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Abstract

The current understanding of protein function predominantly relies on the concept

of describing proteins as comprising discrete conformational and chemical states

including transitions between these states. The theory of Markov processes pro-

vides the mathematical foundation for such a description in the form of Markov

models. Two distinct methodologies exist for the construction of such models. In

a bottom-up approach, Markov model parameters are directly determined based

on molecular dynamics simulations, which typically constrains the Markov models

to short timescale dynamics. In contrast, in a top-down approach, the parameters

are indirectly determined by fitting observables derived from the Markov model to

experimental data. This second distinctive methodology permits the integration

of long timescale dynamics. However, due to insufficient experimental data, many

top-down Markov models may exist that fit the experimental data equally well.

In the first thesis part, I employed Bayesian inference to address this underde-

termination through a rigorous ranking of shared characteristics, such as molec-

ular mechanisms, of well-fitting top-down Markov models in terms of posterior

probability. I apply this approach to twin-ATPase ABCE1, which exhibits an

unexpected kinetic asymmetry between its two ATP-binding sites that was ob-

served in mutants. Thus far, the prevailing hypothesis to explain this asymmetry

is a direct allosteric communication between the two binding sites. However, I

challenge this hypothesis with successfully fitting top-down Markov models that

are explicitly defined to exclude such direct allosteric communication. Instead, I

demonstrate that a shift in steady-state population between reaction pathways,

caused by avoiding kinetic trap states, provides an alternative explanation for the

asymmetry.

During this first part, the dependence of ATP turnover rate on a logarithmic

substrate concentration approximated—at least piecewise—a sigmoid curve for

the majority of ABCE1 Markov models. This dependence is also observed in one

of the simplest enzyme kinetics models, namely the Michaelis-Menten kinetics.

Despite the perceived ubiquity of the Michaelis-Menten kinetics, the prevalence

of this dependence was an unexpected outcome, given that the Markov models of

ABCE1 are considerably more intricate than the Markov model that is necessary

to derive the Michaelis-Menten kinetics.

In the second thesis part, I investigated this discrepancy in expectation by quan-
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tifying the occurrence of Michaelis-Menten kinetics in sparsely connected Markov

models. Strikingly, I showed that even for large models with up to 200 Mar-

kov states, the turnover curves are almost exclusively (>80%) comprised of such

Michaelis-Menten-like pieces, as long as a fraction of concentration-dependent

rates is less than 10%. As this low fraction covers the biologically relevant range,

this result contributes to an explanation of the ubiquity of Michaelis-Menten ki-

netics. I explain this behavior based on the distance between possible Michaelis-

Menten-like pieces and the combinatorial problem described by the hypergeomet-

ric distribution, which determines this distance.

Both approaches—the employment of top-down Markov models to investigate

allostery and the comprehensive analysis of the intrinsic characteristics of Markov

models to elucidate common motifs in proteins—have the potential for broader

applications and, thus, will contribute to a more profound understanding of pro-

teins.
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1 Introduction

Proteins are macromolecules that perform a variety of functions in all living organ-

isms, for example, catalyzing reactions, transferring molecules across membranes,

and assembling themselves from DNA. Each protein is a polymer with a specific

sequence of amino acids, the primary sequence, with some sections of these se-

quences being conserved over millions of years and across species. To perform

their functions, proteins fold under physiological conditions into, also protein spe-

cific, structures driven by electrostatic interactions, hydrogen bonds, salt bridges

and hydrophobicity.1

Historically, the first protein structures were determined by X-ray diffraction

experiments on protein crystals of hemoglobin2 and myoglobin.3 The very fact that

proteins could be crystallized and their structure determined by X-ray diffraction

lead to the notion that each protein has one specific structure and that its function

can be explained by this particular structure.4

Only in the late 1970s did Frauenfelder et al. observe an unusual distribu-

tion of relaxation times for the release of carbon monoxide from myoglobin in

flash photolysis experiments that can only be explained by a release process that

includes multiple conformational states of myoglobin.5 They concluded that pro-

teins driven by thermal fluctuations are dynamic entities adopting a magnitude

of sub-states of their structures between which the proteins transition during the

time span of performing their function. Today, these sub-states are referred to as

conformations. The transitions between the conformations range from minor rear-

rangements of amino acids side chains to large displacements of whole sections of

the protein structure compared to the measured structures. The transition rates

between sub-states span a range from 10−11 s to 1 s, where rates typically correlate

with the size of the conformational change.6

Further experiments of myoglobin suggested that the sub-states are organized

in a hierarchical manner in the free energy landscape, i.e, every sub-state contains

sub-sub-states separated by barriers lower than the barriers separated the sub-
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states.7 Thus, different levels of conformations exist, where the conformations

of a lower level might be described as thermal fluctuations around an average

structure of a conformation of a higher level.

The conformations of the highest levels are typically quite different from each

other and represent different functional modes of the protein which are controlled

by external factors, e.g., binding of ligands or other proteins, or substrate and

salt concentrations. For example, ion channels might have a conducting and non-

conducting conformation depending on the presence of ligands8 whereas enzymes

an active and inactive conformation depending on the presence of substrates.9

The structures of conformations that depend on external factors can often be

determined by X-ray diffraction, nuclear magnetic resonance spectroscopy or cryo-

electron microscopy of proteins exposed to these external factors. However, the

transitions between these conformations and the abundance of conformations of

lower levels with smaller deviations between them, which are still functionally

relevant as the experiments of Frauenfelder et al. have shown, are extremely

challenging to determine experimentally due to the high spatial and temporal

resolution required.10

Computational methods, in particular molecular dynamics simulations, have

been developed to make conformations of very similar structure, and especially

the transitions between them, accessible and have provided astonishing insights

into the function of proteins.11 Molecular dynamics simulations describe proteins

on an atomistic level and use empirical potential energy functions to model bonded

and non-bonded interactions between atoms, where the set of empirical potential

energy functions is referred to as a force field. Time trajectories of protein con-

formations are then generated by integrating the equations of motions for each

atom in the force field.12 Due to constant improvement of simulation software

and the ever increasing available computing power, today simulations of large sys-

tems like the ribosome with millions of atoms13 and milliseconds of systems with

ten-thousands of atoms are possible today.14

Molecular dynamics simulations generate high-dimensional data due to their

atomistic resolution, which raises the challenge of isolating the degrees of freedom

that are relevant to gain insight into a particular question. Thus, coarse-grain ap-

proaches have been developed for the analysis of molecular dynamics trajectories

that remove irrelevant degrees of freedom from the data. Markov models, which

use the name giving Markov chains to describe molecular dynamics, have emerged
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as a theoretically sound way of coarse-graining15 and have been successfully ap-

plied to many protein systems.16–18

Markov chains comprise of a set of states, here protein conformations, and a

set of transitions with transition rates between these states where each transition

obeys the Markov property of memorylessness, i.e., the probability of a transition

depends only on the current state.19 A time-continuous Markov chain is defined

by its transition rate matrix, which gives the probabilities of transition between

states per second.

Considering the hierarchical free energy landscape and using the terminology

of Frauenfelder et al. for conformations of states and substates, it can be seen

that Markov models provide a very intuitive approach to coarse-grain molecular

dynamics trajectories to varying degrees by associating Markov states with states

of different levels. The transition rates can then be inferred from the observed

transitions between conformations in the molecular dynamics trajectories.20 Thus,

the construction of Markov models from molecular dynamics trajectories can be

considered a data-driven bottom-up approach.

Moreover, Markov models can be thermodynamically consistent, i.e., they can

satisfy detailed balance, thus providing access to the equilibrium thermodynamic

and kinetic properties of the system.21 In particular, because transition rates can

be estimated from trajectories that are only locally equilibrated in the initial

state and not globally, Markov models allow access to time scales beyond those

accessible in molecular dynamics simulations.18

However, despite remarkable progress in the field of molecular dynamics simu-

lations, for many proteins not every functionally relevant transition is accessible

by this method. In particular, the time scales of many protein-protein interac-

tions, substrate or ligand binding, and protein folding are typically too large to

observe even a single transition in molecular dynamics simulations. Furthermore,

molecular dynamics simulations typically do not model breaking or forming bonds

and cannot describe chemical reactions. Because bottom-up Markov models are

inferred from molecular dynamics data, they have the same limitations. Thus,

molecular dynamics simulations and Markov models derived from them are typi-

cally limited to describing conformational changes and cannot provide a complete

picture of all functionally relevant states and transitions of a protein.

However, Markov models do not need to be inferred from molecular dynamic

simulations and are, in general, quite suited to describe ligand exchanges and
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chemical reactions. Note that for the sake of shortness, we will refer to ligand

exchanges as chemical reactions too, although no covalent bounds are formed

or broken. For example, Markov models were already used in the beginning of

the 1900s century to describe enzyme kinetics, although they were not referred

to by this term.22,23 Michaelis and Menten described the enzyme kinetics as a

chemical reaction with the enzyme as a catalyst, and thus established that enzyme

kinetics can be described like every other chemical reaction as a set of species,

compounds and reactions.Setup and analysis of these chemical reaction networks

were formalized in the 70s by Feinberg, Horn and Jackson.24,25

There are two special cases in which chemical reaction networks can be de-

scribed by a Markov model. First, if chemical reaction networks comprise only of

monomolecular chemical reactions with mass action kinetics. Note that this case

includes bottom-up Markov models if each conformational change is interpreted

as a monomolecular reaction. Second, if chemical reaction networks describe sys-

tems that are in a quasi-steady state, all non-enzyme complexes can be assumed

constant, and thus all multimolecular reactions effectively reduce to monomolec-

ular reactions.26 This assumption has become a cornerstone in the description of

proteins,27 where only recently the scope of its validity has been investigated.28–30

Also only recently it is widely recognized and accepted that both chemical re-

actions and conformational changes can be described by Markov models, allowing

one to combine both within a unified theory for complex biomolecular interaction

networks of ’molecular machines’. Recent examples include the use of Markov

models to analyze translation,31,32 transcription,33,34 signaling pathways,35 molec-

ular motors,36–43 and complex enzymes such as the fatty acid synthesis,44 allowing

a better conceptual understanding of their functions.†

We will refer to this type of Markov models as top-down Markov models, because

the Markov states and the connections are deliberately chosen so that the model

includes all functionally relevant conformational changes and chemical reactions,

as opposed to being inferred from a large data set. In addition, the determination

of transition rates differs between the bottom-up and top-down Markov models.

In the bottom-up Markov models all transition rates are inferred from molecu-

lar dynamics data as are the states and connections. In contrast, the top-down

Markov models take advantage of the fact that Markov models are quantitative

models and thus the calculation of quantities that are accessible in experiments,

†This paragraph is adapted from the introduction of chapter 3.

10



for example, turnover rates and occupations is possible. Thus, in the top-down

Markov models the transition rates are inferred from experimental data by solv-

ing the backward problem of determining the Markov models that produce the

measured values. In particular for increasingly complex top-down Markov models,

this backward problem is underdetermined, i.e., the number of unknowns, which is

equal to the number of transition rates of the Markov model, is drastically larger

than the number of experimental observations.44

To date, maximum likelihood estimation or optimization of cost functions have

been used to determine Markov models that produce the experimental data used to

constrain the models.35,44,45 These approaches have the following drawbacks: First,

because of the focus on determining Markov models that produce the measured

values as closely as possible, the sampled Markov models can be overfitted, i.e.,

they produce the measured values very well but are not able to correctly predict

other experimental data. Second, in the case of an underdetermined system, many

Markov models with similar high likelihood but otherwise different properties can

be determined. Neither approach provides a basis for favoring or disfavoring one

of these Markov models over another. Third, they do not provide a rigorous

uncertainty estimate, for example, of the transition rates.46

Here we want to address the underdetermination of top-down Markov models

from a new angle with a Bayesian approach, which assigns each Markov model the

probability density value that it is the one that produced the given data in the

first place. Bayesian approaches use the name giving Bayes theorem, which states

(ignoring the normalization by the probability of the data) that the probability of

a model given the data, referred to as the posterior probability, is proportional to

the probability of the data given the model multiplied by the prior probability of

the model.

Bayesian approaches require the choice of a prior, which is unique to each prob-

lem and reflects the knowledge about the model without the current data. In

this paper, we ask what is a good prior for transition rates in top-down Markov

models.

Bayesian approaches promise to improve on the drawbacks of the above-mentioned

approaches by determining the full posterior distribution rather than particular

points of a likelihood or cost function. First, because the posterior probability

includes experimental errors, not only are Markov models determined that pro-

duce values as close to the experimental mean as possible, but also Markov models
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that match the measured values within the experimental error, thus mitigating

the problem of overfitting. Second, the posterior distribution allows to calculate

probabilities for subsets of Markov models that, for example, have common prop-

erties with respect to the answer to a research question. Thus, even in the case

of an underdetermined problem, it is possible to make valid inferences about dif-

ferent subsets of Markov models, beyond the fact that individual members of the

subsets explain the experimental values equally well. Third, by determining the

full posterior distribution, uncertainties are naturally provided.

Together with Tampe et al. we noticed that for the ATPase ABCE1 top-down

Markov models could provide insights into the unexpected asymmetry between

the kinetics of two ABCE1 mutants.47 ABCE1 has two nucleotide binding sites

that are very similar in sequence and structure. Thus, an equal contribution of

both binding sites to the ATP turnover rate of wild-type ABCE1 was expected.

This hypothesis was apparently confirmed by measuring a twofold decrease in the

ATP turnover rate of a mutant in which ATP hydrolysis was impaired in one

of the two binding sites. However, the identical point mutation in the opposite

binding site resulted in a tenfold increase in ATP turnover rate.

An asymmetric allostery between the two binding sites has been proposed to

explain the asymmetric kinetics of the two mutants. The test of this hypothesis

using top-down Markov models is presented in Chapter 2.

The top-down Markov models of ABCE1 inferred in chapter 2 are drastically

more complex in terms of number of states and connections if compared to the

probably first top-down Markov model of the Michaelis-Menten kinetics with only

two states. However, despite this difference in complexity, we observed that the

Markov models of ABCE1 unexpectedly often show a behavior that is very well

described by these same Michaelis-Menten kinetics.

