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ABSTRACT
We benchmarked the performance of the GROMACS 2024 molecular dynamics (MD) code on a modern high- performance com-
puting (HPC) cluster with AMD CPUs on up to 65,536 CPU cores. We used five different MD systems, ranging in size from about 
82,000 to 204 million atoms, and evaluated their performance using two different Message Passing Interface (MPI) libraries, 
Intel- MPI and Open- MPI. The largest system showed near- perfect strong scaling up to 512 nodes or 65,536 cores, maintaining a 
parallel efficiency above 0.9 even at the highest level of parallelization. Energy efficiency for a given number of nodes was gen-
erally equal to or slightly better than parallel efficiency. We achieved peak performances of 687 ns/d for the 82k atom system, 
116 ns/d for the 53M atom system, and about 35 ns/d for the largest 204M atom system. These results demonstrate that highly 
optimized software running on a state- of- the- art HPC cluster provides sufficient computing power to simulate biomolecular 
systems at the mesoscale of viruses and organelles, and potentially small cells in the near future.

1   |   Introduction

Molecular dynamics (MD) simulations have become an essential 
and powerful tool for understanding, from fundamental phys-
ics, the molecular mechanisms of “biological nanomachines”, 
that is, proteins such as enzymes, ion channels, and ribosomes. 
While most protein simulations involve between 10,000 and 
several hundred thousand atoms, recent advances in computer 
hardware and software enable the study of increasingly larger 
systems [1, 2], with the current world record exceeding one bil-
lion atoms [3]. These developments suggest that it may soon be 
possible to simulate an entire biological cell, which would com-
prise 500 million to six billion particles [4]. Even for smaller 
systems, a significant challenge is adequately sampling the vast 
configuration space to make statistically robust statements about 

the system's average behavior. High- Performance Computing 
(HPC) accelerates the collection of statistical data by (i) paral-
lelizing individual simulations across multiple compute nodes 
[5] and (ii) running multiple similar copies of the system con-
currently. While the latter is trivial, the former poses significant 
challenges in terms of algorithms and software engineering. 
To maximize individual simulation performance and scaling, 
MD packages such as NAMD [6], Amber [7], LAMMPS [8], 
GENESIS [3], CHARMM [9], OpenMM [10], or GROMACS [11] 
employ several levels of parallelization, including message pass-
ing (MPI) and shared memory (OpenMP) parallelization.

To distribute an MD system across many compute nodes, 
GROMACS divides the simulation volume into N = nx ×ny ×nz 
domains, with interactions between particles in a domain 
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managed by a dedicated MPI rank. Each MPI rank can further 
utilize multiple OpenMP threads. In addition, separate MPI 
ranks [11] are used to compute the long- range electrostatic in-
teractions to mitigate the limited parallelizability of the Particle 
Mesh Ewald [12] (PME) method [13], which relies on all- to- all 
communication between the involved ranks. To overcome this 
limitation, Fast Multipole Methods (FMM) have been recently 
implemented instead [14, 15].

Splitting the simulation system into domains often leads to load 
imbalances, as the number or complexity of interactions is usu-
ally not the same between domains. A further load imbalance 
occurs when separate PME ranks are used. Automatic load bal-
ancing mechanisms and built- in heuristics, such as estimating 
the optimal number of separate PME ranks, take much of the 
performance optimization burden off the scientist. However, 
when preparing for large- scale simulations on expensive high- 
end computing resources, it is generally advisable to compare 
the achieved performance with some kind of reference bench-
mark. Such reference performance numbers can also help to 
estimate the achievable simulation throughput and aid in the 
planning of new simulation campaigns.

Here we aim to provide such reference numbers for GROMACS 
for a large, modern, CPU- based HPC platform, and at the same 
time to demonstrate the potential for simulating very large MD 
systems on state- of- the- art hardware. We use the new AMD- 
based supercomputer “Viper” [16] of the Max Planck Society, op-
erated at the Max Planck Computing and Data Facility (MPCDF) 
in Garching.

