steps,
that

(II) =
∑
l<m

(i1,...,il)

∫
(Si1

,...,Sil
)t

dPt

dPθ
t

ln

(
dPt

dPθ
t

)
dPθ

t (definition of (II))

≥
∑
l<m

(i1,...,im)

Pt[(Si1 , . . . , Sil)t] ln

(
Pt[(Si1 , . . . , Sil)t]

Pθ
t [(Si1 , . . . , Sil)t]

)
(by the analogous measure-theoretic arguments as for (I))

=
1

2


∑
l<m

(i1,...,im)

[Pt[(Si1 , . . . , Sil)t]− Pt[(Si1 , . . . , Sil)t]] ln

(
Pt[(Si1 , . . . , Sil)t]

Pθ
t [(Si1 , . . . , Sil)t]

)
≥0. (S17)

We can thus conclude that
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Ṡ ≡ lim
t→∞

1

t

∫
Ω

ln

(
dPt

dPθ
t

)
dPt

≥1

τ

∑
i1,...,ik+1

Pembed[(Si1 , . . . , Sik+1
)] ln

(
Pembed[Sik+1

| (Si1 , . . . , Sik)]

Pembed[Si1 | Sik+1
. . . , Si2)]

)
=Ṡest

k ,

so that our k-th order estimator provides—given that the order of the process is k—always a guaranteed lower
bound.

B. Robustness of the estimator

What happens if the estimator we apply to the observed mesoscopic trajectories, Ṡest
k has a higher order k > n

than the memory of the mesoscopic process n?

It turns out that the estimator is robust against overestimation, meaning that:

Theorem 2 (Robustness against overestimation). For an observed process (Γ̂t)t∈R+ of (semi-)Markov order n, the
estimator satisfies

Ṡ(Γ) ≥ Ṡest
k (Γ̂) ∀k ≥ n.

We will prove Theorem 2 by first showing

Lemma 1. If (Γ̂t)t∈R+ is a n-th order semi-Markov process then Ṡest
k = Ṡest

n , ∀k ≥ n.

For proving this Lemma it suffices to work in discrete time. This allows us to make the proof accessible without
using measure theory. To that end, we use the simpler notation from the Letter (around Eq. (3) therein) and recall
that γ̂k is a particular tuple of k + 1 consecutively observed states. We further introduce notation to work on the
process’s embedded Markov chain: For a trajectory Γt ≡ (xτ )0≤τ≤t, we denote the random variables of the embedded

Markov chain by X(1), X(2), · · · . For readability purposes, we access the i-th embedded Markov chain state of γ̂k by

γ̂
(i)
k for i ∈ [k + 1] and index a sequence of states by γ̂

(i:j)
k ≡ (γ

(i)
k , γ

(i+1)
k , . . . , γ̂

(j)
k ). If i > j, the index sequence is

decreasing. We use the same indexing for the random variables. We further denote by

P
[
γ̂
(k+1)
k | γ̂(1:k)

k

]
≡ P

[
X(k+1) = γ̂

(k+1)
k | X(1:k) = γ̂

(1:k)
k

]
= P

[
X(k+2) = γ̂

(k+1)
k | X(2:k+1)γ̂

(1:k)
k

]
,

where the first equality is a definition, and the second equality demonstrates the shift-invariance, which holds since we
are operating in the steady state and since the underlying process is in continuous time (thus, we get no periodicity
problems). If we refer to the entire sequence of k + 1 discrete states of γ̂k, we omit indices.

We note that Lemma 1 and Corollary 2 have been argued for in discrete time systems [4]. We provide a first-
principles-based proof and thereby (i) extend to our setting of continuous-time Markov Chains and (ii) prove further
properties of the estimator. In particular the proof of a lower-bound for continuous time systems in non-trivial, as
should be clear from Section IIA and Ref. [1].
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Proof of Lemma 1. Suppose (Γ̂t)t∈R+ is a n-th order semi-Markov process. Let k ≥ n. By definition, we have

Ṡest
k (Γ̂t) ≡

1

T

∑
γ̂k

P [γ̂k] ln
P
[
γ̂
(k+1)
k | γ̂(1:k)

k

]
P
[
γ̂
(1)
k | γ̂(k+1:2)

k

] (by definition)

=
1

T

∑
γ̂k

P [γ̂k] ln
P
[
γ̂
(k+1)
k | γ̂(k−n+1:k)

k

]
P
[
γ̂
(1)
k | γ̂(n+1:2)

k

] (n-th order process)

=
1

T

∑
γ̂k

P [γ̂k] lnP
[
γ̂
(k+1)
k | γ̂(k−n+1:k)

k

]
− 1

T

∑
γ̂k

P [γ̂k] lnP
[
γ̂
(1)
k | γ̂(n+1:2)

k

]
=

1

T

∑
γ̂
(k−n+1:k+1)
k

P
[
γ̂
(k−n+1:k+1)
k

]
lnP

[
γ̂
(k+1)
k | γ̂(k−n+1:k)

k

]
− 1

T

∑
γ̂
(1:n+1)
k

P
[
γ̂
(1:n+1)
k

]
lnP

[
γ̂
(1)
k | γ̂(n+1:2)

k

]
. (marginalisation)

Using that the embedded Markov chain is in steady state and hence shift invariant, we may do a change of variable:

=
1

T

∑
γ̂
(1:n+1)
k

P
[
γ̂
(1:n+1)
k

]
lnP

[
γ̂
(n+1)
k | γ̂(1:n)

k

]
− 1

T

∑
γ̂
(1:n+1)
k

P
[
γ̂
(1:n+1)
k

]
lnP

[
γ̂
(1)
k | γ̂(n+1:2)

k

]

=
1

T

∑
γ̂
(1:n+1)
k

P
[
γ̂
(1:n+1)
k

]
ln

P
[
γ̂
(n+1)
k | γ̂(1:n)

k

]
P
[
γ̂
(1)
k | γ̂(n+1:2)

k

]
= Ṡest

n (Γ̂t)

We are now in a position to prove the robustness theorem.