As mentioned above, the description of complex systems with multimolecular

transitions by Markov models relies on the assumption that these systems operate

in a quasi-steady state. Under this assumption all substrate, ligand, and prod-

uct concentrations are assumed to be constant and steady state observables, for

example, turnover rates or occupations, can be calculated from the steady state

probability of each state. Importantly, the steady state probability depends on the

value of the as constant assumed concentrations, i.e., the steady state probability

changes if a different constant concentration is assumed. We refer to the function
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of a steady state probability on a non-enzyme concentration as an occupation

curve.

One example of an occupation curve is the Michaelis-Menten equation of the

above-mentioned Michaelis-Menten kinetics. The equation describes how the

turnover rate, which is a function of a steady state probability, of an enzyme

changes with the substrate concentration if the enzyme kinetics are described by

a two-state Markov model.

We noticed that the occupation curves of the Markov models of ABCE1 are

unexpectedly often, at least on intervals of the substrate concentration, described

by this exact Michaelis-Menten equation, i.e. are sigmoidal on a logarithmic con-

centration scale. In addition, and quite strikingly, we were not the first to observe

Michaelis-Menten-like behavior in occupations curves of complex Markov mod-

els.48–50

Consequently, already some research has been done on the cause of these unex-

pected occurrences of Michaelis-Menten-like behavior in complex Markov models.

In particular, the case of an occupation curve to be described by one Michaelis-

Menten equation over the entire concentration interval has already been investi-

gated. Two studies derive conditions for this case based on the idea to coarse-grain

the Markov models to match the two-state Markov model of the Michaelis-Menten

kinetics. One is based on a distinction of states with respect to representing free

enzymes or bound enzymes,49 and one is more generally based on the structure

of Markov models, i.e., the states and the connections between them.50 The two

works derive sufficient but not necessary conditions, and thus, there are still occur-

rences of this case of Michaelis-Menten-like behavior that remain unexplained51

including our own observations.

In particular, occurrences of occupations curves that are piecewise well described

by the Michaelis-Menten equation as observed for proteins with multiple binding

sites still remain unexplored.52–54 Thus, in Chapter 3 we asked how probable it

is for occupations curves of Markov models to have Michaelis-Menten-like pieces,

especially for Markov models with properties typical for the description of proteins.
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2 The Kinetic Asymmetry of

ABCE1 Mutants
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2.1 Introduction

Protein biosynthesis is critical to all life and involves two major steps: transcrip-

tion and translation. The latter is carried out by the ribosome, a macromolecular

machine present in all organisms, together with species-specific translation fac-

tors. The ribosome consists of two subunits, the large and the small subunit,

which must assemble anew for each synthesized protein and, at the end of trans-

lation, must be separated by translation factors to allow the translation cycle to

start again.

In all eukaryotes and archaea this vital task of separating the ribosomal sub-

units during the termination step is fulfilled by the ATPase ABCE1, a member

of the ATP-binding cassette superfamily, in coordination with further translation

factors. The separation process is driven by binding two ATPs and a subsequent

conformational change of ABCE1. Additionally, ABCE1 is involved in recruiting

translation initiation factors to the small ribosomal subunit to restart transla-

tion.55,56

ACBE1 has two sequentially and structurally almost symmetrical nucleotide

binding domains (NBD).47,57–63 Figure 2.1 shows the structure of ABCE1 includ-

ing the seven highly conserved sequence motifs in each NBD highlighted, which

are required for ATP-binding and hydrolysis, namely, A-loop (Y-loop), Walker-A

(P-loop), Q-loop, His-switch (H-loop), Walker-B, D-loop and the ABC-signature

motif (C-loop).

The conserved loops are distributed on two structurally separated lobes includ-

ing A-loop, Walker-A, Q-loop, His-switch and Walker-B in one lobe, the signature

motif in the other lobe, and the D-loop between the lobes. Because of the spacial

separation of the conversed loops, a single NBD is incapable of nucleotide hydroly-

sis.64,65 To allow hydrolysis, the two NBDs are oriented in an anti-parallel fashion

creating two functional nucleotide binding sites (NBS) at their interface. The

binding sites are referred to as NBSI and NBSII based on the order of appearance

of the corresponding Walker-A motif in the primary sequence.

X-ray diffraction and cryo-electron microscopy structures show ABCE1 in an

open47,57,58 and a closed conformation,62,63,66 and suggest a third intermediate

conformation if ABCE1 is in pre-splitting complex with the ribosome.59,60 In the

closed state, one nucleotide per NBSs is bound between the two NBDs.

Structural insights to ABCE1 are complemented by bulk and single-molecule ex-
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periments.47,55,56 To investigate the functional role of each NBS, the ATP turnover

rate of wild-type ABCE1 and ATP hydrolysis deficient mutants of ABCE1 were

measured amongst other observables, for example, the Michaelis-Menten constant

KM .47 In each mutant, the catalytic active Walker-B motif glutamate (one letter

code E) of one NBS was changed to glutamine (one letter code Q) , whereas the

other was left intact, resulting in a drastically reduced ATP hydrolysis rate of the

respective NBS. Mutant E238Q has the modification in the first NBS (NBSI) and

mutant E485Q in the second NBS (NBSII) allowing to measure the ATP turnover

rate of the opposite NBS.

The high symmetry between NBSI and NBSII suggests that each binding site

contributes equally to the wild-type ATP turnover rate. This expectation is ful-

filled by mutant E238Q that has a twofold reduced ATP turnover rate compared

to the wild-type. However, and quite astonishing, mutant E485Q does not show

a lower ATP turnover rate, but instead even an tenfold increase of ATP turnover

rate, thereby having a higher ATP turnover rate than the wild-type with half the

active NBSs.47,55 This rate increase is an unprecedented behavior for a member

of the ABC-superfamily, for example, P-glycoprotein (MDR3) with two consensus

NBSs shows a symmetric decrease of ATP turnover rate for mutants with identical

EQ point mutation in each NBS.67

Although there are sequential and structural differences between the NBSs of

ABCE1, none strikes as the sole reason for this asymmetry in ATP hydrolysis

rates as they seem either too minor or were experimentally tested and rejected to

be responsible for the observed asymmetry.63

The asymmetric kinetics lead to the common assumption55,56,63 of an asym-

metric allostery between between both NBSs such that ATP-binding in NBSII

facilitates ATP-binding or hydrolysis, or both, in NBSI. In this scenario, the

asymmetric kinetics of the mutants can be explained by an increased occupation

of hydrolysis-deficient NBSII by ATP and, thus, by an on average longer ’acti-

vated’ NBSI.63

However, the mechanism of this allostery in ABCE1 remains elusive. ABC

transporters, which are homologues of ABCE1, have various interactions across

both NBDs and, in particular, interactions of the D-loop of one NBS with the

Walker-A motif and His-switch of the opposite binding site.68,69 In contrast to

ABCE1, these transporters have one consensus and one degenerate side, i.e,

one NBS deviates from the consensus Walker-B motif, His-Switch and ABC-
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signature motif drastically reducing its ATP hydrolysis capabilities.65 Molecular

dynamic simulations of ABC transporter Sav186627 with two consensus NBSs,

shows that the interaction of the D-loop across NBSs changes upon switching

from ADP/ATP- to ATP/apo-occupations.70

As the most direct experimental indicator of direct interactions between the

NBSs in members of the ABC-superfamily is the measurement of cooperativity

in Rad50, another homologue of ABCE1 involved in DNA double-strand break

repair. After changing either the D-loop aspartate and the Walker-A asparagine

of the opposite binding site, which are thought to be responsible for allostery

between the NBSs, a reduced ATP-hydrolysis activity and reduced cooperativity

was determined, pointing also towards the role of the D-loop in the communication

between the NBSs.71 However, neither the wild-type nor the mutants of ABCE1,

and in particular not the wild-type, show any cooperativity to start with.47 Still,

the current prevalent hypothesis for the mechanism of allostery in ABCE1 is a

direct interaction between the two NBSs by conformational changes.55,56,63

In this chapter of this work, we ask if an asymmetric allostery between the two

NBSs is actually necessary in the first place, or if explanations not relying on

such allostery may exist for this unexpected kinetic asymmetry. In particular, if

ABCE1 without any allostery between the NBSs is not already complex enough

to exhibit this kind of unexpected kinetic asymmetry.

To this end, we describe ABCE1 as a Markov model, i.e., as a set of discrete

states, where the states are associated with different conformational and occu-

pational states of ABCE1, and with memory-free transitions of conformational

changes, ligand exchange and ATP catalysis between these states.19 Further, we

design the Markov model of ABCE1 such that any symmetric allostery between

the NBSs is excluded by having identical transition rate coefficients for binding

and catalysis transitions for each NBS irrespective of the opposite NBS occupation

state.

Note that we, at first, only define the ’structure’ of the Markov model, i.e., its

states and its connections to which we refer to as a Markov model class and not the

transition rate coefficients of the Markov model. In fact, there are many transition

rate coefficient matrices, referred to as instances, within this Markov model class

and we aim to find the subset of this instances that agrees with the experimentally

determined kinetics. We expect that a large fraction of the members of this set

shares common properties that serve to explain the asymmetry.
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To this end, we use Bayesian inference to determine this subset and to as-

sign probabilities to the set that share common properties, allowing for a rigor-

ous ranking of possible explanations. Previous approaches have used maximum

likelihood approaches or optimization of a cost function to identify individual

instances.35,36,45

We infer instances that produce the striking asymmetry with the Michaelis-

Menten kinetics parameters of wild type and both mutants and, thereby, show

evidence that an direct interaction of the NBSs is not required to explain the

asymmetric ATP turnover rates.

Instead, the asymmetric kinetics of the different mutants are explained as the

result of a mutation-induced redistribution of the steady state probability. A

preference of ATP hydrolysis in NBSI and of a conformational switch from the

closed to the open state with ADP/ATP occupation over ATP hydrolysis in NBSII

facilitates larger steady state probabilities of states belonging to reaction pathways

with high ATP turnover rates over NBSI than of states belonging to reaction

pathways with lower ATP turnover rate over NBSII. Thus, the reduction of the

ATP-hydrolysis rate of NBSI in mutant E238Q results only in a minor change of

the steady state probability. However, the same reduction of ATP hydrolysis in

NBSII results in a major shift of steady state probability towards states belonging

to high ATP turnover reaction pathways, allowing for the tenfold increased ATP-

hydrolysis rate of mutant E485Q.
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Figure 2.1 – Ribbon representation of the X-ray structure of ABCE1 in its open
conformation with two bound ADPs adopted from the PDB file 3BK7.58 The
colorcoded loops in stick representation are A-loop (orange), Walker-A (magenta),
His-switch (yellow), Walker-B (blue), D-loop (cyan) and ABC-signature motif
(red).
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2.2 Methods

Markov model kinetics and occupations The probability of the model to be in

a state i at a given time t is given by Xi(t). Given an instance, i.e., a transition

rate coefficient matrixQ, of in the previous section introduced Markov model class

and, given an initial distributionX(0), the time evolution of the probabilitiesX(t)

is given by the master equation

Ẋ = Q ·X(t) , (2.1)

with transition rate coefficient matrix Q in which qtt = −
N∑

s=1,s ̸=t

kts are the di-

agonal elements.72 Because ABCE1 is assumed to operate in a quasi-steady-state

during measurement of kinetics and occupations, except occupations measurement

by Nürenberg-Goloub et al., it suffices to determine the steady state solution π

of the master equation 2.1.47,55

Note that Q has educt and product concentration-independent entries kts and

concentration-dependent entries k′
ts =

c
c0
kts = αkts and that, thus, for each educt

and product concentration, the steady state solution had to be calculated anew.

From the steady state solution, the ATP turnover rate of an instance was cal-

culated as the sum of the net flux of all ADP-unbinding transitions with the net

flux being the difference ktsπs − kstπt such that the net flux is positive if ATP

is hydrolyzed. To calculate the parameters of the Michaelis-Menten kinetics, the

ATP turnover rate was calculated for each order of magnitude of ATP concen-

tration between 10−9 to 102 m. Instead of fitting the Michaelis-Menten equation,

the parameters were determined as follows to save computing time: The satu-

rating ATP turnover rate kvmax was determined as the ATP turnover rate at a

concentration of 100m ATP. To determine the Michaelis-Menten constant, the

two closest points to kvmax

2
were determined and for 10 additional points, logarith-

mic uniformly distributed, ATP concentrations between these two values, further

ATP turnover rates were calculated. The Michaelis-Menten constant was finally

calculated via linear interpolation between the two new closest points to kvmax

2
as

the ATP concentration for which the linear interpolation has value kvmax

2
.

All transition rate coefficients were scaled to match the temperature, and con-

centration-dependent transition rate coefficients k′
ts were adjusted to match ATP

and ADP concentrations of the respective experimental setups. In absence of an
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experimental control of the ADP concentrations, the ADP concentrations were

estimated for each experiment that accumulates during the experiment due to

auto-hydrolysis and enzyme-based catalysis of ATP by ABCE1. All experimental

setups excluded explicit addition of ADP, so that cADP (t = 0) = 0. In case of

the ATPase assay by Barthelme et al., the ADP concentration were assumed to

be 1 µm accounting for multiple ATPs per ABCE1 (0 to 10 µm) being hydrolyzed.

For the occupation measurement of Barthleme et al., ADP concentration were

assumed to be 10−3 of the ATP concentration.

Occupations were directly calculated from steady state populations by multi-

plication of a state population with its ATP/ADP occupation number [0, 1, 2].

Bayesian inference For a given Q, the steady state solution and, thus, kinetics

and occupations can be calculated. To test our hypothesis that no direct inter-

action between the NBSs is required for the asymmetric kinetics of the mutants,

we had to solve the backward problem, i.e., given the asymmetric kinetics of two

mutants determine a Q, defining a Markov model, having those kinetics. To this

aim, we applied a Bayesian approach which additionally provides the probability

for each Q that this Q was the one responsible for generating the experimen-

tal data in the first place. Note that the problem is underdetermined, because

the Markov model class has 17 unknowns but only six kinetic values have been

measured (ATP turnover rate kvmax and Michaelis-Menten-constant KM for each

wild-type and the two mutants).

