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Abstract
Many-body dynamical models in which Boltzmann statistics can be derived
directly from the underlying dynamical laws without invoking the fundamental
postulates of statistical mechanics are scarce. Interestingly, one such model is
found in econophysics and in chemistry classrooms: the money game, in which
players exchange money randomly in a process that resembles elastic inter-
molecular collisions in a gas, giving rise to the Boltzmann distribution ofmoney
owned by each player. Although this model offers a pedagogical example that
demonstrates the origins of Boltzmann statistics, such demonstrations usually
rely on computer simulations. In fact, a proof of the exponential steady-state
distribution in this model has only become available in recent years. Here,
we study this random money/energy exchange model and its extensions using
a simple mean-field-type approach that examines the properties of the one-
dimensional random walk performed by one of its participants. We give a
simple derivation of the Boltzmann steady-state distribution in this model.
Breaking the time-reversal symmetry of the game by modifying its rules res-
ults in non-Boltzmann steady-state statistics. In particular, introducing ‘unfair’
exchange rules in which a poorer player is more likely to give money to a richer
player than to receive money from that richer player, results in an analytically
provable Pareto-type power-law distribution of the money in the limit where
the number of players is infinite, with a finite fraction of players in the ‘ground
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state’ (i.e. with zero money). For a finite number of players, however, the game
may give rise to a bimodal distribution of money and to bistable dynamics,
in which a participant’s wealth jumps between poor and rich states. The latter
corresponds to a scenario where the player accumulates nearly all the available
money in the game. The time evolution of a player’s wealth in this case can
be thought of as a ‘chemical reaction’, where a transition between ‘reactants’
(rich state) and ‘products’ (poor state) involves crossing a large free energy
barrier. We thus analyze the trajectories generated from the game using ideas
from the theory of transition paths and highlight non-Markovian effects in the
barrier crossing dynamics.

Keywords: econophysics, transition paths, Pareto law

1. Introduction

Simple asset exchange games have been used as models of wealth distribution in econophysics
[1–14]. Such models are also of interest as relatively simple many-body systems whose time
evolution can be shown, explicitly and without resorting to the fundamental postulates of stat-
istical mechanics [15–19], to give rise to the Boltzmann distribution [20–24]. Indeed, micro-
scopicmodels where fundamental laws of statistical mechanics can be provenwithout invoking
statistical assumptions are scarce, and such proofs are often complex—see, e.g. [25–27].

In contrast, the onset of the Boltzmann distribution in the simple gamewhereN≫ 1 players
exchange a fixed amount of money in a random direction can be understood using simple argu-
ments. In this game, which is known in econophysics as the Bennati-Dregulescu-Yakovenko
game [3, 4], andwhich is also used by physical chemistry teachers to illustrate various concepts
of statistical mechanics [28], a randomly selected pair of players exchange a single money unit
in a random direction. A physical counterpart of this game corresponds to N ‘molecules’ with
(quantum) harmonic oscillator energy spectra, and with pairs of oscillators exchanging one
quantum of energy at random such that the total energy is conserved. The ‘fair’ version of this
game corresponds to time-reversible exchange dynamics where the random exchange direction
is unbiased, leading to a Boltzmann distribution of money/energy [4, 20]. In contrast, ‘unfair’
versions of the game with a bias in the exchange direction give rise to interesting scenarios
with non-Boltzmann money statistics [29–31].

Here, we present analytical results for a class of exchange games, where ‘unfair’ exchange
rules correspond to broken time-reversal symmetry. We start with an elementary derivation of
the Boltzmann distribution as the steady-state result of the fair exchange game with N→∞
players. We note that another derivation of this distribution was recently provided in [21–23].
We then introduce ‘unfair’ versions of the game, where money exchange, while still probabil-
istic, is biased to increase or decrease the wealth of the richer or poorer players (we call them
rich-biased and poor-biased games, as in [29]). A key feature of these games is that they viol-
ate time-reversal symmetry, leading to nonequilibrium dynamics with dissipative cycles. As a
result, the steady-state probability pm of the money m belonging to a player no longer has an
exponential dependence on m predicted by the Boltzmann law.