2   |   Methods

In the last few years, AMD's EPYC CPUs have emerged as a 
competitor to Intel's Xeon family in the server and data center 
markets, including HPC. The competition between these two 
companies has driven innovation in the x86 CPU landscape, 
offering supercomputing centers more choices and driving 
advancements in performance, efficiency, openness, and cost- 
effectiveness. The AMD- based Viper HPC cluster has been op-
erated by the MPCDF since July 2024. Each Viper node we used 
is equipped with two EPYC 9554 “Genoa” CPUs (128 physical 
cores, 3.1 GHz base frequency, turbo enabled) and 512 GB of 
RAM. The nodes are interconnected by an NVIDIA/Mellanox 
NDR200 (200 Gb/s) InfiniBand network with a non- blocking 
fat- tree topology. Further details on the hardware and software 
configuration can be found in the Viper user guide [16].

We used five different MD simulation systems for our bench-
marks, ranging from 82,000 to 204 million atoms (Table 1). All 
of these are MD systems that have actually been or are being 
used in scientific projects and are not synthetic benchmarks. 
GROMACS .tpr input files for these systems are available at 
https:// www. mpinat. mpg. de/ grubm ueller/ bench . The MEM 
system has been used to study water permeation through an 
aquaporin tetramer that is embedded in a lipid bilayer [17]. 
The ribosome (RIB) system and similar ones are in current 
use for the study of the function of these protein factories in 
our cells [18–21]. Systems such as PEP (“peptides”) have been 
used to study the oligomerization of steric zipper peptides, a 

process important for understanding the early stages of pro-
tein aggregation in many neurodegenerative diseases [19]. The 
largest systems are related to the human nuclear pore complex 
(hNPC) in the dilated conformation (PDB: 7R5J) [20]. The 
LUM system corresponds to the luminal ring of hNPC, while 
the SCF system is the hNPC scaffold consisting of the inner 
ring, nuclear ring, cytoplasmic ring, and luminal ring. Both 
systems are simulated in an explicit solvent with a salt con-
centration of 0.15 M NaCl. The NPC, arguably the largest pro-
tein assembly in human cells, consists of about 1000 proteins 
that form an 8- fold symmetric pore in the nuclear envelope. 
Its main function is to regulate the exchange of molecules be-
tween the nucleus and the cytoplasm. The hNPC adjusts its 
diameter in response to changes in nuclear envelope tension, 
which affects transport [22, 23]. We are currently studying 
the hNPC scaffold and luminal ring dynamics to elucidate 
the molecular mechanism behind this structural flexibility 
and to gain key insights into its role in cellular regulation and 
disease.

For all benchmarks, we compiled GROMACS 2024.2 in mixed 
precision with AVX_512 SIMD instructions and OpenMP sup-
port, using the GCC 14.1.0 compiler. We built two versions, one 
with Intel- MPI 2021.11 and a second one with Open- MPI 4.1.6. 
Both MPI installations are based on UCX 1.16, which acts as a 
middle layer between the MPI library and the InfiniBand net-
work hardware. For the fast Fourier transforms required by 
PME we use the FFTW library version 3.3.10 [24].

In our performance tests, we relied on the quite well- performing 
empirical defaults for the parameters GROMACS can control, 
such as the number of separate PME nodes and whether or not 
to enable dynamic load balancing. We have generally refrained 
from extensive performance fine- tuning, as this would not nor-
mally be done by practitioners. For systematic, in- depth perfor-
mance analysis and tuning, tools such as MDBenchmark [25] 

TABLE 1    |    Specifications of the benchmark systems.