We sample the posterior distribution

P (Q|d) =
6∏

j=1

1√
2πσ2

j

exp

(
−(dj − dj(Q))2

2σ2
j

)
× P (Q) (2.2)

of transition rates matrices Q limited to those following the above defined struc-

ture with dj and σj being mean and standard deviation of kvmax and KM for

each of wild-type, mutant E238Q with impaired NBSI and mutant E485Q with

impaired NBSII, and P (Q) the prior for which a log-uniform distribution on the

rates, i.e., a uniform distribution of the log of the rates, was chosen. Further,

we chose different boundaries for hydrolysis/synthesis, conformational transitions

and un-/binding rates as those different kind of transitions have different ranges

of typical timescales. Table 2.2 lists the boundaries for each type of transition.

Thus, we will use the same label as Barthelme at al., E238Q and E485Q, to refer
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to the mutants with the mutations in NBSI and NBSII, respectively.

We used the experimental results from Barthelme et al., who used mutants

where the Walker-B glutamate was changed to glutamine.47 For kvmax, a second

set of measurements is available showing an one-third increased kvmax with mutants

where the Walker-B glutamate was changed to alanine instead of glutamine.55 It

is uncertain whether the difference in kvmax can be attributed to the different mu-

tations. For ABC-transporter BmrA, no difference in ATP activity was measured

between the two mutations,73 and for non-ABC-superfamily member replication

factor C, the opposite effect on the ATP activity was measured.74 However, the

ratio of the transition rates between the wild-type, mutant E238Q, and mutant

E485Q agrees well between in the two experimental setup with different mutants,

and the absolute ATP hydrolysis rates of our model can be adjusted to comply

with both experimental data sets by scaling all transition rate coefficients by a

constant factor.

Only Markov models that satisfy detailed balance when there is no chemical

potential driving hydrolysis or synthesis, i.e, concentrations of ATP, ADP, and

Pi are the respective equilibrium concentrations and the ATP dissociation energy

is zero, can be considered to be thermodynamically correct. The condition of

detailed balance imposes constraints on the transition rate coefficients75 and the

degrees of freedom of the Markov model class are reduced from 20 to 17.

Bayesian inference was performed using the Metropolis Monte Carlo Markov

chain algorithm76,77 with 500 chains and 14 × 106each. The first 1 × 106 sam-

ples were discarded to equilibrate the chains. The starting points of each chain

were determined by minimization of the posterior using a differential evolution

algorithm.78

To avoid numerical errors despite the transition rate coefficients in Q spanning

up to 19 orders of magnitude, the steady state solution was calculated with 106-bit

significand precision and all other calculations were done with double precision.

To evaluate the convergence of the Bayesian inference, the first and the sec-

ond half of all chains were compared as depicted in supplementary figure 2.9. The

posterior densities show convergence in most regions; however, differences between

both halves suggest that the chain lengths are still insufficient or the chains have

to be equilibrated longer. The discrepancies agree with the R̂-value of 1.55, which

measures the mixing of the chains, being larger than the recommended value of

1.05.79 Nevertheless, we considered the convergence to be sufficient for qualita-
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tive statements, whereas quantitative statements, in particular the percentage of

reaction pathways, might change with more sampling of the posterior.
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2.3 Results

To test the hypothesis that no direct communication between the two NBSs of

ABCE1 is required to explain the asymmetric kinetics of the two mutant species,

we describe the combined conformational dynamics and ATP binding, hydrolysis

and product unbinding as a Markov model, which by definition does not contain

such direct interaction. Therefore, if the observed peculiar and counter-intuitive

kinetics can be reproduced by the Markov model, there is not necessarily any

allostery involved.

Markov Model classes of ABCE1 The following assumptions determine the

number of states, their association with conformational and occupational states

of ABCE1, and the connections between them as shown in figure 2.2.

First, we assume that the order of binding or unbinding of ADP and Pi is

irrelevant to the overall kinetics because it is determined by the rate-limiting

binding or unbinding of these two ligands, whichever it is, and thus ADP and Pi

binding and unbinding can be described by a combined transition with an effective

transition rate coefficient. This assumption is consistent with the current model of

ABCE1-driven ribosome separation, that combines ADP and Pi release in a single

step.63 Although cryo-EM structures for the heterodimeric ABC exporter TmrAB

suggest that Pi release occurs before ADP and facilities further opening of NBSs,

no further functional relevance for Pi release was found beyond triggering NBS

opening and subsequent ADP release,9 and thus further supports the description

of ADP and Pi release as a combined transition. Note that binding and unbinding

of ADP henceforth implies the binding and unbinding of ADP and Pi .

Second, we assume that two conformational states of ABCE1 are sufficient to

describe ATP-hydrolysis of free ABCE1. An open state in which ATP and ADP

binding are possible but hydrolysis and synthesis are not, and a closed state in

which ATP and ADP binding and unbinding are impossible but hydrolysis and

synthesis are possible. The existence of an open and a closed state has been

established by X-ray structures of free ABCE1 occupied by ADP showing ABCE1

in an open conformation47,57,58 and Cryo-EM structures of ABCE1 bound to the

small ribosomial subunit showing ABCE1 in a closed conformation.62,63,66

Furthermore, it is well supported that in the open state primarily binding/un-

binding of ATP and ADP and only background amounts of hydrolysis or synthesis

take place because the signature motif and the D-loop of the opposite NBD,
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which complement the NBS and coordinate the γ-phosphate, both necessary for

hydrolysis, are not in contact with ATP.47,57,58,69,80

By the same argument the closed state is considered to be competent for ATP

hydrolysis and synthesis because all residues required for ATP hydrolysis are in

contact with ATP.55,62,63,66,81 Additionally, when ABCE1 is arrested in the closed

state by AMP-PNP or by rapid cooling of thermophilic variants of ABCE1, the

bound nucleotides can not be washed out supporting that binding and unbinding

of ADP and ATP are not possible in the closed state.47,55

In addition to the open and closed states, Cryo-EM structures of ABCE1 bound

to the ribosome show ABCE1 in an additional, intermediate or semi-open con-

formation.59,60 Förster resonance energy transfer (FRET) measurements of the

distance between the NBDs of each NBS of ABCE1 support the meta-stability of

this intermediate state.56,63Whereas measurements of free ABCE1 in absence of

nucleotides and ribosomial subunits show that the intermediate state is well pop-

ulated, free ABCE1 in presence of ATP was not investigated.56 In other members

of the ABC-superfamily, an intermediate state of the NBDs is observed as well,

although the coupling with trans-membrane-domains might influence the con-

formational space of the NBDs and reduce the transferability to ABCE1.9,82 In

ABCE1, the intermediate state is considered necessary for regulation of ribosome

separation.63

However, for the purpose of testing our hypothesis that allostery is required for

the asymmetric kinetics of the two mutants, i.e., to describe ATP hydrolysis of free

ABCE1 in the absence of ribosomes, we believe that a third conformational state

is not required. Instead, we assume that the effects of an intermediate state on the

overall kinetics can be described by adopted transition rate coefficients of ligand

exchange and ATP catalysis of the open and closed states in the Markov model.

Consequently, the open and closed states of the Markov model can be considered as

not strictly associated with the open and closed states observed in the structures.

But, instead, might to be associated with a mixture of open/intermediate and

intermediate/closed states with the distinction that in one state ligand exchange

is possible but ATP catalysis is not, and vice versa for the other state.

Third, we assume that both binding sites can only open and close simultane-

ously, and that ABCE1 can close only if both binding sites are occupied by ATP

and ADP. This assumption is supported by the fact that all ABCE1 structures

that have been determined so far show both NBSs in identical conformations and,
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if closed, have one non-hydrolyzable ATP analog in each NBS.47,57–60,62,63,66 Dif-

ferences in FRET-efficiency between the two NBSs indicate a certain degree of

independence of the NBSs,56 but no direct measurement of the correlation be-

tween the conformational states of the two NBSs exists to date. Referring to the

ABC-superfamiliy for support of this third assumption, we find that the prevailing

model of ABC transporters assumes a symmetric conformation of both NBSs,83

although a reciprocating model with asymmetric working NBSs has also been

proposed.84 Hofman et al. propose a partial opening of NBSII after phosphate

release as a transition state to the open state.9 Taking together the above argu-

ments, we conclude that a strict dependence between the conformational states

of NBSs and an dependence of the closed state with occupation of the NBS with

nucleotides is best in agreement with current the understanding of ABCE1 and

the ABC-superfamily at its whole.

Fourth, we assume that no interaction between the two bindings site exists, i.e.,

ATP and ADP occupation of one binding site has no influence on the transition

rates of binding, unbinding, hydrolysis, and synthesis of the opposite binding

site. In the Markov model framework, this assumption can be realized by setting

transition rate coefficients of same transition type, for example, ATP hydrolysis in

NBSI, to the same value irrespective of the occupation of the other binding site.

Transitions to which this applies have identical transition rate coefficients kts as

depicted in figure 2.2.

The above assumptions result in a Markov model class of the wild-type with 13

states and 20 transitions with 10 unique transition rate pairs, i.e., 10 forward and

10 backward transition rate coefficients. Of these 20 transition rate coefficients,

only 17 are independent due to the requirement to fulfill detailed balance. The

supplementary table 2.1 lists all edge labels/transition rates together with the

corresponding conformational change or ligand exchange.

The Markov model classes of the mutants are derived from the wild-type class

by taking out the connections corresponding to ATP hydrolysis and synthesis of

the NBS with the point mutation as illustrated by the two left panels in figure 2.2.

This change corresponds to the assumption that the point mutations only influence

ATP catalysis of the respective NBS. Thus, instances of wild-type and mutant

classes are identical except for corresponding transition rate coefficients of ATP

hydrolysis and synthesis of the impaired NBSs, i.e., k2 and k12 for species E238Q

and k3 and k13 for species E485Q. Note, that instead of setting the corresponding
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transition rate coefficients to zero to derive mutant instances from the wild-type

instance, we reduced the transition rate coefficients by a factor of 100 in accordance

that the mutation only impairs and not completely blocks ATP hydrolysis.47,67

Figure 2.2 – Graph representations of the Markov model class of ABCE1. All tran-
sitions are reversible. Transition rate coefficient labels ki belong to the transitions
indicated by the solid arrow, i.e., forward direction and the labels of transition
rate coefficient for the backward transitions are ki+10 (not shown). The two left
graphs illustrate which transition rate coefficients are reduced to account for the
impaired ATP hydrolysis capability by the mutation of the corresponding binding
site.

No direct communication required We used the Metropolis-Hasting Monte

Carlo algorithm to sample the posterior probability density in equation 2.2 with

500 chains of 14 million instances each.

If sampled instances reproduce the kinetics of wild-type and mutants E238Q

and E485Q within error, we conclude that no direct communication between the

NBSs is required for the asymmetric kinetics because the Markov model class of the

instances excludes any direct communication between the NBSs. Figure 2.3 shows

histograms of kcat and KM of the sampled instances normalized to probability

densities, i.e, each panel is a probability density of the posterior density. The

means of all six distributions agree well with the experimental determined values

and the variances are within the experimental uncertainty, and thus instances

that reproduce the experimentally measured kinetics within error do exist. Thus,

no direct communication between the two NBSs is required for the asymmetric
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kinetics of the three species.†

Next, we studied the mechanism that allows the Markov models to have the

asymmetric kinetics between the mutants without relying on direct communica-

tion. To this aim, we identified the sequences of states a Markov model cycles

through to hydrolyze ATP, for example, the sequence states 1-2-3-5-12 that cor-

respond to hydrolyzing ATP in NBSI with ATP bound in the NSBII. We refer to

the sequences as reaction pathways, and to states of the sequence as belonging to

this reaction pathway. Note that one Markov model might have multiple reaction

pathways.

We considered only the dominant reaction pathways, i.e, those reaction path-

ways that contribute at least 10% to the overall ATP turnover rate at saturating

concentrations of ATP. For two instances to be considered to have the same domi-

nant reaction pathways, the dominant reaction pathways of the wild-type instance

and of the two derived mutant instances have to be identical. We refer to instances

having the same triplet of dominant reaction pathways, one per species, as being

of the same Markov model type. We determined the dominant reaction pathways

of each instance and calculated the probabilities of each Markov model type based

on the posterior values of the instances.

In total we determined over 4000 Markov model types. Figure 2.4 shows the

reaction pathways of the three most probable Markov model types.

We identified that in all three Markov model types it is essential for the asym-

metric kinetics of the three species that the steady state probabilities in the wild-

type are asymmetrically distributed between states belonging to reaction pathways

via NBSI, that dominate the ATP turnover rate in species E485Q, and states that

do not belong to these reaction pathways. The low steady state probabilities of

states belonging to reaction pathways via NBSI are a prerequisite for a large shift

of steady state probability towards these states in species E485Q to realize the

over tenfold increase of the ATP hydrolysis rate.

Because it is the most intuitive one, we use the third most probable Markov

model type with 5.4% to illustrate this principle. In this Markov model type,

ABCE1 uses two reaction pathways to hydrolyze ATP in all three species. One

in which ATP is hydrolyzed in NBSI (upper right reaction pathway) and one in

which ATP is hydrolyzed in NBSII (upper left reaction pathway), while in both

†A similar result based on a maximum-likelihood approach and with a reduction of the
mutant affected transition rates of ATP catalysis to zero was already previously obtained.85
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cases an ATP is bound to the opposite NBS.

In the wild-type, the reaction pathway via NBSI contributes more to the over-

all ATP turnover rate than the reaction pathway via NBSII. Counter-intuitively,

because anti-proportional to the ATP turnover rates, the states belonging to the

reaction pathway via NBSII have a lower steady state population than the states

belonging to the reaction pathways via NBSI (state 6 has over 80% steady state

population).

For species E485Q, the reduction of ATP hydrolysis in NBSII results in a large

shift of steady state probability from states belonging to the reaction pathways via

the now impaired NBSII towards the states belonging to the reaction pathways

via NBSI. The increased probability ultimately leads to an increase of the ATP

turnover rate via NBSI and to the ten-times increase of overall ATP turnover rate.

In contrast, for mutant E238Q with a reduced ATP hydrolysis in NBSI, only

a minor shift in the steady-state population towards states belonging to reaction

pathway via NBSI is observed, resulting in a decreased ATP turnover rate in NBSI

and a reduction in overall ATP turnover rate.

At the same time, the asymmetric distribution of steady state probability allows

to realize the reduction of the ATP-hydrolysis rate in mutant E238Q by a minor

shift of steady state probability away from states of reaction pathways via NBSI.