Proof of Theorem 2. For an observed process (Γ̂t)t∈R+ of order n and estimator of order k ≥ n, we have for the
microscopic entropy production rate

Ṡ(Γ) ≥Ṡest
n (Γ̂t) (by Theorem 1)

=Ṡest
k (Γ̂t). (by Lemma 1)

C. Positivity and behavior for increasing order

We recall that the estimator in the main text Ṡest
k is the expectation of the log splitting probability ratios. We

here connect this to the expectation of the simple path probability ratios. To that end, we define the k-th order
unconditional entropy production rate estimator

Ṡest,uncond
k ≡ 1

T

∑
γ̂k

P [γ̂k] ln
P [γ̂k]

P [θγ̂k]
. (S18)

The following result shows that, irrespective of the order of the (semi-)Markov process, the unconditional estimator
can be expressed as the sum of conditional estimators (that is, as a sum of the estimators with splitting probabilities
from the main text). That is

Lemma 2. For all n > 0:

Ṡest,uncond
n =

n∑
l=1

Ṡest
l .
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Proof. By using

P [γ̂k] = P
[
γ̂
(k+1)
k | γ̂(1:k)

k

]
P
[
γ̂
(k)
k | γ̂(1:k−1)

k

]
· · ·P

[
γ̂
(2)
k | γ̂(1)

k

]
P
[
γ̂
(1)
k

]
,

and the corresponding identity for the time reversal, we obtain

Ṡest,uncond
k =

1

T

∑
γ̂k

P [γ̂k] ln
P
[
γ̂
(k+1)
k | γ̂(1:k)

k

]
P
[
γ̂
(k)
k | γ̂(1:k−1)

k

]
· · ·P

[
γ̂
(2)
k | γ̂(1)

k

]
P
[
γ̂
(1)
k

]
P
[
γ̂
(1)
k | γ̂(k+1:2)

k

]
P
[
γ̂
(2)
k | γ̂(k+1:3)

k

]
· · ·P

[
γ̂
(k)
k | γ̂(k+1)

k

]
P
[
γ̂
(k+1)
k

]
= Ṡest

k + Ṡest
k−1 + · · ·+ Ṡest

1 +
1

T

∑
γ̂k

P [γ̂k] ln
P
[
γ̂
(1)
k

]
P
[
γ̂
(k+1)
k

]
︸ ︷︷ ︸

0

=

k∑
l=1

Ṡest
l

By choosing n = 1 in Lemma 2, we get the following corollary, which is often implicitly used for Markov processes:
In that case, ṠM is some times defined with splitting probabilities and other times with length-2 path probabilities,
both of which are equivalent:

Corollary 1. For processes of any order, we have

Ṡest
1 = Ṡest,uncond

1 .

Importantly, this identity is far from true for orders larger than 1. This difference can be directly quantified:

Corollary 2. For processes of any order and for every k ≥ 2 we have

Ṡest
k = Ṡest,uncond

k − Ṡest,uncond
k−1 .

Further, it is straightforward to see that Ṡest,uncond
k is non-negative by the following presentation:

Ṡest,uncond
k =

1

2T

∑
γ̂k

(P [γ̂k]− P [θγ̂k]) ln
P [γ̂k]

P [θγ̂k]
≥ 0, (S19)

since every summand is non-negative. Non-negativity of Ṡest requires a bit more work:

Corollary 3. For processes of any order and for every k ≥ 1 we have

Ṡest
k ≥ 0

.

Proof. The proof for k = 1 follows trivially from Ṡest,uncond
1 ≥ 0.

For k ≥ 2, we have

Ṡest
k = Ṡest,uncond

k − Ṡest,uncond
k−1 (by Corollary 2)

=
1

T

∑
γ̂
(1:k)
k

∑
γ̂
(k+1)
k

P [γ̂k] ln
P [γ̂k]

P [θγ̂k]
− Ṡest,uncond

k−1 (by Definition of Ṡest,uncond
k )

≥ 1

T

∑
γ̂
(1:k)
k

P
[
γ̂
(1:k)
k

]
ln

P
[
γ̂
(1:k)
k

]
P
[
θγ̂

(1:k)
k

] − Ṡest,uncond
k−1 (log-sum inequality)

= Ṡest,uncond
k−1 − Ṡest,uncond

k−1 = 0,

implying the corollary.
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Together with Corollary 2, this allows for a stronger statement about the unconditional estimator: Ṡest,uncond
k is

not only non-negative, but also non-decreasing in k:

Corollary 4. For processes of any order and for every k ≥ 1 we have

Ṡest,uncond
k ≥ Ṡest,uncond

k−1 .

We were careful in stating in the corollaries that their scope are processes of any order. In particular, the uncon-

ditional estimator Ṡest,uncond
k is always non-decreasing in k. Ṡest

k , however, has been shown to stay constant once the

underlying process’s order, say n, has been reached (Lemma 1). The change of Ṡest
k for k < n , however, remains

unclear so far. This is equivalent to the “change-of-change” i.e. to a discrete 2nd order derivative version of Ṡest,uncond
k

(by Lemma 2). Interestingly, as we show in the Appendix to the main Letter, no general statement is possible: Ṡest
k

can increase as well as decrease before converging at k ≥ n.

III. SPLITTING PROBABILITIES IN LUMPED CYCLE GRAPH Cn

In this section, we determine the splitting probabilities in the lumped cycle graph via the Laplace transform.
Consider the graph depicted in Fig. 1a in the Letter, that is, a cycle graph Cn of n states and with n/λ ∈ N many
lumps of size λ ∈ N. We focus, without loss of generality (w.l.o.g.), on the first lump. For state i ∈ [λ], we have the
following system of λ coupled differential equations

dpi
dt

= −(ω + κ)pi + 1i>1ωpi−1 + 1i<nκpi+1, (S20)

with absorbing boundaries

dpλ+1

dt
= ωpλ,

dpn
dt

= κp1. (S21)

In Laplace space (p̃(s) ≡
∫∞
0

p(t) exp(−st)dt), we obtain


s+ ω + κ −κ

−ω s+ ω + κ −κ
. . .