MD
# 

atoms

System 
size 

(nm)

Time- 
step 
(fs)

Cutoff 
radii 
(nm)

PME 
grid 

spacing 
(nm)

MEM 
[17]

82k 10.8 × 
10.2 × 

9.6

2 1.0 0.12

RIB 
[18]

2M 31.2 × 
31.2 × 
31.2

4 1.0 0.135

PEP 
[19]

12.5M 50.0 × 
50.0 × 
50.0

2 1.2 0.16

LUM 
[20]

52.8M 166.3 × 
144.0 
× 21.8

2 1.1 0.16

SCF 
[20]

204.4M 166.4 × 
144.1 
× 84.2

2 1.1 0.16
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can help automate setup and analysis. One of the runtime set-
tings that GROMACS cannot control is the partitioning of avail-
able CPU cores into MPI ranks and OpenMP threads, since the 
MPI processes are started outside of GROMACS. Since this can 
significantly affect performance, we benchmarked 1, 2, 4, and 8 
OpenMP threads per MPI rank, always using all physical cores 
of a node, that is, in terms of ranks × threads per node 1 × 128, 
2 × 64, 4 × 32, and 8 × 16. From these settings, we report the one 
that performed best. Simultaneous Multithreading (SMT) did 
not improve RIB performance on a single- node (in fact, it was 
slightly worse with SMT), therefore we did not use SMT.

Each benchmark was run for 0.2–0.5 h of wall clock time. 
Performance was measured for the second half of the run be-
cause load balancing mechanisms take some time to reach opti-
mal balance and because memory allocations tend to slow down 
the first few time steps.

For the Intel- MPI benchmarks, we set the environment variable 
I_MPI_FABRICS=shm:ofi to explicitly enable shared memory 
transport (shm) for enhanced performance. Shared memory 
transport was temporarily disabled by default in Intel- MPI, but 
will be enabled again in future releases starting with Intel- MPI 
2021.14.

To extract the power consumption of each GROMACS job, we 
used the “Smart Energy Manager Suite” (SEMS) provided by 
Eviden.

3   |   Results

Figure  1 shows the strong- scaling behavior for MD systems 
ranging from 82k to 204M particles between 128 and 65,536 
cores (bottom axis) or one to 512 nodes (top axis), respectively. 
The largest 204M system closely follows the diagonal gray line, 
indicating near- perfect scaling from four to 512 nodes. Even for 
the smaller systems (except MEM), scaling remains excellent for 
a smaller number of nodes. As expected, with decreasing system 
size, deviations from ideal scaling occur at lower node counts 
due to the comparatively smaller number of atoms per node and, 
hence also smaller workload per node.

We measured maximum performances of 687 ns/d for the 82k 
(MEM) system, 256 ns/d for the 2M (RIB) system, and 226 ns/d 
for the 12M (PEP) system on Viper, which, to our knowledge, are 
the highest performances ever reported for these specific bench-
mark systems, including on GPU- accelerated nodes [11, 26–29].

For systems larger than ten million atoms, the GROMACS per-
formances for Intel- MPI and Open- MPI are very similar. For 
the smaller 82k and 2M systems, Intel- MPI often outperforms 
Open- MPI, with up to a 37% performance increase for the 82k 
system on two nodes, and up to a 19% increase for the 2M system 
on 16 nodes. For the 204M benchmark system, only Intel- MPI 
results are available for ≥ 64 nodes, as all Open- MPI runs were 
aborted due to memory limitations. If desired, benchmark re-
sults can probably be further improved for both MPI libraries by 
setting MPI runtime parameters optimized for the application 
and hardware setup. These runtime parameters would have to 
be determined beforehand by running MPI benchmarks.

The numbers next to the symbols in Figure 1 indicate the number 
of threads per MPI process that deliver the best performance. At 
low levels of parallelism, single- threaded MPI ranks generally 
provide the best performance, avoiding any potential OpenMP 
overhead. However, as the total number of MPI ranks is in-
creased in order to utilize more and more CPU cores, one will 
eventually reach a fundamental limit set by the cutoff radius. 
The latter limits the minimum domain size, which translates 
into a maximum number of domains (and hence MPI ranks) 
that can be used. When the maximum number of domains is 
reached, the only way to use more cores is to use more OpenMP 
threads for each MPI rank.