Two factors contribute to the asymmetric distribution of steady state proba-

bility between states belonging to reaction pathways via NBSI and other states.

First, the shorter the average time is required to cycle through a reaction pathway,

i.e., the higher the transition rate coefficients of the transition of this pathway, the

lower the steady state probabilities have to be for the reaction pathway to have a

particular ATP turnover rate. Thus because, the ATP turnover is faster in NBSI,

the Markov model has to have lower steady state probability of the states belong-

ing to this pathway to produce the same ATP turnover rate as in the experiments,

than of the states belonging to reaction pathways via NSBII.

Second, some reaction pathways are more probable to be ’chosen’ than others.

This second factor is best understood by reference to the above discussed Markov

model type that has one reaction pathway via NBSI and one via NBSII in the wild-

type. Both reaction pathways include the states 1 and 2, the open and closed state

with two ATPs bound. Being in state 2, the system can ’choose’ which ATP is

hydrolyzed first and, thereby, ’chose’ between the reaction pathway via NBSI and

via NBSII. This decision depends only on the ratio of the two forward transition
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rate coefficients of the corresponding transitions and, in particular, is independent

of the ATP turnover time of the ’chosen’ reaction pathway. Thus, this state acts

as a fork between both reaction pathways and therefore is termed ’fork state’.

Note that, in general, a similar situation can occur at state 3, only that the choice

is between a conformational switch to the open state and hydrolyzing ATP in

NBSII.

Both factors, alone or combined, can result in higher steady state probabilities

of states of reaction pathways with lower ATP turnover rate than of states of

reaction pathways with higher ATP turnover rate.

Figure 2.5 shows the two forward transition rate coefficients at the two above

mentioned fork states 2 and 3, ultimately deciding which reaction pathway will be

’chosen’. The transition rate on the x-axis determines the transition rate coefficient

corresponding to a reaction pathway over NBSII, and the transition rate coefficient

on the y-axis to a reaction pathway including NBSI. Indeed, larger transition rate

coefficients and, thereby, a bias towards reaction pathways over NBSI are observed.

This bias counteracts the long turnover times of reaction cycles over NBSII and,

thus, ensures that reaction pathways over NBSI contribute to the overall ATP

turnover rate. This type of correlation was only found between these two pairs of

transition rate coefficients, emphasizing the exceptional role of states 2 and 3.

The first and second most probable Markov model types follow the same prin-

ciple of asymmetric distribution of steady state probability but use only reaction

pathways over NBSI to hydrolyze ATP in wild-type and both mutants, i.e., re-

action pathways over NBSII do not contribute significantly to the overall ATP

turnover rate. The usage of only reaction pathways over NBSI is particularly pe-

culiar for mutant E238Q, where the transition rate coefficients of ATP hydrolysis

of NBSI are reduced by a factor 100 and, still, ATP is only hydrolyzed by reac-

tion pathways via NBSI and the ATP turnover rate is only reduced by a factor

of 2 to 3. Also this Markov model type is possible because in the wild-type the

majority of steady state probability is not bound in states belonging to reaction

pathways that contribute to the ATP turnover rate. Thereby, in species E238Q

the reduction of transition rate coefficients can be compensated by an increase of

steady state probabilities of the start and end states of the ATP catalysis.

In general, we determined over 4000 different Markov model types characterized

by their reaction pathways triplets. The large number of possible combinations of

reaction pathways is responsible for the low probability of each individual Markov
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model type. Also, the overall number of Markov model types and their probabili-

ties depends severely on the net flux threshold at which a transition is considered

to be part of a reaction pathway or not. However, the three most probable Markov

model types illustrated in figure 2.4 belong to the most probable Markov model

types over a wide range of this threshold.

Prediction of nucleotide occupations So far, we showed that Bayesian ap-

proaches help to extract information from the samples of an underdetermined

system by allowing to calculate probabilities of sets of samples with shared prop-

erties. Another notorious problem with the applications of maximum-likelihood

approaches to underdetermined systems is the problem of overfitting, i.e., only a

small set of Markov models with highest likelihood are sampled which because of

their ’specialization’ might fail to explain additional data that was not included in

the likelihood. Here we tested if the extensive sampling of Markov models taking

the experimental error into account can reduce the problem of overfitting. To this

end, we checked whether the sampled instances can correctly predict ATP and

ADP occupations of wild-type and both mutant species.

Occupation data from two different experimental setups are available.47,55 The

ATP and ADP occupations by Nürenberg-Goloub et al. were measured with a 2:1

ratio of ATP to ABCE1 concentration. ATP and ABCE1 were let to interact for

30 sec before reactions were stopped by cooling and the subsequent measurement

of the occupations.

Figure 2.6 shows mean and standard deviation of the measured occupations by

Nürenberg-Goloub et al. as red crosses together with the occupations calculated

from the Markov models under quasi-steady-state assumption.55 In none of the

Markov models, ABCE1 binds more than one nucleotide and no Markov model

has occupation values within two standard deviations of the experimental values.

The most probable cause for the discrepancy is that the quasi-steady-state as-

sumption used to calculate the occupation values of the Markov models is not

valid for this experimental setup. Because only twice as many ATP as ABCE1

molecules were used, binding and hydrolysis of ATP by each ABCE1 drastically

changes the ATP and ADP concentrations, that are considered to be constant

under the quasi-steady-state assumption. To reproduce the experimental setups

a stochastic instead of a deterministic method to determine the occupation like

Gillespie’s-algorithm might be better suited.86
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In contrast, Barthelme et al. used a higher ATP concentration of 500mm to-

gether with 5µm ABCE1, but measured only the ATP occupations.47 Due to the

100:1 ratio of ATP to ABCE1, we consider the quasi-steady-state assumption to

be more viable for this experimental setup.

Figure 2.7 shows the ATP and ADP occupations as calculated for the condi-

tions of the experimental setup by Barthelme et al..47 Double nucleotide bound

states with non-zero steady state probability do occur in the Markov models as

occupation values above 1 are achieved, in contrast to the occupation values in

figure 2.6. The experimental ATP occupations within one standard deviation of

experimental error are predicted with 0.7% probability.

Note that the limitation of one standard deviation from the experimental oc-

cupation as agreement with experiments is strict because the experimental errors

are large and considered up two standard deviation qualitatively changes the in-

terpreatin of occupations, for example, for wild-type ABCE1 and measurements

by Nürenberg-Goloub et al. an ATP occupation of zero or one are in agreement

with experiment. Additionally, because both measured ATP occupations are well

within one standard deviation, despite the different experimental setups, the error

of one experiment overestimates the error of the combined data.

In particular, the wild-type ATP occupation value below one is responsible that

most Markov models incorrectly predict the occupations. An ATP occupation

below one means that the sum of steady state probabilities of states with less

than one ATP bound is higher than 50%. Thus, to achieve an ATP occupation

below one, the majority of the steady state probability has to be within the states

with apo/apo, apo/ADP or ADP/ADP occupation, severely limiting the ’allowed’

space of occupation conform Markov models.

Consequently, almost all Markov model types that are conform with the occu-

pation data use a reaction pathway in the wild-type hydrolyzing both ATPs. The

most probable reaction pathway with 59% probability according to the Bayesian

posterior for kinetics and occupations is shown in figure 2.8. This reaction path-

way facilitates a low ATP occupation in the wild-type by allowing states with

ADP or apo occupations to have higher steady state probabilities compared to

Markov model types without this reaction pathway. Importantly, this Markov

model type too obeys the principle of asymmetric steady state probability in the

wild-type (in this case between a reaction pathway via NBSI and one via NBI and

NBSII) which is created by larger transition rate coefficients for ATP hydrolysis
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in NBSI and transition to the open state with ADP/ATP than ATP hydrolysis in

NBSII, and thus emphasizes its universality.

Choice of Prior Distribution We want to briefly justify the choice of a loga-

rithmic uniform prior on the transition rate coefficients as a prior for the Markov

models of ABCE1. There are three possibilities for an uninformed prior. A uni-

form prior on the transition rate coefficients, a uniform prior on the inverse of the

transition rate coefficients, i.e., the average transition time, or a logarithmic uni-

form prior on the transition rate. First, only one of the transition rates and average

transition times can be uniformly distributed, and we know of no evidence for or

against either option. In contrast, using a logarithmic uniform prior on the transi-

tion rate coefficients implies that the timescales are also logarithmically uniformly

distributed, and thus avoids this problem. Second, Markov models describing

physical systems should either be in equilibrium and satisfy detailed balance or

be in a steady state. In the latter case, it must be possible for the resulting Mar-

kov model to satisfy detailed balance by scaling transition rates that depend on

external factors that drive the system out of equilibrium to equilibrium conditions.

For example, if a Markov model has substrate-concentration-dependent transition

rate coefficients, the Markov model with these transition rate coefficients scaled ac-

cording to the equilibrium concentrations of substrate and product should satisfy

detailed balance. However, it is rather tedious to choose transition rate coeffi-

cients such that a Markov model satisfies detailed balance. In contrast, in the

free energy representation of Markov models, detailed balance is automatically

satisfied by choosing an absolute free energy for each Markov model; it is more

convenient to sample the posterior density in the space of free energies. A loga-

rithmic uniform prior on the transition rate coefficients facilitates this free energy

approach because it is equivalent to a uniform prior on the free energy barriers.
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Figure 2.3 – Histograms of saturating ATP turnover rates kcat (top row) and
Michaelis-Menten constants KM (bottom row) of the sampled instances normal-
ized to probability densities. The columns show from left to right, the histograms
of wild-type (blue), species E238Q (orange) and species E485Q (green). Each
x-axis is centered around the corresponding experimental value and is limited to
±5σ with σ being the standard deviation as reported by Barthelme et al.47
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Figure 2.4 – The three most probable reaction pathways (most probable at the
top to least probable at the bottom) according to the sampling of the Bayesian
posterior. The line widths scale with the net flux of the transition, and the state
sizes with the steady state probability of the state. Probability of each Markov
model type is indicated in the top right corner.
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Figure 2.5 – Comparison of transition rate coefficients at the fork state 2 (left) and
state 3 (right). Transitions corresponding to the transition rate coefficient on the
x-axis lead towards reaction pathway via NBSII, whereas transitions corresponding
to the transition rate coefficient on the y-axis lead towards reaction pathway via
NBSI. Dashed gray lines indicate the boundaries given by the prior.

Figure 2.6 – ATP and ADP occupations as calculated from the sampled instances
under experimental conditions of Nurenberg-Goloub55 et al. and normalized to
probability densities.
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Figure 2.7 – ATP and ADP occupations as calculated from the sampled instances
under experimental conditions of Barthelme et al.47 and normalized to probability
densities.

Figure 2.8 – Most probable reaction pathway after cross-validation with ATP oc-
cupations by Barthelme et al.47 Probability of the Markov model type is indicated
in the top right corner.
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2.4 Conclusion

The ATPase ABCE1 has two nearly identical NBSs, both in terms of primary

sequence and structure, suggesting that each NBS contributes equally to the ATP

turnover rate. However, despite this near symmetry between the two NBSs, only

one of the two mutants (E238Q), in which ATP hydrolysis is impaired in one of the

two NBSs, has the expected twofold decrease in ATP-turnover rate, whereas the

other shows a tenfold increase (E485Q).47 We asked whether this observed kinetic

asymmetry in both mutants can be explained without a direct allosteric interac-

tion between the two NBSs of ABCE1 in the sense that the occupation of one

NBS influences the kinetics of the opposite NBS, for example, by conformational

rearrangements.

To this end, we described ABCE1 by Markov models which, by construction,

exclude any direct communication between the two NBSs. We aimed at keep-

ing the number of states and connections between them as low as possible while

capturing all degrees of freedom required for ATP hydrolysis. We introduced the

notion of a Markov model class to describe that we focused on the set of such

Markov models with an equal number of states and with identical connections be-

tween them. We identified a subset of all possible Markov models of this Markov

model class, referred to as instances, that agrees with the observed kinetics within

experimental error, and calculated for each of these Markov models the Bayesian

posterior, i.e., the probability that the Markov model is the one that originally

produced the kinetics.

The main result of this chapter is that many Markov models were identified

that, within experimental error, agree with the asymmetric kinetics of the two

mutants. We conclude that a direct communication between the two NBSs is not

required to explain the remarkable kinetics of ABCE1.

Inspection of the set of Markov models that agrees with experiment further

allowed us to gain a deeper understanding of how this asymmetric kinetics was

achieved without allostery. To this end, we identified subsets of instances that

share predominant reaction pathways, determined the probability of these subsets,

and thus obtained a rigorous ranking of possible reaction pathways. Indeed, as

the most striking property shared by all investigated Markov model instances,

we found that in the wild-type, the steady state probabilities are asymmetrically

distributed between states belonging to reaction pathways via NBSI and NBSII.
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This asymmetry is the result of an interplay between ABCE1 staying longer in

reaction pathways with slower ATP turnover rate and the frequency with which

reaction pathways are chosen. The later is decided in two fork-states at which

the systems ’makes’ a decision between reaction pathways. Preventing the system

from choosing a reaction pathway with long ATP turnover time through the E458Q

mutation results in a drastic redistribution of steady-state probability, leading to

a tenfold increase in ATP turnover rate. In mutant E238Q, the modification

results in stronger bias towards the reaction pathway with long ATP turnover

time. However, because almost all steady-state probability is located in long ATP

turnover time reaction pathways already in the wild-type, the additional bias

results only in a minor shift of steady-state probability.

Thus ABCE1 serves as an example of allostery, that does not necessarily re-

quire direct ’allosteric pathways’, but can also be brought about indirectly via

redistribution of steady state probabilities as recently proposed.87

The unexpected increase of ATP turnover rate in mutant E485Q is thus similar

to the Braess paradox88 for road networks that states that the closure of a road

can improve the overall flow through the road network. The paradox is explained

by drivers who choose pathways that promise the shortest travel time between

their start and end, but without considering that the travel time across a road

increases with more drivers on it.

The quality of the marginal probabilities depends on the convergence of the

Bayesian posterior sampling, which remains challenging with Metropolis-Hastings

Markov Chain Monte Carlo methods, especially for underdetermined systems with

large sampling spaces, and thus advanced sampling methods, such as Hamiltonian

Monte Carlo or replica exchange, may be considered to improve convergence.