. . .
. . .

−ω s+ ω + κ −κ
−ω s+ ω + κ




p̃1(s)
p̃2(s)
...
...

p̃λ(s)

 =


p1(0)
p2(0)
...
...

pλ(0)

 . (S22)

Denoting the tridiagonal matrix in Eq. (S22) by M(s) and by pj|i(t) the probability of having reached state j by
time t given that we started in state i, we have for the ratio of splitting probabilities

Φ+|+

Φ−|−
=

limt→∞ pl+1|1(t)

limt→∞ pn|λ(t)
(S23)

=
lims→0 s · p̃λ+1|1(s)

lims→0 s · p̃n|λ(s)
(finite value theorem)

=
lims→0 ω · p̃λ|1(s)
lims→0 κ · p̃1|λ(s)

(by Eq. (S21))

=
ω · ⟨λ| lims→0 M

−1(s) |1⟩
κ · ⟨1| lims→0 M−1(s) |λ⟩

(by Eq. (S22))

=
(ω
κ

)λ
, (S24)

where the last step follows since we have for the tridiagonal Toeplitz matrix M(0) that

[
M(0)−1

]
λ,1

[M(0)−1]1,λ
=
(ω
κ

)λ−1

.
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A. Note on the waiting time distribution

Let us denote the waiting time distribution from the current lump in direction u given that the preceding transition
was in direction v (u, v ∈ {+,−}) with Ψu|v(t). By definition, we have the identity

lim
t→∞

Ψu|v(t) = Φu|v(t). (S25)

From Eqs. (S20) together with (S21) we can determine the Laplace-transformed waiting-time distribution as

Ψ̃+|+(s) = p̃l+1|1(s) (S26)

=
ω

s
⟨λ|M−1(s) |1⟩ . (S27)

For instance, with λ = 3, we obtain

Ψ̃+|+(s) =
ω3

poly(s)
, (S28)

with poly(s) = s(s+ κ+ ω)
(
(s+ κ)2 + 2sω + ω2

)
, which has roots

s1 = 0, s2 = −(κ+ ω), (S29)

s3 = −(κ+ ω)−
√
2κω, s4 = −(κ+ ω) +

√
2κω. (S30)

Using Cauchy’s residue theorem, we can invert Ψ̃+|+(s) back to time domain

Ψ+|+(t) = ω3
4∑

i=1

1
d
dspoly(s)|s=si

exp(si · t). (S31)

It only remains to plug the roots si in Eqs. (S29)-(S30) into Eq. (S31). The result is a tedious linear combination of
four exponentials (of which one is constant). The result is Ψ+|+(t) for ω = 3, κ = 2 is shown in Fig. S1 (continuous
blue line) along with results from simulations (orange dots). The waiting-time distribution is clearly non-exponential,
directly contradicting the assumption of Markovian dynamics on the lumped state space that is made in [5] implicitly
in using the Markovian dissipation estimate.

a) b)

FIG. S1. Highly non-exponential waiting time density Ψ+|+(t) for the lumped cycle graph with lump size λ = 3 and parameters
ω = 3, κ = 2 normalized by the splitting probability: (a) Distribution functions where the analytical result (blue line) matches
the simulation (dotted orange line). While the slowest timescale is exponential (red dashed line), the waiting time density is
not. (b) Probability density functions in log-log scale. The exponential, slowest time scale can be seen as a cut-off (dashed red)
of the non-exponential waiting time density.

For the calculation of the waiting time distribution in the reverse direction, Ψ−|−(t), we proceed analogously. In
particular, we note that the polynomial is the same, hence its roots and derivative are equal, and the only difference
is the prefactor

Ψ−|−(t) = κ3
4∑

i=1

1
d
dspoly(s)|s=si

exp(si · t). (S32)
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We hence have that the conditional waiting time distribution is equal in both directions

Ψ+|+(t)

Φ+|+
=

Ψ−|−(t)

Φ−|−
, ∀t ∈ R+. (S33)

Thus, in particular, their Kullback-Leibler divergence vanishes DKL

[
Ψ+|+(t)

Φ+|+

∥∥∥∥ Ψ−|−(t)

Φ−|−

]
= 0, so that waiting times

do not contribute to the entropy production rate, which is in turn fully captured by the splitting probabilities [1].

IV. TREE GRAPH

We now consider the lumped tree of (edge) depth d with lumps of depth l. Let the underlying microscopic graph
GT be constructed as follows.

A. Construction of tree graph

Consider a tree graph of depth d, i.e., vertices are on levels U0, . . . , Ud, where level i contains |Ui| = 2i vertices.
For i < d, each vertex v ∈ Ui has two offsprings x, y ∈ Ui+1 with rates Lxv = Lyv = ω/2i+1 in + direction and
Lvx = Lvy = κ/2i+1 in − direction. Vertices in the bottom level v ∈ Ud have edges of rate ω/2d towards the root, and
rate κ/2d from the root to each v. We refer to Fig. 1a in the Letter. The steady state is the uniform distribution as
can be readily seen from the generator L.

B. Microscopic dynamics

The entropy production rate of the microscopic system can be computed with a cycle decomposition. Let T be the
spanning tree obtained from GT with all edges between levels Ud and U0 removed. Let C be the cycle basis induced
by T [6]. For any c ∈ C, the cycle’s current is determined by the flux of the chord – i.e. the edge between Ud and U0,
yielding

Jc =
ω − κ

n2d
, (S34)

where the factor n−1 stems from the steady state and is determined through depth d.
The affinity of c is

Ac = (d+ 1) ln
(ω
κ

)
. (S35)

Since the dimension is |C| = 2d, we get an entropy production rate

Ṡ =
∑
c∈C

Ṡ(c) =
∑
c∈C

JcAc =
d+ 1

2d+1 − 1
(ω − κ) ln

(ω
κ

)
, (S36)

where in the last step we used that the number of vertices is n(d) = 2d+1 − 1.