The m-dependence of pm is qualitatively different depending on whether the game is poor-
biased or rich-biased. In the former case, we find a bell-shaped distribution pm centered around
the mean. The latter case is more interesting. In the limit where both the number of players
N and the average amount of money per player ⟨m⟩ approach infinity, the function pm is a
power law, while in the limit N→∞ with ⟨m⟩ fixed, the distribution pm follows a power law
at intermediate values of m (where this distribution turns out to be independent of the value of
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⟨m⟩) and becomes exponential in the limit m→∞. Another interesting feature of this regime
is that the fraction of players with zero money (or, equivalently, the fraction of particles in the
ground state) always remains finite. For finite N (in the rich-biased case) we find that finite-
size effects dominate the dynamics, resulting in a bimodal wealth distribution, with the money
belonging to each player undergoing non-Markovian bistable dynamics switching between
poor and rich states, and with the rich state occurring when the player accumulates nearly all
the money in the system.

This paper is organized as follows: in section 2 we describe details of the model. Section 3
discusses the ‘fair game’ case and gives simple arguments explaining the Boltzmann distri-
bution of money in this case. Unfair exchange games are introduced in section 4, where the
connection between unfairness and time-reversal symmetry breaking is shown. The general
mean-field solution to such games is introduced in section 5. Section 6 reports on analytical
results for the case of a rich-biased game in the limit of infinite number of players, while
sections 7–9 discuss finite-size effects in this game using both simulations and analytic the-
ory. Section 10 discusses the timescales to reach the steady state, and section 11 concludes by
highlighting the most important findings of this work.

2. Model

The model studied here is described, more precisely, as follows: Each of the N players
(molecules) hasmi money (or energy) units, where the index i = 1, . . . ,N enumerates the play-
ers. The total amount of money,

M=
N∑
i=1

mi (1)

is conserved and fixed by the initial conditions. At every step, a pair, say i and j, is selected at
random; If mi > 0 and mj > 0, then these players/molecules exchange money/energy,

mi → mi ± 1,mj → mj∓ 1 (2)

with the signs ‘+’ and ‘-’ determining which player receives the money selected according
to certain probabilistic rules to be specified below. When only one direction of exchange is
possible, the exchange becomes deterministic. For example, if mi = 0 and mj ̸= 0, the result
of the exchange is mi → 1, mj → mj− 1. If mi = 0 and mj = 0, then no exchange takes place,
mi → mi, mj → mj. We note that these rules may be viewed as unrealistic from an economics
perspective: for example, it could be more realistic to assume that a player reaching the zero-
money state leaves the game [9]. But since we are more interested in molecular consequences
than economic implications of the model here, the assumption of conservation of the number
of particles/players N is more natural.

We are interested in the steady-state probability pm that a player has mmoney units, partic-
ularly in the limit,

N→∞,
M
N

= ⟨m⟩, (3)

with the average amount of money per player ⟨m⟩ being a given parameter specified by the
initial conditions.
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Figure 1. Kinetic scheme for a single player in the Bennati–Dregulescu–Yakovenko
game.

3. Fair exchange leads to Boltzmann distribution

In the fair game, when both directions of exchange (i.e. both signs in equation (2)) are possible,
they are chosen with equal probabilities. Note that the dynamics under the fair game rules are
time-reversible—see section 4.

We now give a simple physical explanation why fair exchange rules lead to the Boltzmann
distribution in the steady-state. Focus on a single participant of the game, and consider the
evolution of the amount of money m owned by this player. This quantity undergoes a one-
dimensional random walk, as shown in figure 1. Let p(m+ 1|m) and p(m− 1|m) be the con-
ditional probability that a player with amount m will increase/decrease its amount by 1 (see
figure 1) such that the walker steps right/left. Given the fairness of the game, m is equally
likely to increase/decrease upon encountering another player with a nonzero amount of money.
When encountering a player with zero amount of money, however, our participant cannot
receive money and must lose money instead (assuming m⩾ 1). The probability that the player
encountered is broke is p0, and the probability that this player is not 1− p0; therefore we have

p(m− 1|m) = 1
2
(1− p0)+ p0 =

1+ p0
2

, for m⩾ 1. (4)

Similarly, we find

p(m+ 1|m) = 1− p0
2

, for m⩾ 1. (5)

For m= 0 we obviously have p(−1|0) = 0, as m cannot become negative. To find p(1|0) we
note that the walker takes a step to the right (m increases) provided that the player encountered
is not broke (with probability 1− p0) or remains unchanged otherwise (with probability p0).
Thus, p(1|0) = 1− p0. Finally, if a player with no money encounters another player that is
broke, the conditional probability of such an encounter is p0 ≡ p(0|0) (figure 1).