One important and likely very general conclusion is that even in the absence

of direct interactions between individual NBSs, the total turnover rate can not

simply be understood as the sum of the turnover rates of the individual NBSs, as

the tenfold increase of species E485Q strikingly demonstrates. Another example

are Markov model types that hydrolyze ATP predominantly through NBSI in

mutant E238Q, although even this NBS is impaired in this mutant.

The combination of extensive sampling of thermodynamically consistent Markov

models with Bayesian inference offers the opportunity to not only gain insight

into the functionality of ABCE1 but of other molecular machines as, for example,

Myosin and the ATP synthesis complex F-ATPase.
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2.5 Supplementary Information

Table 2.1 – Transition rate coefficients and there correspondence to conformational
changes

transition rates (forward, backward)
conformational change

wild type E238Q E485Q

k1, k−1 k1, k−1 k1, k−1 closure, opening (ATP,ATP)
k2, k−2 10−2k2, 10

−2k−2 k2, k−2 ATP hydrolysis, synthesis 1st BS
k3, k−3 k3, k−3 10−2k3, 10

−2k−3 ATP hydrolysis, synthesis 2st BS
k4, k−4 k4, k−4 k4, k−4 opening, closure (ADP,ATP)
k5, k−5 k5, k−5 k5, k−5 opening, closure (ADP,ADP)
k6, k−6 k6, k−6 k6, k−6 opening, closure (ADP,ADP)
k7, k−7 k7, k−7 k7, k−7 ADP unbinding, binding 1st BS
k8, k−8 k8, k−8 k8, k−8 ADP unbinding, binding 2nd BS
k9, k−9 k9, k−9 k9, k−9 ATP binding, unbinding 1st BS
k10, k−10 k10, k−10 k10, k−10 ATP binding, unbinding 2nd BS

Table 2.2 – Overview of boundaries of the prior distributions per type of transition

type of transition lower bound upper bound

ligand binding 1× 10−6 1/m2s 1× 107 1/m2s
ligand unbinding 1× 10−6 1/ms 1× 107 1/ms
catalysis 1× 10−6 1/ms 1× 1012 1/ms
conformational change 1× 10−6 1/ms 1× 106 1/ms
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Figure 2.9 – First (solid blue) and second (dashed orange) halves of all 500 Monte
Carlo Markov chains without burn-in. Values shown are related to transition
rate coefficients in table 2.1 by gi = log(ki/1012). Good agreement is observed
except for g5, the transition rate coefficient of transition from the open to closed
conformation with ADP/ADP occupation.
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3 Unexpected Michaelis-Menten

behaviour of complex Markov

models
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3.1 Introduction

Increasingly many complex biomolecular processes are being be described by Mar-

kov models, i.e., a set of discrete states with memory-free transitions between these

states. Enzyme kinetics is an example, and the perhaps earliest kinetic model

E + S ES E + P by Michaelis and Menten22 is in fact a Markov model.

Later, extensions of the Michaelis-Menten kinetics were established including in-

hibition26 and reversibility,89 and the increasing complexity eventually led to a

formalization in terms of chemical reaction network theory.24,25,90

Strictly, only chemical reaction networks comprised exclusively of first-order

mass-action reactions can be described as Markov models. However, at least

within the biochemical context, reaction networks with higher-order reactions can

be described by Markov models as well, as long as the concentrations of all but

one species can be assumed constant and, thus, the reactions effectively reduce to

monomolecular first-order reactions. For biochemical processes, this reduction is

known as quasi-steady-state assumption. Applied to the Michaelis-Menten kinet-

ics, this leads to the canonical version of the Michaelis-Menten equation22,23

v([S]) =
vmax[S]

KM + [S]
, (3.1)

where the change of the product formation rate v with substrate concentration

[S] depends on two parameters, the limiting rate vmax and the Michaelis-Menten

constant KM . Plotted on a logarithmic concentration scale, the resulting curve is

sigmoidal.

The quasi-steady-state assumption turned out to be very useful and thus be-

came a cornerstone of the analysis of enzyme kinetics, supported by extensive

investigation of the particular condition for which it can be applied.28–30

More recently, and motivated by rapid advances in structural biology and atom-

istic simulations, internal changes of enzymes, other proteins, and biomolecular

complexes shifted into focus. In particular, conformational sub-states and tran-

sitions between them were discovered7 and were later found to affect enzyme

kinetics.48 In contrast to chemical reactions and binding events described by chem-

ical reaction networks, which are typically multimolecular, these conformational

changes, are, by definition, monomolecular and thus, are readily described by Mar-

kov models as well.90 In this context, Markov models provide a coarse-graining

of otherwise high-dimensional atomistic descriptions such as molecular dynamics

44



simulations.16–18

It is only recently widely recognized and accepted that the very fact that both

the biochemical reaction networks and the molecular conformational transitions

can be described by Markov models, allows one to combine both within a unified

theory for complex biomolecular interaction networks of ’molecular machines’.

Recent examples are the use of Markov models to analyze translation,31,32 tran-

scription,33,34 signaling pathways,35 molecular motors,36–43 and complex enzymes

such as the fatty acid synthase,44 rendering these accessible to theoretical inves-

tigations.

From a more mathematical perspective, the advantage of describing a process

with Markov models is that its time-development is determined by a simple system

of first-order differential equations, the so-called master equation. Notably, under

very weak conditions (such as irreducibility and aperiodicity) the master equation

has a unique steady state solution, which can be easily calculated via algebraic

means.91,92 As a result, unified Markov models allow one to calculate turnover rates

as a function of educt concentrations, e.g. substrate concentrations, in which case

certain transition rates between Markov states become concentration dependent.

We will restrict the current analysis to linear dependencies, i.e., concentration c

dependent Markov transition rates between states t and s read k′
t,s(c) = c

c0
kt,s

with normalization concentration c0. We will subsequently refer to concentration

dependent quantities of the steady state solution as occupation curves. In the

literature, these are also referred to as input-output-response curves.50

While the original Michaelis-Menten model essentially comprised only two Mar-

kov states and three rate coefficients, increasingly complex processes and networks

require up to several hundreds states and, correspondingly, several ten thousands

rate coefficients.93,94 As a result, the system of first-order differential equations

becomes quite large, and one would expect to see correspondingly complex occu-

pation curves.

Quite to the contrary, however, we as well as others noticed in previous work

that unexpectedly often, the obtained occupation curves seem to resemble simple

Michaelis-Menten-like, sigmoidal, behavior.50 For example, the ATP-driven en-

zyme ABCE147,55 has at least 13 Markov states and 20 non-zero transition rate

coefficients, six of which are concentration-dependent. Yet, the turnover rate of

this system turns out to be sigmoidal most of the time.

Several studies already investigated this unexpected ubiquity of Michaelis-Men-
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ten behavior. A series of studies looked at Markov models with a 2D-grid-like

structure where one dimension describes the product catalysis and the other di-

mension interconversion between enzyme conformers. They derived conditions on

the transition rate coefficients for Markov models exhibiting Michaelis-Menten-

like behavior.95–98 For more general Markov models, Barel et al. found that, if

the ratio of steady state probabilities of every unbound enzyme states stay con-

stant for all substrate and product concentrations, the unbound enzyme states

can be effectively treated as one state. From this observation follows further that

the occupation curve are described by the reversible Michaelis-Menten equation.49

Further, Wong et al. derived structural conditions on Markov models based on

division of a Markov model into subsets divided by concentration-dependent tran-

sition rates.50 Both conditions were found to be sufficient, but not necessary, for

the occurrence of Michaelis-Menten-like behavior in the occupation curves.49,50

The studies mentioned above focused on the case where an occupation curve has

exactly one Michaelis-Menten-like piece, i.e., is fully described by the Michaelis-

Menten equation. However, also occurrences of occupation curves with multiple

pieces of Michaelis-Menten-like behavior are reported in the literature,52–54 and

occurred also for Markov models of ABCE1.

Thus, here we extend the scope of the ubiquity of Michaelis-Menten-like be-

havior to occupation curves that behave Michaelis-Menten-like on pieces of the

occupation curve. In particular, we ask why occupation curves of complex Mar-

kov models often have so many Michaelis-Menten-like pieces, and how probable it

is for such occupation curves to have a Michaelis-Menten-like piece.
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3.2 Theory

Motivation Time-continuous Markov models describe a system as a set of N

states and a set of N2 − N transition rate coefficients {kts} ∈ R≥0 describing

the probability (per second) of a transition from state s to state t. Note that we

define n as the number of non-zero kts. The probability of the system to be in a

state i at a given time t is given by Xi(t), and, given an initial distribution X(0),

the time evolution of the probabilities X(t) is determined by the system of linear

differential equations

Ẋ = Q ·X(t) . (3.2)

referred to as master equations, whose transition rate coefficient matrix Q has the

diagonal elements qtt = −
N∑

s=1,s ̸=t

kts. Note that qts are referred to as transition

rates in the context of Markov models, but we refer to them as transition rate

coefficients to be consistent with chemical terminology.

For irreducible and aperiodic Markov models, the probabilities X(t) will con-

verge towards unique stationary or steady state probabilities π, such that

0 = Q · π . (3.3)

Note that π can be calculated by algebraic means via the eigenvalue decompo-

sition of Q, because π is the eigenvector to eigenvalue 0.

The net flux of a transition is the amount of probability per time unit that is

being transferred from one state to another and is calculated as the difference of

the steady state probability times the transition rate coefficient between forward

and backward transition.19 Given steady state probabilities π, the net fluxes obey

one of two conditions. Either, for a Markov model obeying detailed balance and

describing a system in equilibrium, all net fluxes will be zero. Or, for a Markov

model describing a system away from equilibrium, the net fluxes between transi-

tions will form closed cycles, such that in- and outgoing net fluxes of one state

sum to zero. In chemical reaction network theory the latter condition is referred

to as complex detailed balance.24,25

As an example consider a Markov model of ATPase ABCE1 with N = 13 and

n = 20, whose graph representation is shown in figure 3.1A. The states correspond

to ABCE1 in its open and closed conformation with each of its two binding sites
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empty, ATP or ADP bound and the transitions corresponding to binding reactions,

catalysis or conformational changes. It is a sparse Markov model because all states

have vertex degree three, i.e., are connected to three other states, except state 8

that has vertex degree four.

The twelve transitions of ATP and ADP binding are second-order reactions,

which are reduced to first-order reactions under the quasi-steady-state assumption

allowing to describe the system as a Markov model. Thus, transition rate coeffi-

cient matrix Q has entries of kts for concentration-independent transitions and of

k′
ts = c

c0
kts =: αkts for concentration-dependent transitions under assumption of

a linear concentration dependence. Note that we refer to kts as a concentration-

independent transition rate coefficient and k′
ts as a concentration-dependent tran-

sition rate coefficient, and define m as the number of concentration-dependent

transition rate coefficient. The explicit specification of a transition rate coeffi-

cient as concentration-independent might seem contradictory as per definition a

transition rate coefficient is always concentration-dependent. However, it serves

as short-hand notation for a transition rate coefficient that either depends on one

of the concentrations that are considered constant due to the quasi-steady-state

assumption or not, i.e., if it is a transition rate coefficient is first or higher order

before application of the quasi-steady-state assumption.

The measured dependence on ATP concentration of the ATP turnover rate of

ABCE1 is well described by the Michaelis-Menten kinetics.47 In the Markov model

framework, the steady state ATP turnover rate can be calculated from the net

fluxes of ATP binding or ADP unbinding transitions, which in return depend on

the steady state probabilities that are connected by these transitions. A change of

substrate concentrations, i.e., ATP and ADP concentrations, results in a change

of the corresponding transition rate coefficient k′
ts and, thus, the steady state

probabilities, net fluxes, and turnover rates. The steady state probability πN as

function of the substrate concentrations is referred to as an occupation curve.

Selected examples of occupation curves are shown in figure 3.1B. Each occupa-

tion curve results from a Markov model of ABCE1 with states connected as shown

in figure 3.1A but with different values of transition rate coefficients. Pieces of the

occupations curves that resemble the Michaelis-Menten kinetics are colored green.

The occupation curves are sorted from top left to bottom right according their

similarity to the Michaelis-Menten kinetics, i.e, how close they are to be described

by the Michaelis-Menten equation 3.1.
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(A) (B)

Figure 3.1 – (A) Graph representation of the Markov model of ABCE1 (B) Selected
examples of occupation curves of Markov model of ABCE1. Green pieces are
considered to be Michaelis-Menten-like based on square root mean error between
a fit of a modified Michaelis-Menten equations with offset and negative nominator
allowing for a descending sigmoid curve. Based on the same criterion, red pieces
are considered to be not Michaelis-Menten-like. Examples are sorted from top left
to bottom right according their similarity to the Michaelis-Menten kinetics.

Analytical solution To explain this unexpected Michaelis-Menten-like behavior,

we seek an analytical solution of the steady state probability πi. To this end we

use a version of Kirchhoff’s matrix tree theorem99 that was derived by Tutte,100

and subsequently used by Gunawardena et al. to explain common properties of

Markov models in biochemical applications.27

Accordingly to the matrix tree theorem the steady state probability of state i

is

πi =

∑
r∈R(i)

(∏
ts∈r

kts

)
n∑

i=1

∑
r∈R(i)

(∏
ts∈r

kts

) . (3.4)

Here, the products iterate over all edges (directed transition between two Markov

states) in a rooted spanning tree r, and the inner sums are over all rooted spanning

trees r that belong to the set R(i) of all rooted spanning trees rooted at state i.