C. Mistaken dynamics

We now analyze what happens if we mistakenly assume Markov dynamics of the lumped state space with lump
depth l. Since the steady-state distribution is uniform over all vertices, a lump of depth l has a steady-state probability

P [△] =
(
2l+1 − 1

) 1
n
. (S37)
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Suppose the triangle is rooted in level Ui. According to Eq. (4) in [5] the upwards “effective rate” from the triangle is

k△i↑ =
κ

2i · (2l+1 − 1)
, (S38)

while the rate to a neighboring lump downward reads

k△i↓ =
ω

2i+l+1 · (2l+1 − 1)
. (S39)

For an edge between two tree lumps rooted at levels Ui−l−1 and Ui, we have

Ṡsingle edge △i−l−1↔△i (S40)

=P [△]
(
k△i−l−1↓ − k△i↑

)
ln

(
k△i−l−1↓

k△i↑

)
(S41)

=
1

n2i
(ω − κ) ln

(ω
κ

)
. (S42)

There are 2i such edges, which contribute

Ṡall edges on level △i−l−1↔△i
=

1

n
(ω − κ) ln

(ω
κ

)
. (S43)

There are
d+ 1

l + 1
such transitions between levels, so that we get with n ≡ n(d) = 2d+1 − 1 an entropy production rate

ṠM =
d+ 1

2d+1 − 1

1

l + 1
(w − k) ln

(ω
κ

)
(S44)

=
d+ 1

2d+1 − 1

ln(2)

ln(λ+ 1)
(w − k) ln

(ω
κ

)
∝ 1

ln(λ+ 1)
, (S45)

where in the last step we used that λ ≡ n0/ns = 2l+1 − 1. This result is illustrated for the case d = 23 (and thus
n = 16777215) in Fig. 2b in the letter.

D. Mesosystem

We now derive the entropy production rate of the lumped mesosystem when memory is accounted for. Via Laplace
transforms, we obtain the splitting probabilities. We defer the derivation to the more general setting in Section VII.
For the special setting of the tree graph, we obtain using Eq. S69 for the ratio of splitting probabilities

Φ+|+

Φ−|−
=
(ω
κ

)l+1

. (S46)

There are d+1
l+1 lump levels. The net flux between each level is J = ω−κ

n , yielding a 2nd order estimate of the entropy
production rate

Ṡest
2 = J ln

(
Φ+|+

Φ−|−

)
= (d+ 1)

ω − κ

2d+1 − 1
ln
(ω
κ

)
, (S47)

which is exact by Eq. (S36).

V. SIERPINSKI-TYPE GRAPH

In this section, we first calculate the dissipation rate on the fractal Sierpinski-type graph of depth d = 3 on each
length scale and then show a comparison of the estimator for the entropy production with the analytic solution up to
depth d = 6 (n = 3072 vertices).
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A. Decomposition in cycle basis

We decompose the Sierpinski-type graph of depth d = 3 in a cycle basis. To do so, we consider the spanning tree
depicted as in Fig. S2. Recall from the Letter that we have polygons driven by rate ω at different depths: At the finest
scale (depth 1 subgraphs), the triangles are driven with rate ω. At the next scale (depth 2) the hexagons are driven
by ω. Finally, the outermost regular polygon, the nonagon (depth 3), is also driven by ω. See Fig. 1c in the Letter for
an illustration of the driving. All other edges (and the backward edges of the driven edges) have a transition rate 1.

FIG. S2. Spanning tree for Sierpinski-type graph of depth d = 3 inducing the considered cycle decomposition.

The elements of the induced cycle basis with non-zero current are depicted in Fig. S3. These basis elements coincide
with the driven cycles at depth 1 (blue), depth 2 (green), and depth 3 (orange). While the inner subgraph D at depth
2 recomposes perfectly into its driven cycles, each outer subgraph at depth 2 has in addition two corrective cycles,
which will be hidden at coarse grainings of scale λ ≥ 12 (depth ≥ 2).
A driven regular cycle at depth l has an affinity of Al = 3l logω. When driven with ω = 2, the contribution of each

scale is shown in Table. I.

TABLE I. Contribution of cycle basis elements at different scales.

Basis cycles Contribution to Ṡ

Depth 1 0.59

Depth 2 0.17

Depth 3 0.07

Corrective cycles -0.01

B. Comparison of stochastic estimator to analytic solution

We compare the entropy production rate obtained by the stochastic estimator for the microscopic graph to the
analytic entropy production rate obtained by solving for the nullspace of the estimator, at a driving of ω = 2. Note
that, remarkably, although the graph becomes very large (at depth d = 6 we have n = 3072 many vertices), the matrix
is sparse enough to find the steady state analytically at that size. The results summarized in Table II confirm that
the estimator is indeed very precise.
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A

C

B

D

FIG. S3. Basis cycles with non-zero current. These basis elements coincide with the driven cycles of depth 1 (blue), depth 2
(green), and depth 3 (orange) as well as two corrective cycles in each of the outer subgraphs A, B, and C. These correction
cycles are indicated by dashed lines in subgraphs A.

TABLE II. Estimated entropy production rate Ṡest
1 vs. analytic solution Ṡ for Sierpinski-type graphs of different depth. The

estimation is based on trajectories of length 108 steps, after skipping 108 initial ”equilibration” steps.

Depth of Sierpinski-type graph n Ṡest
1 Ṡ

2 12 0.8011 0.8010

3 48 0.8255 0.8259

4 192 0.8325 0.8323

5 768 0.8349 0.8341

6 3072 0.8349 0.8346

VI. BRUSSELATOR

For the Brusselator we choose the parameters as in [5]. Note that the state space can be reduced from 500 × 500
states to e.g. 450×450 states due to the location of the limit cycle in the steady state. This can be verified numerically,
by plotting the average time spent in a given state in the steady state. We show this statistic in Fig. S4 for a trajectory
of length 5∗108 after skipping an initial phase of 109 steps ensuring convergence to the steady state, where in particular
the right and top region is 0 (black). Indeed, summing the steady-state probabilities for x > 450, y > 450, we get
2.45e− 6.