Figure 2 shows two metrics that indicate whether or not com-
puter time is being used efficiently for a given number N of 
nodes. First, the parallel efficiency 

with P(N) denoting the performance on N nodes. Second, the en-
ergy efficiency, which is the performance on N nodes divided by 
the average power consumption pow(N) of the involved nodes, 

(1)Epar(N) =
P(N)

N ⋅ P(1)

(2)Een(N) =
P(N)

pow(N)

FIGURE 1    |    Strong scaling of GROMACS on up to 65,536 CPU cores. 
Measured performances of GROMACS 2024 on up to 512 Viper nodes 
with Intel- MPI (solid) and Open- MPI (dashed, semi- transparent) for five 
MD systems (colors) ranging from 82k to 204M atoms in size. Numbers 
beside symbols refer to the optimal number of OpenMP threads per MPI 
rank. Diagonal gray lines indicate perfect scaling.
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The plot shows the normalized energy efficiency, which is 
Een(N) divided by the energy efficiency at the smallest number 
of nodes that were tested.

For the small 82k system, the parallel efficiency Epar drops rel-
atively quickly, but for larger systems, Epar remains above 0.8 
even at very high levels of parallelization. If a parallel efficiency 
of at least 0.8 is targeted, the RIB system scales to about 2000 
atoms per core, and the PEP system to 1500 atoms per core. 
For the PEP and LUM systems, we even observe a superlinear 
speedup (Epar > 1) at medium node counts. This can occur es-
pecially in strong scaling scenarios, for example, when doubling 
the number of nodes causes computations to fit better into the 
CPU cache. At the highest parallelization of 512 nodes or 65,536 
cores, the two largest systems still show decent (ELUMpar ≈ 0. 71) 
to excellent (ESCFpar ≈ 0. 92) efficiency, yielding remarkable simu-
lation speeds of ≈ 116 ns/d and ≈ 35 ns/d, respectively.

Normalized energy efficiency generally follows the same trend 
as parallel efficiency. However, at higher node counts, energy ef-
ficiency often becomes higher than parallel efficiency. In the re-
gimes where ideal scaling is observed in Figure 1, the power draw 
is about 1.2 kW per node1 which is constant over the runtime of 
the benchmark and varies only slightly between 1.1 kW per node 
for the larger and 1.3 kW per node for the smaller MD systems. 
Thus, in this regime, the total energy to the solution can simply 
be derived from the runtime and the number of compute nodes 
used. For example, the energy to solution for the large 204M sys-
tem amounts to ≈ (256 ⋅ 1. 1 kW)∕(18. 4 ns/d) = 367 kWh/ns.

Where the simulation performance deviates from ideal scal-
ing, the required power per node decreases as nodes become 
underutilized. For example, running the RIB system on 32 

compute nodes consumes only about 1 kW per node. In the re-
gime of ideal scaling on 1–4 nodes, RIB achieves an energy effi-
ciency of 17.0–17.4 ns/d per kW. This was roughly the efficiency 
of GPU nodes five years ago and represents a threefold improve-
ment over CPU nodes of that age [31].

4   |   Conclusions

Our GROMACS benchmarks on the new AMD- CPU- based 
HPC system of the Max Planck Society, Viper, for realistic and 
typical biomolecular systems show that the combination of pow-
erful CPUs, a fast interconnect, and well- tuned software makes 
it possible today to simulate extremely large MD systems with 
up to several hundred million atoms. For the largest system with 
204 million atoms, the scaling behavior was shown to be close 
to ideal, with parallel efficiencies above 0.9 even at the highest 
parallelization levels (512 nodes with altogether 65,536 cores), 
while maintaining high energy efficiency. This demonstrates 
that modern HPC machines now provide the level of perfor-
mance needed for simulating MD systems of the size of viruses, 
organelles, and eventually, small cells.

Besides the interconnect hardware, a high- performance MPI 
communication library is crucial for enabling the highest 
GROMACS simulation performance at scale. While Intel- MPI 
consistently delivered the best performance for our benchmarks, 
Open- MPI is found to be a very competitive alternative.
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Endnotes

 1 For comparison, a single- node High- Performance- Linpack run (AMD 
Zen HPL [30]) draws ca. 1.5 kW per node, which reflects GROMACS 
being a highly optimized, compute- bound application.
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