The steady-state probabilities pm of a player havingmmoney units must satisfy the detailed
balance condition, which requires that the average number of encounters where a player’s
wealth increases from m to m+ 1 is equal to the number of encounters where it decreases
from m+ 1 to m:

pmp(m± 1|m) = pm±1p(m|m± 1) . (6)
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Note that this is always true in the steady state of a one-dimensionalMarkovian random walk
performed by the variable m (even if the microscopic states of the entire system comprised of
the N walkers violate detailed balance, as in the unfair games discussed below). Using detailed
balance, along with equations (4) and (5), iteratively (i.e. starting from p0 and calculating
p1 → p2 → ....), we find:

pm = 2p0

(
1− p0
1+ p0

)m

≡ 2p0 exp(−βm), for m⩾ 1. (7)

This is the Boltzmann distribution, with pm exponentially decaying with increasingm and with
an inverse temperature β determined by the equation

e−β =
1− p0
1+ p0

. (8)

Importantly, the probabilities satisfying equation (7) automatically satisfy the normalization
condition

∞∑
m=0

pm = 1. (9)

The value of p0, then, must be determined by the initial amount of money in the system

∞∑
m=0

mpm = ⟨m⟩. (10)

Using equation (7), the sum in the LHS of equation (10) is evaluated to give

1
2p0

− p0
2

= ⟨m⟩ (11)

Solving equation (11) for ⟨m⟩ and discarding the unphysical root of the ensuing quadratic
equation, one finds:

p0 =
√
⟨m⟩2 + 1−⟨m⟩. (12)

The occupancy of the zero-money state (i.e. of the single-molecule ‘ground state’) p0 is thus
a monotonically decreasing function of the average money per player.

In the limit ⟨m⟩ ≫ 1, equation (11) gives p0 ≈ 1
2⟨m⟩ ≪ 1. Equation (7) can then be written,

approximately, as

pm ≈ β exp(−βm), (13)

with

1/β = ⟨m⟩. (14)

As expected, the ‘temperature’ of the Boltzmann distribution is, in this limit, equal to the
average money/energy per player/molecule.
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In the opposite limit of ‘scarce resources’, ⟨m⟩ ≪ 1, equation (12) to lowest nontrivial order
in ⟨m⟩ ≪ 1 gives

p0 ≈ 1−⟨m⟩. (15)

Substituting this into equation (7), we find

pm ≈ 21−m⟨m⟩m, m⩾ 1. (16)

We note that, for a finite number of players N, equation (7) is not exact: indeed, in contra-
diction to this equation, the probability pm must be equal to zero for m>M. This case can be
analyzed, systematically, using a local equilibrium approximation described in section 8. In
practice, however, assuming ⟨m⟩ ≪M, the probability pm predicted by equation (7) is vanish-
ingly small for any m such that m≫ ⟨m⟩. In other words, our theory works under the assump-
tion that each player can only amass a vanishingly small (comparable to ⟨m⟩) fraction of the
total money pool M= N⟨m⟩, which is true for N≫ 1. As will be seen below, however, this
assumption is not necessarily satisfied when the rules of the game are changed to be unfair and
when N is finite.

Finally, let us point out another important feature of equations (13) and (14) (but not of
equation (7)): the distribution of money is independent of certain details of the game. More
precisely, recall that the ‘unit’ of money in our game is the same as the amount of money
exchanged in each encounter between players. Let∆µ be the actual exchanged money, say, in
dollars or cents, and let µ= m×∆µ be the money owned by a player. Then it follows from
equations (13) and (14) that the probability density of the wealth µ, measured at a sufficiently
low resolution such that the discreteness of µ is irrelevant, is given by the exponential law:

pµ (µ)≈ pm
dm
dµ

∣∣∣∣
m=µ/∆µ

=
1
⟨µ⟩

exp

(
− µ

⟨µ⟩

)
, (17)

which is independent of the money exchanged (∆µ). In other words, regardless of whether
players exchange dollars or cents, their wealth distribution will be the same as long as the
average wealth per player is the same. In general, this is not the case (e.g. for the more general
result of equation (7)).