In the Sierpinski-type graph, we were able to exploit the sparsity of the generator to find a basis for the null space.
However, in the case of the Brusselator, this corresponds to finding the basis of the null space of a 202500 × 202500
matrix. We are not aware of any computational solution providing reliable results without significant errors for such
matrix sizes, therefore we resort to stochastic simulations.

VII. TREE DIAMOND GRAPH

Here we consider a depth-d tree diamond graph as described in Appendix C and Fig. 5a in the Letter.
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FIG. S4. Average time spent in a given state in the steady state of the Brusselator. The results were inferred from a trajectory
of length 5 ∗ 108 upon skipping 109 steps to reach the steady state.

A. Construction

The tree diamond is constructed from two perfect binary trees of edge depth d, the top one rooted at the top, the
bottom one rooted at the bottom, merging them to have the same set of leaves, and connecting the two roots with a
bidirectional edge. Fig. 5a in the Letter shows a tree diamond of depth d = 5. Hence, the tree diamond has

n ≡ n(d) = 3 · 2d − 2 (S48)

vertices. In this way, we obtain edges on levels U0, . . . , U2d: Levels U0, . . . Ud−1 are the levels of the upper tree, level
Ud are the child nodes of both trees and levels Ud+1, . . . , U2d are the levels of the bottom tree. Hence, the very top
level U0 consists of only one vertex, as does the very bottom level U2d. The rates along edges between levels of the
top tree halve each step and double between levels of the bottom tree.

When walking on the tree, we go in positive direction, if we go from a level Ui to Ui+1 mod 2d+1. Hence, the rates
of the edges between levels Ui and Ui+1 mod 2d sum to ω in + direction and κ in − direction. From 0 = Lp we see
that the steady state is the uniform distribution over all vertices.

For any l ∈ N with d + 1 = 0 mod l + 1, we perform a coarse-graining of depth l as follows. We start from the
top root, lumping trees of depth l as we go downwards towards the leaves. We do the same from the bottom root
upwards. Those up- and down-facing trees in the center, which share the same set of leaves, are merged pairwise into
one lump, which is again a smaller diamond tree. A lumping of depth l = 1 and l = 2 is shown in Fig. 5a in the
Letter in shaded blue and dashed red, respectively.

B. Microscopic dynamics

We provide the following two different ways of estimating the microscopic entropy production rate Ṡ: One via the
direct formula for Markovian systems which was used by Yu et al. [5] for both Markovian and non-Markovian systems.
The second derivation is based on the graph decomposition in its cycle basis and hence is more instructive for the
understanding of dissipative cycles.

1. Ṡ via edges

Let us consider an edge in the top tree, i.e. from level Ui to level Ui+1 with i ∈ {0, . . . , d−1}. This edge contributes
to the entropy production rate as

Ṡsingle edge Ui↔Ui+1 =
1

n

1

2i+1
(ω − κ) ln

(ω
κ

)
, (S49)
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where the first factor comes from the uniform steady-state probability distribution and the second from the transition
rates. There are 2i+1 such edges, so that

Ṡlevel Ui↔Ui+1
=

1

n
(ω − κ) ln

(ω
κ

)
. (S50)

Since there are 2d such levels (edges in the bottom half contribute equally by symmetry) as well as one edge connecting
the bottom to the top, we have an overall entropy production rate of

Ṡ =
2d+ 1

n(d)
(ω − κ) ln

(ω
κ

)
, (S51)

which is stated in the Letter.

2. Cycle decomposition

Let our diamond tree be the graph G = (V,E). G has a cycle basis C = {c1, . . . , c2d} of size |C| = 2d, with each
basis cycle ci being the unique cycle of length 2d + 1 going through a unique node in level Ld. To see this, take as
spanning tree T the graph G with all edges between level Ld and Ld+1 removed. Adding any single edge between
Ld and Ld+1 will create a cycle. We call the added edge a chord and identify uniquely each cycle ci with its chord
hi ∈ E. Four of these cycles are highlighted at the central levels in Fig. 5a (inset) of the Letter.

We focus on a cycle ci. This cycle’s flux is determined by the flux of its chord hi:

Jci =
ω − κ

n2d
, (S52)

where the factor n−1 stems from the steady state and 2−d from the transition rates. The affinity of ci is

Aci = (2d+ 1) ln
(ω
κ

)
, (S53)

since the cycle has length |ci| = 2d+ 1. Thus, the cycle’s entropy production rate is [6]

Ṡci = Jci ·Aci =
2d+ 1

n2d
(ω − κ) ln

(ω
κ

)
. (S54)

Since there are 2d basis cycles, we have an overall entropy production rate of

Ṡ =
∑
ci

Jci ·Aci =
2d+ 1

n(d)
(ω − κ) ln

(ω
κ

)
, (S55)

where we indicated with n(d) that n is determined by d, cf. Eq. (S48).

C. Mesosystem

We now consider a coarse-graining of the tree diamond graph yielding a 2nd-order semi-Markov process. Hence,
we need to condition the previous, current, and next mesoscopic states to have fully defined waiting times. We
hence introduce Ψx|u,y(t) for x, y ∈ {+,−}, u ∈ V as the distribution of transitioning from u in x direction by
time t given that we transitioned to u in y direction at time t = 0. The splitting probability is the then limit
Φx|u,y ≡ limt→∞ Ψx|u,y(t).
We now determine Φ+|u,+,Φ−|u,− for u being the entry/exit point of both (a) tree and (b) tree-diamond lumps.

1. Splitting probability Φ for tree lump

Consider a tree of (edge) depth l, which is w.l.o.g. rooted at its top vertex. We label the vertex levels within that
tree by Wi, i ∈ {0, . . . , l} so that level Wi has |Wi| = 2i vertices. By symmetry, it suffices to consider PWi

(t), the
probability of being in any of the vertices of level Wi. Let (λω, λκ) for λ ∈ {2−k | k ∈ N0} be the weight of the edge
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entering the tree’s root (i.e. W0) from above. The choice of k depends on the level Uj of the diamond tree in which
the considered tree is rooted.