A rooted spanning tree is a subset of N − 1 edges connecting all N states, such

that every of the N − 1 edges is part of a path leading towards state i.
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Next, if we assume that a subset of transition rate coefficients kts are concentra-

tion-dependent transition rate coefficients, i.e., proportional to c, equation 3.4

becomes a rational function in c by rearranging the sums with respect to power

of c

πi =
p(i)(c)

q(c)
=

p
(i)
0 + p

(i)
1 c+ p

(i)
2 c2 + . . .+ p

(i)
D cD

q0 + q1c+ q2c2 + . . .+ qDcD
=

D∑
κ=0

p
(i)
κ cκ

D∑
κ=0

qκcκ
(3.5)

with coefficients

p(i)κ =
∑
r∈R(i)

κ

(
1

cκ0

N−1∏
ts∈r

kts

)
(3.6)

and

qκ =
N∑
i=1

p(i)κ =
∑
r∈Rκ

(
1

cκ0

N−1∏
ts∈r

kts

)
(3.7)

where R
(i)
κ is the set of rooted spanning trees rooted at state i with κ concentration-

dependent transition rate coefficients, Rκ is the set of rooted spanning trees

with κ concentration-dependent transition rate coefficients, r the set of transi-

tion rate coefficients kts of a rooted spanning tree, and D is the maximal number

of concentration-dependent transition rate coefficients found in any rooted span-

ning tree. We define ν
(i)
κ as the number of elements in the set R

(i)
κ , and νκ as the

number of elements in the set Rκ. To simplify notation, we will subsequently omit

the index (i) from the coefficients p
(i)
κ . For later use note that, because R

(i)
κ ⊂ Rκ,

it follows that pκ ≤ qκ ∀κ. Note also that some pκ or qκ may be zero, such that

the number ∆ of non-zero terms in p(c) or q(c) in equation 3.5 may be smaller

than D.

Piecewise approximation From the analytical solution (equation 3.4) of the

steady state probability, it follows that all πi(c) are rational functions in con-

centration c. Next we will, though not with full mathematical rigor, motivate

that πi(c) can be approximated in a piecewise manner by Michaelis-Menten-like

functions if the coefficients fulfill certain conditions, which we will assume for the

moment and derive subsequently.
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For small enough c, such that p0 ≫ pbc
b and q0 ≫ qbc

b ∀b > 0, πi(c) can be

approximated by a constant,

πi(c) =
p0 + p1c+ p2c

2 + . . .+ pDc
D

q0 + q1c+ q2c2 + . . .+ qDcD
≈ p0

q0
. (3.8)

For slightly larger c, such that {p0, p1c} ≫ pbc
b and {q0, q1c} ≫ qbc

b ∀b ̸= {0, 1},
the first-order terms in c will contribute as well, such that πi(c) can be approxi-

mated as

πi(c) =
p0 + p1c+ p2c

2 + . . .+ pDc
D

q0 + q1c+ q2c2 + . . .+ qDcD
≈ p0 + p1c

q0 + q1c
. (3.9)

We will identify this terms with the Michaelis-Menten behaviour further below.

For further increasing c, the constant terms becomes small with respect to the

terms linear in c and, similarly, for further increasing c, πi(c) can be approxi-

mated by the linear and quadratic terms for c obeying {p1c, p1c2} ≫ pbc
b and

{q1c, q1c2} ≫ qbc
b ∀b ̸= {1, 2}.

Repeating these steps for increasing c, πi(c) can be approximated in a piecewise-

manner by consecutive terms, i.e.,

πi(c) =
p0 + p1c+ p2c

2 + . . .+ pDc
D

q0 + q1c+ q2c2 + . . .+ qDcD
≈ pnc

κ + pκ+1c
κ+1

qκcκ + qκ+1cκ+1
=

pκ + pκ+1c

qκ + qκ+1c
, (3.10)

for [pκc
κ, pκ+1c

κ+1] ≫ pbc
b and [qκc

κ, qκ+1c
κ+1] ≫ qbc

b ∀b ̸= {κ, κ+ 1}.
Finally, for pDc

D ≫ pbc
b and qDc

D ≫ qbc
b ∀b ̸= D, π(c) saturates at a constant

value,

πi(c) =
p0 + p1c+ p2c

2 + . . .+ pDc
D

q0 + q1c+ q2c2 + . . .+ qDcD
≈ pD

qD
, (3.11)

Note that, up to an offset, each of the above piecewise approximation represents

the Michaelis-Menten function

pκ + pκ+1c

qκ + qκ+1c
=

vκc

Kκ + c
+

pκ
qκ

(3.12)

with

vκ =
pκ+1

qκ+1

− pκ
qκ

(3.13)
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and

Kκ =
qκ
qκ+1

. (3.14)

This piece of the approximation provides a sigmoidal step between pκ
qκ

and pκ+1

qκ+1
,

which also generalizes the classical Michaelis-Menten equation to include its nega-

tive or inverted form describing, e.g., the kinetics of non-competitive inhibition.26

Depending on the length of the individual concentration ranges, the adjacent

Michaelis-Menten curves may merge or be well separated from each other. The

later requires their positions, defined by the inflection point given by the Michaelis-

Menten constant Kκ, to be separated by at least 2 orders of magnitude, where

the numerical value is empirical and, thus, subject to subjectivity. This condition

translates into the necessary (but not sufficient) condition

κ :=
qκ+1/qκ+2

qκ/qκ+1

> 102 . (3.15)

Note that, because this is an inverted double difference on the logarithmic scale,

this conditions essentially means that the ’curvature’ of the logarithmic coefficients

as function of their respective degree κ must be larger than 2 which requires a

concave parabola-like shape. Note that a maximum ofD−1 Michaelis-Menten-like

pieces can occur.

We note that for this piecewise approximation to work, the intervals for c given

by the coefficients p and q, respectively, need to sufficiently overlap, thus,

pκ
pκ+1

≈ qκ
qκ+1

. (3.16)

Therefore, the above condition must be additionally fulfilled for a sigmoid curve

to actually occur on the respective interval.

For the sake of completeness, note that, strictly, if only one of the two nominator

terms of equal degree is dominant in the respective interval, the approximation

can still be cast into a Michaelis-Menten-like form

p0 + p1c+ p2c
2 + . . .+ pDc

D

q0 + q1c+ q2c2 + . . .+ qDcD
≈ pκ+1c

qκ + qκ+1c
=

pκ+1/qκ+1 c

qκ/qκ+1 + c
(3.17)

p0 + p1c+ p2c
2 + . . .+ pDc

D

q0 + q1c+ q2c2 + . . .+ qDcD
≈ pκ

(N)

qκ + qκ+1c
=

−pκ
(N)/qκ c

qκ/qκ+1 + c
+

pκ
(N)

qκ+1

, (3.18)
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whereas two consecutive dominant terms in the denominator are always required.

Symmetry Next we will estimate the fraction of all possible Markov models for

which the occupation curves exhibit a particular number of sigmoidal pieces. To

this aim, it will be helpful to note a symmetry between pairs of Markov models

with complementary concentration dependencies defined as follows.

Given a Markov model with a transition rate matrix Q(α) that contains n

concentration-independent rates kts and m concentration-dependent rates αkts.

We define its complementary Markov model with transition rate matrix Q′(α) by

mapping all above concentration-independent rates into concentration-dependent

rates αkts and vice-versa.

Then the occupation curves of Q(α) and Q′(α) are symmetrical to each other

on the logarithmic scale with respect to inversion of α, i.e.,

πi(Q(α)) = πi(Q
′(1/α)) . (3.19)

To see why, note that from the above mapping of the elements of Q it follows

that

Q(α) = αQ′(1/α) . (3.20)

Because πi is the eigenvector of Q, it follows that it is also the eigenvector of

αQ′(1/α) and, therefore, of Q′(1/α), from which the above symmetry follows. In

particular, the number of Michaelis-Menten-like pieces is identical.

Expected number of Michaelis-Menten-like pieces Next, we estimate the co-

efficients pκ and qκ via equations 3.6 and 3.7, respectively. In both cases, these

are composed of a sum of products of transition rate coefficients. Assuming the

later to be log-uniform distributed on finite but large intervals, these products

tend towards a log-normal distribution for a sufficiently large number of states

N (see supplementary information). Moreover, because the number of factors,

N − 1, is the same in each of the products both for the nominator and denomi-

nator, the two respective distributions are similar, and both types of coefficients

tend towards sums of log-normal distributed random variables.

To our knowledge, there exists no analytical expression, nor approximation

suited for the present purpose, for the mean of such a sum. Thus, we aim at
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expressing the mean as a function of the number of terms, i.e., the number νκ of

rooted spanning trees Rκ with κ concentration-dependent transition rate coeffi-

cients. Note that, even for Markov models with identical number of states N and

sequence of vertex degrees {vd1, . . . , vdi, . . . , vdN}, i.e., state i is with vdi other

states connected, νκ depends on the particular choice of which states are connected

as well as the transition rate coefficients of which are concentration-dependent. We

discuss in the following the means ⟨qi⟩ and ⟨νκ⟩ over these choices.

In the absence of analytic solutions for ⟨νκ⟩, we resort to approximation by

combinatorial means. To this end, note that the set of rooted spanning trees is a

subset of the set of all ways of drawing N − 1 transition rate coefficients from a

set of n transition rate coefficients. For this larger set, the number of elements is

ν̃ =

(
n

N − 1

)
. (3.21)

Similarly, the set Rκ is a subset of the set of all ways to draw κ concentration-

dependent transition rate coefficients from a set of n transition rate coefficients of

which m are concentration-dependent if a total of N−1 transition rate coefficients

are drawn without replacement and, thus, the number of elements of this larger

set is

ν̃κ =

(
m

κ

)(
n− (N − 1)

m− κ

)
. (3.22)

We next approximate ⟨νκ⟩ by

⟨νκ⟩ =
⟨νκ⟩
ν̃κ

ν̃κ ≈ ⟨ν⟩
ν̃

ν̃κ =
ν̃κ
ν̃
⟨ν⟩ = ⟨̃νκ⟩ , (3.23)

which depends on similar fractions ⟨νκ⟩/̃νκ and ⟨ν⟩/̃ν for which we will provide numer-

ical evidence further below. Note that ⟨ν⟩ = N⟨ν̄⟩ with ⟨ν̄⟩ the average number of

spanning trees for which an asymptotic expression for n → ∞ and sparse graphs

exists.101

Further, note that ν̃κ/̃ν is the the probability mass function of the hypergeometric

distribution H and that

H ≈ N (µH, σH) (3.24)

for m,n ≪ N − 1 and thus, log(⟨νκ⟩) should approximate a parabola.102

54



Let us check the quality of the approximation in equation 3.23, and thus how well

our assumption is that the two fractions ⟨νκ⟩/̃νκ and ⟨ν⟩/̃ν are similar, by means of

explicit enumeration of rooted spanning trees ⟨νκ⟩ for Markov models withN = 20,

which in light of the exponential increase of the number of rooted spanning trees

with the number of states is about the maximum we can do.

Further, in the case that N is even, we consider 3-regular Markov models, i.e.,

all states have vertex degree three. For odd N , we consider Markov models where

all states have vertex degree three except one state that has vertex degree two

instead, which for simplicity we will also refer to as ’3-regular’. This choice of low

vertex degree is motivated by the observation that Markov models of biochemical

processes are sparse. In contrast, biochemical networks differ largely in how many

transitions are actually concentration dependent. Therefore, we considered the full

range of m from 0 to n with n being the number of all transition rate coefficients in

a Markov model. For later use, we define the fraction of concentration-dependent

transition rate coefficients m/n.

The results of the above approximation ⟨̃νκ⟩ of ⟨νκ⟩ (equation 3.23) are shown

in figure 3.2A, and compared for reference to the exact numbers in figure 3.2B.

Here, the logarithm of ⟨νκ⟩ is plotted color coded as a function of the number of

concentration-dependent transition rate coefficients m. These values have been

obtained by averaging over 64 Markov models with random choices of which

states are connected and also which transition rate coefficients are concentration-

dependent. We find a good agreement between ⟨νκ⟩ and ⟨̃νκ⟩. Note that ⟨̃νκ⟩ has
values below one for certain combinations of m and κ, which gives the probability

to observe a νκ = 1 assuming a Markov model with exactly the average number of

rooted spanning trees ⟨ν⟩. The black line separates between values of ⟨̃νκ⟩ above
and below 0.5. We conclude that ⟨νκ⟩ can be well approximated by ⟨̃νκ⟩.
For later use, we assess how well the hypergeometric distribution approximates

the fraction ⟨νκ⟩
⟨ν⟩ . To this aim, figure 3.2C shows the logarithm of ⟨νκ⟩ (circles)

and ⟨̃νκ⟩ (crosses) normalized by ⟨ν⟩ and ⟨̃ν⟩, respectively, as function of κ for

m = {4, 8, 12, . . . , 28, 30}, representing vertical cuts trough figures 3.2A and 3.2B.

As can be seen, for all shown values of m, overall, the normalized ⟨νκ⟩ agree

well with normalized ⟨̃νκ⟩. Exceptions are an underestimation of the normalized

⟨νκ⟩ for high values of κ for m > 4 and an overestimation for low value of κ

for m > 24. Further, note also that the approximation of the hypergeometric

distribution by normal distribution (equation 3.24) is quite accurate, as can be
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seen by comparison with the orange parabolas.

After having validated the approximation of ⟨νκ⟩, we finally need to assess

how ⟨qκ⟩ depends on ⟨νκ⟩ by estimation of the correlation between νκ and qκ. No

suitable closed form is available,103 too, such that we will again resort to numerical

estimation of the coefficients of Markov models with N ∈ {4 . . . 20}, vertex degree

three, transition rate coefficients which are log-uniform distributed between 10−12

and 1012, and for n/m ∈ {1/5, 2/5, 1/2}.
Figure 3.3B shows the relation between the logarithms of νκ and qκ exemplary

for Markov models with N = 19. We describe the correlation between both

values with a proportionality and determine the constant of proportionality by

linearly fitting qκ(νκ) of each individual Markov model. Figure 3.3A shows the

distributions of parameters of these fits as box plots for each N . For N > 20, the

constant of proportionality was estimated by linear extrapolation from the slopes

for N ≤ 20.

Note that the average constant of proportionality is larger for Markov models

with an odd number of states N than for Markov models with an even number of

states, which we suspect is due to the above mentioned non-uniformity of vertex

degrees of Markov models with odd N .

Combining the estimate of ⟨νκ⟩ through approximation in equation 3.23 with

numerical estimate of the correlation between νκ and qκ allows to estimate

⟨qκ⟩ ≈ ⟨νκ⟩((12.2± 0.25)N + (2.5± 0.82)) . (3.25)

Moreover, using the approximation of the hypergeometric distribution by the nor-

mal distribution from equation 3.24, we get a simple approximation for the average

double difference

⟨κ⟩ ≈ log10((12.2± 0.25)N)/(σ(H) ln(10)) . (3.26)

These two approximations enable us to estimate the expected number of Michaelis-

Menten-like pieces. First, qualitatively based on ⟨κ⟩ and then quantitatively based

on ⟨qκ⟩.
Figure 3.4 shows log10(|⟨κ⟩|) for combinations of N and m

n
. Note that ⟨κ⟩ is

always negative, symmetrical for m with respect to its maximum at m = n/2 and

is anticorrelated with n.