4. Unfair exchange implies broken time reversal symmetry

We now introduce a class of ‘unfair’ exchange models, in which the direction of exchange
between two players with amounts of money m and m′ depends on m and m′. Specifically,
let ϕ+(m,m ′)≡ p(m+ 1,m ′ − 1|m,m ′) be the (conditional) probability that a player with m
money units will accept money upon encountering a player with m′ money units. Assuming
0< m,m ′ <M, the probability that this player will give money to the other player is
then ϕ−(m,m ′)≡ p(m− 1,m ′ + 1|m,m ′) = 1−ϕ+(m,m ′), and by symmetry, we also have
ϕ±(m,m ′) = ϕ∓(m ′,m). In what follows, we will focus on a particular example of such a
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model, where the exchange probabilities are determined by the sign of the difference m−m ′.
Specifically:

ϕ+ (m,m ′) =



ϕ, 0< m ′ < m<M,

1−ϕ, 0< m< m ′ <M,

1/2, 0< m= m ′ <M,

0, m=M,

1, 0= m< m ′,

0, 0= m ′ ⩽ m.

(18)

The quantity ϕ is the probability that a wealthier player encountering a poorer one (but still
with nonzero money) will receive money from the latter. Thus, it is a measure of unfairness
of the game, with ϕ = 1/2 corresponding to the fair game discussed in the preceding section.
When ϕ < 1/2, the game will tend to equalize the wealth of the players. When ϕ > 1/2, it will
increase inequality. Intuitively, time reversible exchange dynamics should correspond to the
fair game case: for example, if we replace players with colliding molecules and money with
their energies, then a trajectory of two colliding trajectories and its time-reverse result in the
same amount of energy being exchanged in the opposite directions.

To quantify the above statement more precisely, note that the time evolution of the state
vector (m1,m2,m3. . .,mN) of the system is described by a discrete-time master equation, with
transition probabilities specified by equation (18) multiplied by the probability that two spe-
cific players meet. As an example, a kinetic scheme describing this system is shown in figure 2
for the case N= 3. Importantly, the dynamics satisfies detailed balance and is time-reversible
only for the fair game with ϕ = 1/2. Indeed, according to Kolmogorov’s cycle criterion [32,
33], detailed balance is violated if there is a cyclic sequence of microscopic states such that
the product of the transition probabilities in the clockwise direction is different from that taken
in the counterclockwise direction. Examples of such cycles, for ϕ ̸= 1/2, are highlighted in
figure 2. And since any 3-player game can be embedded in a game with N⩾ 3 players, the
example in figure 2 suffices to prove that detailed-balance is broken when ϕ ̸= 1/2.

Various other ‘unfair’ exchange models have been studied in the literature [29–31]. In [29],
the exchange direction is always set from a ‘giver’ to a ‘receiver’, and the bias is introduced in
the probability of selecting a ‘giver’ and a ‘receiver’, which depends on the amount of money
each person has (see figure 1 in [29]). In [30, 31] the bias in the exchange direction does not
only depend on the sign difference of m−m ′ (as we have here), but also on the magnitude
of the difference (see i.e. equation (16) in [31]). The latter, however, reduces the analytical
tractably of the model.

5. Mean-field theory: evolution of wealth as a Markovian random walk

Consider the one-dimensional random walk shown in figure 1. Within mean-field theory, the
transition probabilities of stepping right and left are computed as weighted averages of the
microscopic transition probabilities,

p(m± 1|m) =
∑
m ′

ϕ± (m,m ′)pm ′ . (19)

7
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Figure 2. (a) Full kinetic scheme of the money game with N= 3 players and M= 9
units of money (⟨m⟩= 3). In the upper left corner, we show a cycle which contains a net
probability flow in the clockwise direction for ϕ > 1/2. For ϕ < 1/2 the cycle current
is reversed, while for ϕ = 1/2 there are no detailed-balance-violating cycles. (b)–(d)
Steady-state probabilities for ϕ= 0.3 (b), ϕ = 1/2 (c), and ϕ= 0.7 (d), obtained from
simulations. Black arrows indicate steady-state probability fluxes. It can be shown that,
for ϕ = 1/2, most states in this kinetic scheme have the same equilibrium population
(this follows from detailed balance conditions for different pairs of states). This, how-
ever, is not the case for ϕ ̸= 1/2 where detailed balance does not hold.