We can describe the evolution by the following system of ordinary differential equations. For i ∈ {1, . . . , l − 1}, we
have

dPWi
(t)

dt
= λ

(
ωPWi−1(t) + κPWi+1(t)− (κ+ ω)PWi(t)

)
, (S56)

whereas for the boundaries i ∈ {0, l}, we have

dPW0
(t)

dt
= λ (κPW1

(t)− (κ+ ω)PW0
(t)) (S57)

dPWl
(t)

dt
= λ

(
ωPWl−1

(t)− (κ+ ω)PWl
(t)
)
. (S58)

Since we consider first-passage times, we place an absorbing state S at the lower-labeled end, and an absorbing state
D at the higher-labeled end with

dPS(t)

dt
= λκPW0

(t) (S59)

dPD(t)

dt
= λωPWd

(t). (S60)

Since these two states do not influence the probability distribution of the non-absorbing states, we first solve the
system of non-absorbing states and then for the absorbing states. The initial distribution is either 1W0

(in the + | +
setting) or 1Wl

(in the − | − setting).

To solve the system of l+1 differential equations, we Laplace transform (P̃Wi(s) ≡
∫∞
0

PWi(t) exp(−st)dt). Solving
for the Laplace-transformed distributions reduces to solving the following tridiagonal linear system of equations

s+ λk + λw −λk

−λw s+ λk + λw −λk
. . .

. . .
. . .

−λw s+ λk + λw −λk

−λw s+ λk + λw




P̃W0(s)

...

P̃Wl
(s)

 =


a

0
...

0

1− a

 , (S61)

where a ≡ 1 iff we start at the root (in the + | + setting) and a ≡ 0 else (in the − | − setting).

For any l, we can solve the above equation to obtain P̃Wi
(s) explicitly. It remains to perform an inverse Laplace

transform, for which we use Cauchy’s residue method. We show the result here for l = 2 in the + | + setting, the
”program” being analogous for every other value of l ∈ N and directional conditions. Solving Eq. (S61) yields

P̃W2(s) =
λ2ω2

(s+ λκ+ λω) [(s+ λκ+ λω)2 − 2κλ2ω]
. (S62)

The roots of the denominator are

s1 ≡ −λ(κ+ ω) (S63)

s2/3 ≡ −λ(κ+ ω)± λ
√
2κω, (S64)

yielding residue values of − ω
2κ ,

ω
4κ ,

ω
4κ (the first derivative of the denominator is non-zero for all of s1, s2, s3). Thus

PW2
(t) =

ω

2κ

{
− exp [−λ(κ+ ω)t] +

1

2
exp

[
−λ(κ+ ω)t− λ

√
2κωt

]
+

1

2
exp

[
−λ(κ+ ω)t+ λ

√
2κωt

]}
, (S65)

and hence by Eq. (S60)

PWD
(t) =

λω2

2κ

{
− exp [−λ(κ+ ω)t] +

1

2
exp

[
−λ(κ+ ω)t− λ

√
2κωt

]
+

1

2
exp

[
−λ(κ+ ω)t+ λ

√
2κωt

]}
. (S66)
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As we argued before, this first-passage time corresponds to the distribution of transitioning in a positive direction,
given that we transitioned at time t = 0 in a positive direction to a tree lump. More precisely, this means for △ being
a tree mesoscopic state rooted att its lowest microstate

Ψ+|△,+(t) = PWD
(t) =

λω2

2κ

{
− exp [−λ(κ+ ω)t] +

1

2
exp

[
−λ(κ+ ω)t− λ

√
2κωt

]
+

1

2
exp

[
−λ(κ+ ω)t+ λ

√
2κωt

]}
.

(S67)

We may proceed analogously with the initial condition a = 1 to obtain a solution for PW0
(t) and

Ψ−|△,−(t) =
λκ2

2ω

{
− exp [−λ(κ+ ω)t] +

1

2
exp

[
−λ(κ+ ω)t− λ

√
2κωt

]
+

1

2
exp

[
−λ(κ+ ω)t+ λ

√
2κωt

]}
. (S68)

since the roots si have the same values as in the positive direction case [8]. Note that si < 0 for all λ, κ, ω > 0, i ∈ [3],
so that the distributions indeed converge for t → ∞.
In the exemplary case above, we chose l = 2. For general l, the ratio of splitting probabilities yields

Φ+|△,+

Φ−|△,−
=

limt→∞ Ψ+|△,+(t)

limt→∞ Ψ−|△,−(t)
=
(ω
κ

)l+1

. (S69)

For a triangle rooted at its highest-labelled microstate (▽), we obtain by symmetry

Φ+|▽,+

Φ−|▽,−
=

limt→∞ Ψ+|▽,+(t)

limt→∞ Ψ−|▽,−(t)
=
(κ
ω

)−(l+1)

=
Φ+|△,+

Φ−|△,−
. (S70)

We corroborate the analytical results with computer experiments in Fig. S5, and find that they are in excellent
agreement.

FIG. S5. Splitting probability ratio for the tree lumps of depth l ∈ [9] on a lin-log plot, tested here with ω = 2, κ = 3. We see
that our results match with the experiments. Experiments were performed with trajectories of length 105 states per tree size.

2. Splitting probability Φ for tree diamond lump

We say that a tree diamond has depth l if both its top and bottom tree have (edge-) depth l. Analogously to the
tree lump case, we obtain for the ratio of splitting probabilities

Φ+|♢,+

Φ−|♢,−
=
(ω
κ

)2l+1

, (S71)
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FIG. S6. Splitting probability ratio for the tree diamond lump of depth l ∈ [9] in a lin-log plot, tested here with ω = 2, κ = 3.
The analytical results agree fully with computer experiments, which were performed with trajectories of length 5× 105 states
per tree diamond size.

which we compare in Fig. S6 to simulation results.