Re-interpreting the equation 3.16, which gives a condition for the coefficients
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(A)

(B)

(C)

Figure 3.2 – (A) Approximation of number of rooted spanning trees with κ
concentration-dependent rates νκ for Markov models with 20 states and vertex
degree three (B) numerical estimate of (A) by equation 3.23 (C) cuts (A) and (B)
along fixed m normalized by the total number of rooted spanning trees and its
estimate, respectively. In orange the approximation of the hypergeometric distri-
bution by normal distribution as given equation 3.24.
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(A) (B)

Figure 3.3 – (A) Coefficients qκ as function of number of terms in sum in equa-
tion 3.7 on a double-log scale for N = 19 and κ ∈ 5, 14, 28 (color coded). (B)
parameters of linear fit to (A) for N from 4 to 20, left slope and right y-intercept

based on the double difference on the logarithmic scale such that a rational func-

tion has only Michaelis-Menten-like pieces, in terms of averages, it is to reason

that the more negative or less negative the average double difference ⟨κ⟩ is, the

higher or lower the fraction of Michaelis-Menten-like pieces is.

Obviously, the fraction of Michaelis-Menten-like pieces of a Markov model de-

pends on the actual qκ for which ⟨κ⟩ provides only limited predictive power. In

this context, note that for all of the investigated Markov models qκ obeyed

qκ < qκ+1∀κ < κ′

qκ+1 < qκ∀κ > κ′
(3.27)

with q′κ = max(qκ) giving further insight into relation between different qκ.

Note that multiplication of ⟨qκ⟩ with a constant does not influence the double

difference. Furthermore, note that according to our enumeration of rooted span-

ning trees, the curvature of qd is larger than approximated by equation 3.26 for low

and high κ (see deviations from the normal approximation in figure 3.2C). In par-

ticular, for the majority of m, i.e., m ∈ [4, 20], the curvature is more negative for

low and high κ. Because the qκ approximate a parabola, the single difference de-

termining the inflection point of Michaelis-Menten-like pieces, is larger for smaller

and larger κ than for intermediate κ. Taking both of these observations together,

we expect more Michaelis-Menten-like pieces as non-Michaelis-Menten-like pieces

for values further away from c0.

Finally, using the estimate of ⟨qκ⟩ in equation 3.25, we quantitatively estimate

the number of Michaelis-Menten-like and non-Michaelis-Menten-like pieces. To

this aim, we estimate qκ by ⟨qκ⟩ with white noise such that all qκ obey observa-
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Figure 3.4 – Curvature of the normal approximation (color coded) to the hyper-
geometric distribution as function of the number of states N and the fraction of
concentration-dependent transition rates m/n (equation 3.24)

tion 3.27. Then, we estimate number of Michaelis-Menten-like pieces and non-

Michaelis-Menten-like pieces by calculating the fraction of all terms qκc
κ over q(c)

for c ∈ [10−27, 1027] and determining intervals on which two or more these fractions

are larger than 10−3.

The right most panel of figure 3.5 shows the fraction of Michaelis-Menten-like

pieces among the total number of pieces in dependence on the number of states

N and fraction of concentration-dependent rates m/n. For m/n < 0.1, occupation

curves are primarily composed of Michaelis-Menten-like pieces. In general, the

fraction of Michaelis-Menten-like pieces is above 0.4 for the majority of investi-

gated combinations of N and m/n.

To better understand the overall high fraction of Michaelis-Menten-like pieces

and its correlations with N and m/n, the two left panels show the number of

Michaelis-Menten-like and non-Michaelis-Menten-like pieces. The number of non-

Michaelis-Menten-like pieces is monomodal for fixed N and peaks at m/n = 0.5 and

for constant m/n increases with N . The number of Michaelis-Menten-like pieces

is bimodal for fixed N with its peaks at the absolute number of concentration-

dependent rates m ≈ 20 for all N , resulting its peaks to shift towards lower m/n

values for larger N . In general the number of pieces remains fairly low, considering

that forN = 200 and m/n ≈ 0.15 the highest average number of pieces is around 15,

although those Markov models can be considered very complex with 600 transition

rates and 120 concentration-dependent rates, i.e., the maximum number of pieces

is 199.
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Note that this prediction in only based on the denominator coefficients qκ. In

general, pκ ≈ qκ
N

and inclusion of p in the model should result in a reduction of

pieces.

Figure 3.5 – From left to right (color coded): Estimation (by estimation of de-
nominator coefficients) of the number of Michaelis-Menten-like pieces, of number
of pieces that are neither constant nor Michaelis-Menten-like, of total number of
pieces, and of the fraction of the number of Michaelis-Menten-like pieces over to-
tal number of pieces as function of the number of states N and the fraction of
concentration-dependent transition rates m/n
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3.3 Results

To better understand why an unexpectedly large fraction of Markov models of

ABCE1 and of complex Markov-models for enzymatic reaction networks in gen-

eral is observed, we have developed above a theoretical framework to predict the

average fraction of Michaelis-Menten-like pieces in occupation curves for 3-regular

Markov models with log-uniform distributed transition rate coefficients. In the fol-

lowing we test these predictions by explicit calculation of occupation curves πi(c)

for Markov models with up to 200 states, vertex degree three, log-uniformly dis-

tributed random transition rates between 10−12 s−1 and 1012 s−1, and 50 uniform-

distributed fractions of concentration-dependent partial transitions rates m/n by

algebraic means via equation 3.3.

To calculate the number of sigmoidal pieces in each πi(c), we dissected πi(c)

into pieces based on its first derivative and fitted a Michaelis-Menten kinetics

to the pieces. Pieces were classified to be Michaelis-Menten-like or not based

on the square mean error of each fit and a threshold. The threshold was set to

maximize the sensitivity, see methods. The proper functioning of dissection, fit,

and classification was verified by visual inspection of random πi(c). The results

were averaged over 600 to 2400 Markov models, the specific amount depending on

N , which decreases for higher N . Note that, because of the choice of log-uniformly

distribution for transition rate coefficients, the transition rate coefficients of a

Markov model can span up to 24 orders of magnitude. To prevent false positive

detection of pieces due to numerical inaccuracies, we only consider pieces with an

amplitude of 10−3 of the total maximal amplitude of the corresponding occupation

curve.

The main result of this numerical test is shown in figure 3.6. It depicts, color

coded, the number of sigmoidal pieces in dependence on the number of states N

and fraction m/n of concentration-dependent rates . The four panels show from

left to right, the number of Michaelis-Menten-like pieces, the number of non-

Michaelis-Menten-like pieces, the sum of both, i.e., the total number of pieces,

and the fraction of Michaelis-Menten-like pieces and total number of pieces.

Overall, we observe a good qualitative agreement between our prediction in

figure 3.5 and the explicit numerical determination of pieces in figure 3.6. As

derived, a symmetry with respect to m/n and 1 − m/n, i.e., m/n = 1/2, is seen.

Moreover, the bimodality of the number of Michaelis-Menten-like pieces and the
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monomodality of the number of non-Michaelis-Menten-like pieces was correctly

predicted as well as the trend with N .

As expected, we overestimate the number of both types of pieces. There are

two reasons for this. First, because in the numerical determination only pieces

with an amplitude above a certain threshold are considered, which decreaes the

number of pieces observed. Second, the prediction was only based on the ⟨qκ⟩
ignoring ⟨pκ⟩ which results in a higher prediction of the number of pieces.

To check our predictions of the position of pieces, figure 3.7 shows the position of

pieces for different N . The left panel shows the position of Michaelis-Menten-like

pieces and the right panel the position of non-Michaelis-Menten-like pieces.

All distributions of position of Michaelis-Menten-like and non-Michaelis-Menten-

like piece are monomodal and peak around c = c0. One might consider the distri-

butions as narrow, considering that the transition rates already span, for example

for δ = 12, 24 order of magnitude and might be arbitrary combined to determine

the position of a piece.

Further, as predicted, the width of the distribution of position of the Michaelis-

Menten-like pieces is wider than the one of non-Michaelis-Menten-like pieces.

Unexpectedly, the width of the distributions is independent on number of states

N .

Figure 3.6 – Numerical estimates based on explicit calculation of the occupation
curves of (from left to right and color coded) the number of Michaelis-Menten-like
pieces, of number of pieces that are neither constant nor Michaelis-Menten-like, of
total number of pieces, and of the fraction of the number of Michaelis-Menten-like
pieces over total number of pieces as function of the number of states N and the
fraction of concentration-dependent transition rates m/n
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Figure 3.7 – Numerical estimate of the position in relation to the reference concen-
tration c0 separated by Michaelis-Menten-like (left) and non-Michaelis-Menten-like
pieces (right). Color coded are the estimates for different values of N

63



3.4 Conclusion

The description of complex marcromolecules such as proteins or protein interac-

tions networks requires similarly complex Markov models. As reference, consider

the rudimentary two-state Markov model of the Michaelis-Menten kinetics. In par-

ticular, these Markov models are drastically more complex than the, historically

probably first, rudimentary two-state Markov model of a protein of the Michaelis-

Menten kinetics. However, despite this increase in complexity, we observed that

the occupation curves of Markov models describing ABCE1 from chapter 2 often

exhibit Michaelis-Menten-like behavior, i.e., they are sigmoidal over a logarithmi-

cally scaled substrate concentration. This unexpected phenomena was also already

observed by other in different Markov models. The prevalence of this phenomena

raised the question to which extent the occurrence of Michaelis-Menten-like be-

havior in occupation curves is a general property of Markov models, and why this

is the case.

To answer this question, we systematically computed occupation curves and

determined the occurrences of Michaelis-Menten-like behavior of Markov models

with 20 to 200 states where each state is connected to three other states, and

random connections between their states, and random transition rate coefficients,

and random selection of which of these are concentration-dependent.

We observed and showed that occupation curves are often indeed described

in a piecewise manner, most of which are pieces of constant value and pieces

that behave Michaelis-Menten-like. Further, we found that the number of these

pieces is correlated with the number of concentration-dependent transition rate

coefficients. Typically, the number of concentration-dependent transition rate

coefficients in a Markov model is related to the number of binding sites of the

described protein. This is consistent with the observation that occupation curves

comprised of multiple pieces are observed for proteins with multiple binding sites,

for example, F-ATPase,52 RecBCD,54 and NSFs.53

Note that of the occupation curves, because of experimental limitation, we

only see a small interval compared to our numerical analysis. Thus, it can very

well be that a process which follows the Michaelis-Menten in experiment does

not necessarily require a Markov model with an occupation curve that exactly

follows the Michaelis-Menten equation on the whole interval, increasing the space

of Markov models that can be considered to explain the experimental observations.
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Moreover, we showed that the fraction of pieces that behave Michaelis-Menten-

like in each occupation curve decreases with the number of states and the number

of concentration-dependent transitions. Strikingly, if less than 10% of all tran-

sition rate coefficients are concentration-dependent, which is typical for Markov

models describing proteins, we observe that the occupation curves are comprised of

more than 80% Michaelis-Menten-like pieces. Thus, it is not that Markov models

with Michaelis-Menten-like behavior are particularly rare and thus the frequent

occurrence implies no evolutionary benefit to Michaelis-Menten-like behaviour.

Quite the opposite, the high occurrence of Michaelis-Menten-like behaviour is an

expected outcome in a sitation without any selection pressure.

Next, we asked why Michaelis-Menten-like pieces appear so frequently in the

occupation curves of sparse Markov models with a low number of concentration-

dependent transition rates. To this end, we used a version of the matrix tree

theorem that yields an analytical expression for the occupation curves in terms

of a rational function with the substrate concentration as variable and the coeffi-

cients of both polynomials, nominator and denominator, a sum over products of

transition rate coefficients. We derived a condition for rational functions to only

comprise of Michaelis-Menten-like pieces on the double-differences of consecutive

coefficients on a logarithmic scale.

To evaluate whether this condition is met by the coefficients of Markov model

occupation curves, we estimated the average coefficients for Markov models with

above-mentioned random properties. Based on the resulting average double-

differences of these coefficients, we successfully predicted the fraction of Michaelis-

Menten-like pieces in dependence on the number of states and concentration-

dependent transitions.

Furthermore, we showed that the average normalized coefficients, and thus the

double differences, can be estimated from the hypergeometric distribution and a

power law. The closer the average double difference is to fulfill the above men-

tioned conditions, the more likely it is for the double difference of Markov models

to fulfill the condition. Thus, the occurrence of Michaelis-Menten-like pieces for

sparse Markov models can be traced back to the combinatorial problem described

by the hypergeometric distribution. In particular, the high fraction of Michaelis-

Menten-like pieces with a low number of concentration-dependent transition rates

can be explained by this combinatorial problem having only a few, very differently

probable, outcomes resulting in an average double-difference that is close to even
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fulfills above condition.

The present study was motivated by observation of occupation curves of Markov

models where the transition rate coefficients depend on substrate concentrations.

The mathematical framework, however, is much more general, and also applies to

every linear dependency of the transition rate coefficients, for example, on salt and

proton concentrations. Even photosensitive transition rate coefficients, for which

a quadratic dependence would be expected, might be considered after a square

root transformation of the dependency.

The limitation to 3-regular Markov models seems to be quite restrictive at first

glance, but indeed the majority of states of Markov models describing proteins

have a vertex degree of three, and the remaining ones typically vertex degree two

or four. Therefore, it might be interesting to see whether the results also hold

for Markov models with an average vertex degree between two and four to also

include, for example, the 2D-grid Markov models used to describe fluctuating

enzymes.48
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3.5 Methods

Generating random Markov models with given vertex degree

Algorithm 1 Generate random Markov model with given vertex degree

Require: N number of states, vd vertex degree
initiate empty adjacency matrix A
for i ∈ 1, . . . , N − 1 do

determine nDraw, the difference between vd and the number of adjacent
vertices of state i

determine I the set of vertices with less than vd adjacent vertices
sample nDraw elements from I and update A

end for

For an even number of states N every vertex has the same vertex degree vd.

For an odd number of states N and an odd vertex degree vd all but one state

have vertex degree vd and the one state has any even vertex degree. Algorithm 1

assigns this one state the vertex degree vd− 1.