For the model specified by equation (18), then, we can write

p(m+ 1|m) = ϕ
m−1∑
m ′=1

pm ′ + pm/2+(1−ϕ)
∞∑

m ′=m+1

pm ′ . (20)

In writing equation (20) it was assumed that the probabilities pm decay to zero, as m→∞,
fast enough that the upper summation limit can be extended to infinity; this assumption allows
us to disregard large values of m where, for example, the money m′ owned by another player
cannot be greater than m if m>M/2.
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Introducing now

ρm =
m−1∑
m ′=0

pm ′ , (21)

we can rewrite equation (20) as:

p(m+ 1|m) = (2ϕ − 1)ρm+ 1−ϕ+(ϕ− 1/2)pm−ϕp0. (22)

Similarly, we have

p(m− 1|m) = 1− p(m+ 1|m) =−(2ϕ − 1)ρm+ϕ− (ϕ− 1/2)pm+ϕp0. (23)

Using detailed balance, given by equation (6), the steady-state probabilities pm can now be
determined, starting from p0, by iterating the following map:

pm+1 = pm
(2ϕ − 1)ρm+ 1−ϕ+(ϕ− 1/2)pm−ϕp0

−(2ϕ − 1)(ρm+ pm)+ϕ− (ϕ− 1/2)pm+1 +ϕp0
, (24)

ρm+1 = ρm+ pm, (25)

which holds form⩾ 1. Note that equation (24) contains pm+1 both on the RHS and LHS—each
iteration, then, involves solving a quadratic equation for pm+1.

Equations (24) and (25) are not valid for m= 0; writing the detailed balance condition
between states with m= 0 and m= 1, we obtain the first step of the map (cf figure 1):

p0 (1− p0) = p1p(0|1) = p1 [−(2ϕ − 1)ρ1 +ϕ− (ϕ− 1/2)p1 +ϕp0] , (26)

or, using ρ1 = p0,

p1 =
p0 (1− p0)

−(2ϕ − 1)p0 +ϕ− (ϕ− 1/2)p1 +ϕp0
. (27)

Again, equation (27) results in a quadratic equation that allows one to determine p1 starting
from p0.

It is worth noting that the use of the detailed balance condition, given by equation (6), is
justified even when the system, viewed microscopically, is in a nonequilibrium steady state
rather than in equilibrium, as is the case for ϕ ̸= 1/2 (see the previous section). Indeed, the
linear kinetic scheme of figure 1 always obeys detailed balance. This scheme describes a pro-
jection of nonequilibrium dynamics in a N-dimensional space onto a single degree of freedom
m, where—as is often the case for projected dynamics (see, e.g. [34–38]) - the nonequilibrium
character of the underlying process is hidden, although it affects the distribution pm.

Figure 3 illustrates the performance of our theory in comparison with Monte Carlo simula-
tions of money exchange. For ϕ = 1/2, the theory is identical to that of section 3 leading to a
probability distribution described by equation (7). For ϕ < 1/2, the money exchange is more
likely to proceed in the direction from a wealthier player to the poorer one; as a result, the dis-
tribution pm has a peak centered around the average amount ⟨m⟩, which was also observed in
[30, 31]. This qualitative property of the distribution is captured by the theory, which becomes
increasingly more accurate as N increases. For ϕ > 1/2, the situation is more complicated. As
will be seen in section 7, if ⟨m⟩ is large enough, then the distribution pm becomes bimodal, a
qualitative feature not captured by our theory. The parameters in figure 3 are chosen such that
this is not the case. See section 7 for a further discussion.

9
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Figure 3. A comparison of equations (24)–(27) with simulations. The probability distri-
butions for, from top to bottom, a ϕ = 1/2, ⟨m⟩= 3 game, a ϕ = 1/3, ⟨m⟩= 6 game,
and a ϕ = 2/3, ⟨m⟩= 1 game. The predictions of equations (24)–(27) are shown as
black dots, while the simulation results are represented by continuous lines.
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6. The ϕ > 1/2, N= ∞ case

Themost interesting regime isϕ > 1/2, wheremoney transfer from poorer players to wealthier
ones is favored. We start with considering the behavior of pm satisfying equation (24) in the
limit m→∞. Since the distribution pm is normalized, we must have

lim
m→∞

pm = 0.