Performing a lumping of depth l, we have d−l
l+1 many top-up triangle (△) levels, one tree diamond (♢) level, and d−l

l+1

many bottom-up triangle (▽) levels. If we group each level together and describe with J = ω−κ
n the net flux between

each level (which is constant across levels), we have the entropy production rate

J−1Ṡest
2 =

d− l

l + 1
ln

(
Φ+|△,+

Φ−|△,−

)
+

d− l

l + 1
ln

(
Φ+|▽,+

Φ−|▽,−

)
+ ln

(
Φ+|♢,+

Φ−|♢,−

)
(S72)

=
d− l

l + 1
ln

((ω
κ

)l+1
)
+

d− l

l + 1
ln

((κ
ω

)−(l+1)
)
+ ln

((ω
κ

)2l+1
)

(S73)

= (2d+ 1) ln
(ω
κ

)
, (S74)

which is exactly the microscopic entropy production rate, cf. Eq. (S51).

D. Average lump size

To get the average lump size, i.e. the average number of vertices per lump, for a given tree diamond graph of depth
d with lump depth l, we first find the number of tree diamond lumps and tree lumps. For the former, we note that
every diamond lump is rooted at level d− l, hence the number of tree diamond lumps is

n♢ = 2d−l. (S75)

For the latter, we observe that 2(2d−l − 1) many vertices belong to tree lumps, of which each has a size of 2l+1 − 1,
yielding

n△ =
2(2d−l − 1)

2l+1 − 1
(S76)

many triangle lumps. Thus, the average size per lump is

λl,d =
nvtcs

n♢ + n△
=

(2l+1 − 1)(3 · 2d − 2)

2(2d − 1 + 2d−l−1)

d≫l≫1≃ 3 · 2l. (S77)
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E. Mistaken dynamics

We now explore what happens if the mesoscopic dynamics are mistakenly assumed to be Markovian with effective
rates. As before, we enumerate the vertex levels of the tree diamond graph by 0, . . . , 2d.

Since the steady-state distribution is uniform over all vertices, a lumped tree of depth l has probability

P [△] =
(
2l+1 − 1

) 1
n
. (S78)

Suppose the triangle is rooted in level Ui, with w.l.o.g i ∈ {0, . . . , d−2l−1} [88]. The rate from the triangle upwards,
following Eq. (4) in [5], is

k△i↑ =
κ

2i · (2l+1 − 1)
, (S79)

and the rate to a single lump downward is

k△i↓ =
ω

2i+l+1 · (2l+1 − 1)
. (S80)

For i ∈ {l + 1, . . . , d− 2l − 1} and an edge between two tree lumps rooted at levels Ui−l−1 and Ui, we have

Ṡsingle edge △i−l−1↔△i (S81)

=P [△]
(
k△i−l−1↓ − k△i↑

)
ln

(
k△i−l−1↓

k△i↑

)
(S82)

=
1

n2i
(ω − κ) ln

(ω
κ

)
. (S83)

There are 2i such edges, such that we have

Ṡall edges on level △i−l−1↔△i =
1

n
(ω − κ) ln

(ω
κ

)
. (S84)

For a tree diamond lump of depth l, we have analogously

P [♢] =
(
3 · 2l − 2

) 1
n
, (S85)

with rates for a tree diamond lump rooted at level i = d− l according to [5]

k♢i↑ =
κ

2i · (3 · 2l − 2)
(S86)

k♢i↓ =
ω

2i · (3 · 2l − 2)
. (S87)

Thus, for all edges from the triangles to diamonds in the upper half, we have

Ṡall edges on level △d−2l−1↔♢d−l =
1

n
(ω − κ) ln

(
ω
(
3 · 2l − 2

)
κ (2l+1 − 1)

)
, (S88)

Ṡall edges on level ♢d−l△d+l+1↔ =
1

n
(ω − κ) ln

(
ω
(
2l+1 − 1

)
κ (3 · 2l − 2)

)
. (S89)

Finally, for the single edge connecting to the next macroscopic diamond tree, we have

Ṡmacroscopic edge =
1

n
(ω − κ) ln

(ω
κ

)
. (S90)

We have 2 · d−l
l+1 − 2 many edge-levels between triangle levels, 2 edge-levels between triangles and tree-diamond lumps,

and one macroscopic edge, leading to an overall mistaken entropy production rate

ṠM =
1

n(d)
(ω − κ)

(
2 · d− l

l + 1
+ 1

)
ln
(ω
κ

)
̸= Ṡ = Ṡest

2 , (S91)

which is reported in the Letter.
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VIII. 6-STATE MODEL

In the 6-state model depicted in Fig. 4a in the Letter, transitions marked with a → happen at rate ω in arrow-
direction, and at rate κ in opposite direction. As indicated in the figure, along the curved arrow from state v3 to state
v1, the transition happens at rate 6ω in arrow-direction, and at rate κ in opposite direction. Transition along the ↔
between v3 and v4 happens at rate 1 in both directions. For the plot in Fig. 4b, we chose ω = 2, κ = 3.

IX. SUFFICIENT CONDITION FOR SEMI-MARKOV PROCESS HAVING AT MOST ORDER 2

If in the lumping every pair of lumps is connected by at most one microscopic edge, the lumped dynamics are at
most 2nd-order semi-Markovian.

This holds due to the following observation: Suppose vertex v is in lump Lv, and vertex u is in an adjacent lump
Lu, connected by the microscopic edge e = (v, u). Suppose the lumped dynamics transitions at time t from Lv to Lu.
From knowing this sequence of two lumps and due to uniqueness of e (assumption), we thus know that at time t, the
current microscopic state is u. Hence, the memory is of order (at most) 2. Further, since transitioning from lump Lu

to the next lump may lead via other vertices in Lu, the dynamics maybe be semi -Markovian.
We can observe this in the Cycle graph (Example 1), the Tree graph (Example 2), as well as the Sierpinski-type

graph (Example 3). The condition is, however, not met for the Brusselator (Example 4).
We thank the Reviewers for their constructive observation on this.