Calculating rooted spanning trees The spanning trees were calculated using the

graph contraction approach by Winter,104 which was determined to be the fastest

from implementation perspective, although not having optimum time complexity,

in an extensive study of algorithms for generating all possible spanning trees.105

An own Julia implementation was developed.

Rooted spanning trees were calculating by the depth-first search algorithm.

Generating Markov models with detailed balance Given a Markov model we

wanted to choose transition rate coefficients k ∈ [10−d, 10d] such that the Markov

model satisfies detailed balance. To this end, we used that the activation free

energies ∆G‡ can be estimated from the transition rate coefficients by the Eyring

equation

kts =
κkBT

h
e
−∆G

‡
ts

kBT (3.28)

with the Boltzmann constant kB, Planck constant h and transmission coefficient κ

correcting for barrier recrossing.106 We set kBT = 1 and κkBT
h

= 10−12. In the free

energy framework, detailed balance if satisfied if the free energy difference along

any closed cycle in the Markov model is zero. To this end, we set the absolute
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free energy of one Markov model state to zero, and drew the other uniformly such

that Gi ∈ [0, 2d]. In a second step, for each connection between states an absolute

activation free energy was chosen according to

G‡
ts ∼ U(2d−max(Gt, Gs), 2d) (3.29)

with U a uniform distribution, which ensures that kts ∈ [10−d, 10d]. Then

∆G‡
ts =

G‡
ts −Gs if s > t ,

G‡
ts −Gt if s < t .

(3.30)

Selecting which transition rate coefficients are concentration-dependent For

the lowest, non-zero fraction of concentration-dependent partial transitions rates
m0/n, m0 transition rates were selected at random to be concentration-dependent,

and, subsequently, for each larger mi+1/n additional mi+1 − mi transition were

selected at random to be concentration-dependent. Thus, the concentration-

dependent rates were chosen such that the set of concentration-dependent rates for

Λi is included in the set of concentration-dependent rates of Λi+1 for |Λi| < |Λi+1|.

Counting Michaelis-Menten-like transitions We calculated π(c) via eigenvalue

decomposition using the QR-algorithm for 1000 logarithmically distributed values

of c ∈ [10−40, 1060]. The eigenvalue decomposition of Q to calculate the steady

state probabilities was done with 106 bits precision, all other calculations were

done with 64 bit precision. The occupation curves pi(c) were then normalized to

range from 0 to 1, the first derivative dπi(c)
d log10(c)

was calculated by a finite difference

approach with dc = 1 and an cutoff to set values near zero to zero, and π(c) dis-

sected into pieces based on the position and width of the local extrema of dπi(c)
d log10(c)

.

Then each piece was fit to a Michaelis-Menten kinetics with offset and negative

nominator, allowing for a decreasing instead of increasing Michaelis-Menten ki-

netics, and the piece classified to be Michaelis-Menten like based on whether the

standard mean error between fit and piece of the occupation curve exceeds a

threshold. Thus, the results depends on the choice of the threshold. To this end,

figure 3.8 shows how the fraction of Michaelis-Menten-like pieces averaged over

states and fractions of concentration-dependent transition rate coefficients. For

all plots in this study, the threshold was selected to be 5 · 10−4 to ensure maximal

sensibility of the analysis.
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Figure 3.8 – Dependence of the fraction of Michaelis-Menten pieces on the thresh-
old used to classify occupation curve pieces as Michaelis-Menten-like or not.
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3.6 Supplementary Information

Products In this section, we will derive the distribution Ξ of the products

ξ :=
n−1∏
jk∈R

kjk. In our case the rates kij are log-uniformly distributed between

10−δ and 10δ, i.e., kij ∼ F := LU(−δ, δ). Each Markov model has one rate per

directed edge drawn from F resulting in set k with n vd elements. Even if the rates

are drawn such that the Markov model obeys detailed balance, the assumption of

a uniform distribution seems to hold. For each product ξ are n − 1 rates drawn

without replacement from the set k, with n − 1 being the number of edges in a

spanning tree of graph with n edges.

To derive the distribution Ξ, we will look at the logarithm of ξ

ζ := log(ξ) = log

(
n−1∏

kij

)
=

n−1∑
log(kij) =

n−1∑
gij (3.31)

with gij ∼ G := U(−δ, δ) now uniform distributed on [−δ, δ]. The gij can be

interpreted as free energy barriers.

Acknowledging that ζ is identical to the scaled sample mean gijn−1 of n−1 free

energy barriers ζ can be rewritten as

ζ =
n−1∑

gij =
(n− 1)

(n− 1)
·
n−1∑

gij = (n− 1)gijn−1 . (3.32)

According to the central limit theorem, the sample mean is normally distributed

with mean and standard error of the mean of the sampled population, which in our

case is the set g. Further, the family of normal distributions is closed under linear

transformations, i.e., if X ∼ N(µ, σ) and Y = aX + b then Y ∼ N(aµ + b, |a|σ).
Thus

gijn−1 ∼ N (µg,
σg√
n− 1

) (3.33)

ζ ∼ Z = N
(
(n− 1)µg,

√
n− 1σg

)
. (3.34)
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The set g was a sample of G := U(−δ, δ) with

µG =
a+ b

2
= 0 (3.35)

σG =

√
(b− a)2

12
=

2δ√
12

(3.36)

and thus

µg = N
(
µG,

σG√
n vd

)
(3.37)

σg ≈ σG . (3.38)

In conclusion, the products ξ are lognormal-distributed with Ξ ∼ LN (µZ , σZ)

µZ ∼ N
(
0,

2δ(n− 1)√
12n vd

)
(3.39)

and

σZ =
2δ
√
n− 1√
12

. (3.40)

In this derivation we assumed that the n−1 factors of each product are randomly

drawn without replacement from of g. It is not clear whether this assumption

holds because correlations between the edges of different rooted spanning trees

and thereby between different products might exist. To check the validity of the

assumption, we calculated µZ and σZ for the same sets g once with the factors

randomly drawn without replacement and once according to the rooted spanning

trees. Figure 3.9 shows the comparison between true product and the approxi-

mation via random draws without replacement. We consider the correlation good

enough, such that the assumption is valid.
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(A) (B)

Figure 3.9 – (A) mean and (B) standard deviation of Z, diagonal black lines are
references of perfect agreement
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4 Conclusion

The work reported in this thesis was motivated by a puzzling observation regarding

the kinetics of ABCE1, a protein that plays an important role in protein biosyn-

thesis in eukaryotes and archaea by separating the ribosomal subunits at the end

of translation.63 It has two almost identical subunits with two highly symmetrical

nucleotide binding sites at their interface, each of which hydrolyzes ATP. When

ATP hydrolysis is partially blocked in one binding site, the ATP turnover rate is

reduced twofold, as expected from the symmetry of the protein. In stark contrast,

when the other binding site is partially blocked a stunning tenfold increase in ATP

turnover rate is observed.47

The prevailing explanation for this unexpected asymmetric kinetics is that,

despite the symmetry between the binding sites, there is asymmetric allostery

between the two binding sites, i.e., occupation of one binding site affects the

other, but not vice versa. In addition, a direct communication between the two

binding sites mediated by a chain of conformational changes is hypothesized.55

One of the main results of this work is that we show here that such asymmetric

allostery by direct communication between the binding sites is not required for

the observed asymmetric kinetics. Therefore, we determined Markov models of

ABCE1 by Bayesian inference that exclude any such allostery between the binding

sites and are in agreement with the measured kinetics within the experimental

error. We found that the asymmetric kinetics can be caused by a redistribution

of the steady-state population with respect to the wild type. This redistribution

is caused by the change in the free energy landscape of the proteins due to the

partial blocking of ATP hydrolysis, i.e. an increase in the free energy barrier for

ATP catalysis in the corresponding binding site.

The hypothesis of an asymmetric allostery between the binding domains is

based, besides the observed asymmetric kinetics of the mutants, on contact maps

of homologues of ABCE1 showing interactions between both binding sites,107

which vary with the occupation of the binding sites.68–70 However, there is no evi-
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dence that sheds light on the clausal relationship between the various interactions

and the occupations. In the absence of such evidence for or against asymmetric

allostery between the binding sites, one might rely on Occam’s razor to judge the

plausibility of such communication. Under this premise, the fact that Markov

models without asymmetric allostery have fewer unknowns than those with asym-

metric allostery and thus can be considered to provide a simpler explanation, the

case of no asymmetric allostery between binding sites is to be preferred.

In a wider sense, the redistribution of steady state population can be considered

a case of ensemble allostery, which makes the very general statement that all

allostery can be understood by changes of the protein energy landscape87 and

need not rely on an allostery transferred by conformational changes.108,109 In this

context, one might interpret the point mutations as ligands, which directly and

non-allosterically change the ATP catalysis rates of the binding sites they bind to,

but also, allosterically, change the ATP turnover rate in the other binding site. In

this interpretation, the possible effects of allostery are expanded from a change of

binding affinity or kinetics to include the turnover rate of the affected binding site

too, as the ATP turnover rate of the other binding site in ABCE1 increases not

due to a change in the first two mention allosteric effects but due to a increased

population of states of this binding site.

Thus, on a more general notion, we showed that top-down Markov models are

a suitable method to test whether allostery is at all required to explain a given

set of experimental data. In a similar way, Markov models can be used on a

more granular level to test how many and which transitions must be affected

by allostery. For example, whether binding or catalysis is affected, and whether

kinetics or thermodynamics or both are affected.

Because the system of Markov model transition rates and constraints given by

the measured kinetics is underdetermined, there are many Markov models that are

within error of the experiment and thus span a subspace in the space of all possi-

ble Markov models. Maximum likelihood approaches or optimization, which are

typically used to determine individual Markov models in this subspace,35,44,45 nat-

urally provide limited information about the subspace and, in particular, lack an

estimate of uncertainty. We have shown that using a Bayesian approach together

with extensive sampling of the subspace provides an assignment of probability

density to each Markov model, allowing more rigorous statements about the sub-

space in terms of means and uncertainties. Note that a similar Bayesian approach,
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but for transporters, is currently being developed.110

Any Bayesian approach relies on the subjective choice of an appropriate prior,

and so does our Bayesian approach to top-down Markov models. We think that

a logarithmic uniform prior on the transition rates is a reasonable choice as an

uninformed prior over the two alternatives of a uniform prior on the transition rate

and a uniform prior on the inverse of the transition rate, i.e., the average transition

time for two reasons. First, if only one of the transition rates or average transition

times can be uniformly distributed, both are equally distributed if a logarithmic

uniform distribution is chosen for one, resulting in internal consistency. Second,

systems defined by free energies naturally satisfy detailed equilibrium, a condition

that a top-down Markov model should also be able to satisfy. The choice of

a logarithmic uniform prior on the transition rate coefficients is equivalent to a

uniform prior on the free energies, and thus facilitates the definition of top-down

Markov models in terms of free energies.

Finally, by classifying the Markov models of this subspace into groups, e.g., Mar-

kov models in favor or against different hypothesized mechanisms, the Bayesian

approach allows to rank the different groups by the probability that the corre-

sponding mechanism is the one responsible for the given data in the first place.

This can provide unbiased evidence for one hypothesis or the other and, given

limited experimental resources, help decide which experiments to perform to gain

the most knowledge.

The top-down Markov models of ABCE1 in chapter 2 are just one example in

a series of increasingly complex Markov models describing proteins. However,

the results of the probable first description of protein function with a two-state

Markov model leading to the Michaelis-Menten equation are still very relevant

today.22,26

Unexpectedly, the sigmoid curve of the Michaelis-Menten equation occurs quite

frequently in the occupation curves (the dependence of steady-state probabilities

on substrate concentrations) of Markov models of ABCE1 and other complex

Markov models describing proteins.50 Other studies investigating the occurrence

of Michaelis-Menten-like behavior have focused on cases where the occupation

curves are described by a single sigmoid curve, and have used purely analytical

means to derive the conditions under which this type of behavior occurs.49,50

In chapter 3, we extend this view and offer a new perspective on the ubiquity
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of Michaelis-Menten behavior in occupation-curves by not only investigating the

case where the occupation-curve is described by a single sigmoid curve, but also

including cases where only pieces of the occupation-curve are sigmoid curves.

To this end, we calculated the occupation curves and quantified the occur-

rence of Michaelis-Menten-like behavior for Markov models as a function of the

number of states and substrate-dependent transitions. We showed that Markov

models with parameters typical for top-down Markov models of proteins have

a high probability of having occupation curves that exhibit Michaelis-Menten-

like behavior at least on pieces. In particular, low-state Markov models with few

substrate-dependent transitions are prone to show Michaelis-Menten-like behavior

in the occupation curves.

One might ask whether the frequent observation of Michaelis-Menten-like be-

havior in top-down Markov models of proteins indicates a selection pressure toward

Michaelis-Menten-like behavior of the described proteins.50,52–54 However, we have

shown that Michaelis-Menten-like behavior is by no means rare when the protein

is well described by a Markov model with few substrate-dependent transitions.

On the contrary, Michaelis-Menten-like behavior is to be expected.

Using a semi-numerical analysis of a version of the matrix tree theorem, we

traced the occurrence of Michaelis-Menten-like behavior as an average over many

Markov models back to properties of average Markov models, where the averages

are over Markov models with random transition rates, state numbers and connec-

tions, and where apriori it was not evident that such commutation of averages

would yield any insights. In this way, we showed that the Michaelis-Menten-like

behavior arises from the combinatorial problem that is described by the hyperge-

ometric distribution, i.e., to draw κ special elements if a total of N − 1 elements

drawn from a set of n with m many special elements are drawn without replace-

ment. The occurrence of Michaelis-Menten-like behavior in an occupation curve

depends then on the curvature on the logarithmic scale of the hypergeometric dis-

tribution, which becomes smaller for m as the distribution gets stretched as more

κ become possible. Thus, the occurrence of Michaelis-Menten-like behavior was

traced back to very fundamental combinatorial properties of Markov models.

We investigated properties averaged over Markov models with a low level of

connection between states as commonly used to describe proteins. This approach

is in stark contrast to analyzing the properties of a particular Markov model, or

a finite set of very similar Markov models, when one is interested in the function
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of a particular protein. We see the opportunity that a broader analysis across

various Markov models might offer insights above the level of individual proteins

by identification of common properties.
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