Moreover, we have

lim
m→∞

ρm =
∞∑
m=0

pm = 1.

Inserting the above two relations into equation (24), we see that the ratio pm+1/pm approaches
a constant for m→∞,

lim
m→∞

pm+1

pm
=

ϕ(1− p0)
1−ϕ(1− p0)

. (28)

On the other hand, pm can only vanish in the limit m→∞ if pm+1/pm < 1. It then follows
from equation (28) that a normalized steady-state solution exists only if

p0 ⩾ pc ≡ 1− 1
2ϕ

. (29)

Hence, for ϕ > 1/2 we find pc > 0. In other words, in the rich-biased game, the fraction of
players with zero money remains finite regardless of the total pool of money in the game.

What happens when p0 approaches the minimum possible value pc from above? To answer
this question, let us write the map of equation (24) in the following form,

pm+1 = pm
2η (ρ̃m− 1)+ 1− ϵ(η+ 1)

−2η (ρ̃m+1 − 1)+ 1+ ϵ(η+ 1)
, (30)

where

η = 2ϕ− 1,

ρ̃m = ρm+
pm
2
,

and

ϵ= p0 − pc

For m→∞, we have 1− ρ̃m → 0, and thus in order to study the tails of the distribution pm we
have to consider two small parameters, ϵ, and 1− ρ̃m. Depending on the relationship between
the two, there are two cases:

Case A: ϵ≫ 1− ρ̃m. Equation (30) can then be approximated by

pm+1 ≈ pm
1− ϵ(η+ 1)
1+ ϵ(η+ 1)

, (31)

11
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leading to an exponential tail for the distribution pm,

pm ∝
[
1− ϵ(η+ 1)
1+ ϵ(η+ 1)

]m
. (32)

Case B: ϵ≪ 1− ρ̃m. Equation (30) can now be rewritten as

pm+1 ≈ pm
2η (ρ̃m− 1)+ 1

−2η (ρ̃m+1 − 1)+ 1
≈ pm (1− 4η (1− ρ̃m)) . (33)

Treating m as a continuous variable, we can further approximate the above equation by

pm+1/pm ≈ 1+ p−1
m dpm/dm≈ 1− 4η

ˆ ∞

m
pm ′dm ′,

or

d lnpm
dm

≈−4η
ˆ ∞

m
pm ′dm ′. (34)

Guessing the solution of this integro-differential in the form of a power law, we find:

pm =
1

2(2ϕ− 1)m2
. (35)

For a nonzero (but sufficiently small) ϵ, therefore, the shape of the curve pm vs. m includes
an exponential tail at m→∞ and an intermediate power-law regime (figure 4). When p0 =
pc (ϵ= 0) the exponential tail disappears, and the power law of equation (35) holds even in
the limit m→∞. Such a power law for the tail of the wealth distribution is an example of
Pareto’s law [39, 40], which has been confirmed empirically in various settings [12, 41]. In
this case, the first moment of the distribution pm (as well as its higher moments) diverges,
since

´∞
0 mpmdm=∞. More generally, as shown in figure 5, ⟨m⟩ increases and diverges as p0

approaches the critical value pc from equation (29). In contrast, for ϕ ⩽ 1/2, ⟨m⟩ diverges as
p0 approaches zero (figure 5).

Remarkably, the intermediate power law predicted by equation (35) is independent of the
value of p0, or, equivalently, of the average amount of money ⟨m⟩ per player, and is only a
function of the ‘inequality’ parameter ϕ. This prediction is confirmed by the numerical results
for pm shown in figure 4.