X. NOTION OF SELF-SIMILARITY

Self-similarity is described by Ref. [9] as “each set comprises several smaller similar copies of itself”. From this
notion, multiple definitions of self-similarity of graphs have evolved [10–13]. The definition in [10] focuses on an
extension of the box-covering idea: For a given graph G = (V,E) and integer l ∈ N, we cover G by subgraphs
G1, . . . , GN of diameter (with respect to the edge distance) strictly less than l such that V (G) = V (G1)∪ . . .∪V (GN ).
Let Nl(G) denote the minimal such N . We have self-similarity by the box-counting method if there is a power law
dependence between Nl and l. That is, if there exists a d ∈ N such that for any reasonable l we have

Nl ∝ l−d

the graph is said to have fractal dimension d by the box counting method [10].
The cycle graph is with this regard a trivial example with Nl ∝ l−1, i.e. dimension d = 1. The brusselator and

its graphical representation is chosen as in [5], where the box-counting notion as described above is used to describe
self-similarity. We refer to the discussion of self-similarity therein. For the Sierpinski-style graph the self-similarity is
evident from the following observation: Starting with a simple triangle graph, say G(0), we add one vertex on each
edge to obtain a cycle graph (isomorphic to C6) and add six further inner vertices to obtain a graph as depicted in
the inlet of Fig. 1c in the main text. Call this graph G(1). To obtain an even finer G(2), we apply this construction
recursively on each of the four triangle-inducing subgraphs of G(1). Thus, the graph is by construction self-similar,
similar to the constructions in [11, 13]. An analogous construction follows for the tree graph, which consists of many
copies of smaller trees. Note that in the case of the tree graph, we added an edge from each leaf to the root, to make
the graph physically interesting (this allows for non-zero entropy production in the steady state).

XI. NOTION OF DISSIPATIVE CYCLES

We want to highlight the difference between a cycle and a dissipative cycle: Not every cycle is a dissipative cycle.
For instance, in Fig. 5 of the letter, cycles get hidden, but the dissipative ones actually do not. The term “dissipative
cycle getting hidden” means that a dissipative cycle would disappear entirely inside a lump.

We can determine the set of dissipative cycles via a spanning tree [6]: Let our graph be G. We draw below a spanning
tree T for the graph of Fig. 5 in the letter in green. The set of all dissipative cycles is spanned by the set of cycles
created when closing a single edge e ∈ E(G) \ E(T ). We depict in Fig. S7 one such cycle in orange (middle figure)
and pink (right figure). Those are the cycles indicated in the inset of the Fig. 5 in the letter.

In the diamond-tree graph, no lumping (except for the trivial lumping, where all vertices form one single big lump)
will hide any dissipative cycles. For every lumping and every spanning cycle, at least one edge of that spanning cycle
will transition between two distinct lumps. Indeed, spanning cycles which are too close to be distinguished under a
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FIG. S7. The spanning tree (left) of the tree-diamond graph and two dissipative cycles obtained via the spanning tree.

current lumping will appear as a single, stronger cycle, but these are not “hidden”; The steady state current through
the two microscopic cycles will be summed to the current through the mesoscopic cycle.

If there were cycles hidden by the lumping—as it is the case in the Sierpinski-style graph—then there would exist a
cycle which fully disappears inside a single lump. We can thus conclude that no dissipative cycles get hidden in the
tree-diamond graph.

XII. TECHNICALITIES OF THE SAMPLING PROCEDURE

A. Exploiting the symmetry of the graph

In the cases of the tree graph and tree diamond graph, we use the graph symmetry to increase the statistical
precision: all lumps on a given level have (1) equal steady state probability, (2) equal transition rates, predecessors,
and successors (important for the memory of the stochastic process), and (3) no edge connects them. Thus, after
simulating the microscopic dynamics, we may in the statistical analysis w.l.o.g. treat all lumps on a given level as equal,
which increases the statistics per lump. Note that this is are very particular properties of the problems’ symmetry
and may not be used in general, e.g. not for the Brusselator.

B. Choice of parameters

For the results shown in the Letter, we chose w = 2, κ = 1 for both the ring and tree graph. For the tree diamond
graph, we chose w = 2, κ = 3.

For the Sierpinski-type graph (Fig. 3a in the Letter), trajectories were drawn after Nskip = 109 initial steps and are
of length Nsteps = 5× 108. The plot shows the average of 108 trajectories, with almost vanishing error bars. We took
ω = 2 for the driving.

For the Brusselator, (Fig. 3b in the Letter), trajectories were drawn after Nskip = 109 initial steps and are of length
Nsteps = 109. The plot shows the average of 25 trajectories with almost vanishing error bars. We note that the state
space is very large with many states having steady-state probability almost 0 but non-vanishing transition rates. In
the microscopic setting, λ = 1, this may lead to undersampling of the steady state. Similarly, order k ≥ 4 would need
even longer trajectories.

For the tree-diamond graph (Fig. 5b), we used ω = 2, κ = 3 and a depth of d = 23.

In all cases, the fitted lines were least-squares-fitted to the measurements on all scales except for the smallest and
largest scale [5], which clearly deviate in the tree, diamond tree, Sierpinski-type graph, and Brusselator, i.e. where we
do not have a power law of the entropy production rate in the scale.

For the 6-state-model (Appendix A in the Letter), we chose ω = 2, κ = 3 and ran for each line 10 simulations. For
equilibration, we used Nskip = 108 steps.
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C. Subsampling for higher orders

For higher-order estimators, we need exponentially longer trajectories, since statistics of tuples of length k + 1 for
order k estimators need to be drawn and sampled sufficiently. We see in Fig. S8a that the order k = 4 estimator
struggles for the coarsest scales, however not due to high fluctuations among the 100 trajectory measurements, but
instead as a systematic under-sampling error. For 5 times longer trajectories (Fig. S8b) we see significant enhancement
on the second coarsest scale. Increasing the trajectory length by a factor of 10 (Fig. S8c) does not yield significant
improvement, underlining the non-linear requirement of sample statistics in the order k.

b)a) b) c)

FIG. S8. Entropy production rate on the tree graph as a function of the coarse-graining scale for different sample path lengths:
(a) For paths of length 108 (b) of length 5 · 108 (c) of length 109. All trajectories were recorded after initial Nskip = 108 many
steps. Depicted are averages of 100 such trajectories with standard deviation indicated through the error bars.
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