Recall that our unit of money here is the amount of money exchanged in each transaction. It
is instructive to rewrite our result using more natural units, where the amount exchanged is∆µ
and a player’s wealth is µ= m×∆µ (see section 3). In this case we find, for the probability
density pµ of µ (treating, again, µ as continuous),

pµ (µ)≈ pm
dm
dµ

∣∣∣∣
m=µ/∆µ

=
∆µ

2(2ϕ− 1)µ2
. (36)

Unlike equation (17), this result depends, explicitly, on the amount of money∆µ exchanged in
each transaction, and the average properties, such as the average wealth ⟨µ⟩, are insufficient for
determining the wealth distribution in this case. For example, if we ask how many individuals
have wealth below some predefined value µ∗, the answer will depend, explicitly, on ∆µ, not
just on ⟨µ⟩. The proportionality of the power-law probability distribution of equation (36) to
∆µ also follows from dimensional arguments: Since∆µ is the only characteristic money scale
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Figure 4. Probability distribution pm obtained using equations (24)–(27) for ϕ = 3/4
and for different values of ϵ= p0 − pc and, accordingly, for different ⟨m⟩, as indicated.
The dashed line is the prediction of equation (35). Inset shows the same data on log
scale, demonstrating exponential distribution tails (cf equation (32)). Note that in the
intermediate range where the power law scaling holds (equation (35)), the probabilities
pm are independent of the average amount of money per player, ⟨m⟩.

Figure 5. Average amount of money ⟨m⟩ per participant plotted as a function of the
probability p0 to have zero money for ϕ = 1/4 (blue), ϕ = 1/2 (orange) and ϕ = 3/4
(green). Note that, in the last case, ⟨m⟩ diverges as p0 approaches a finite value of pc =
1− 1/2ϕ = 1/3.

of the power-law distribution (for which ⟨µ⟩=∞), the only way the power-law dependence of
the probability density on µ, pµ(µ)∝ µ−2, can be reconciled with its units of inverse money
is that it is also proportional to ∆µ.

7. The ϕ > 1/2, finite N case: breakdown of mean-field theory, bimodality of
the wealth distribution and the winner-takes-all scenario

For ϕ > 1/2, the difference between the case of a finite number of players N and the N→∞
limit is not merely quantitative: unlike the ϕ⩽ 1/2 case, where the shape of the dependence
of pm on m remains the same regardless of N (cf figure 3), the distribution pm may become
bimodal (see figure 6). Importantly, the location of the rightmost peak of the distribution is
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Figure 6. Probability distribution pm of the money belonging to a player for a game with
N players, with ϕ = 2/3 and ⟨m⟩= 5. Simulations of the game with different values of
N are compared with the N→∞ result predicted by equations (24), (25) and (27).

comparable toM= N⟨m⟩, the total amount of money in the system. Thus, the assumption that
pm is vanishingly small for m≈M is violated. As N increases, the right distribution peak is
shifted to the right, and the probability distribution pm converges towards the result predicted
by mean-field theory (figure 6).

In what follows, it will be shown that this second peak accounts for the possibility that a
single player accumulates nearly all the money in the game, thus necessarily forcing the rest
of the players into a ‘poor’ state. Indeed, once a player happens to accumulate more than half
of the total money, M/2, the rest of the players have less than M/2. Under the rules of the
game with ϕ > 1/2, the ‘rich’ player will be more likely to gain rather than lose money in
subsequent exchanges. This leads to a (known in the economics world [42]) ‘winner-takes-
all’ scenario until an improbable sequence of money exchanges causes the lucky winner to
lose enough money that reverts this player to poverty. For a sufficiently long game, this will
happen, occasionally, to every player. This is illustrated in figure 7, where the amount of money
belonging to a selected player exhibits bistable behavior for ϕ > 1/2 (right panel in figure 7).
In contrast, for ϕ⩽ 1/2, no extreme values of m close to M(= 100) occur with significant
probability (left and middle panels in figure 7).

The above points become even more clear when the probability distribution pm is con-
sidered. Equivalently, figure 8 shows the apparent ‘free energy’, defined as

F(m) =− lnpm, (37)

as a function m. Introduction of such a quantity is motivated by the chemical kinetics view of
chemical reactions as transitions between minima on free energy landscapes (also known as
potentials of mean force) [43, 44] and offers a convenient physical picture of the evolution of
money m(t) as motion on a free energy surface F(m). One should keep in mind, however, that
F(m) is not a true free energy (except for the fair exchange game), as we are dealing with a
nonequilibrium system.

For ϕ⩽ 1/2, the free energy has a single minimum. For ϕ = 1/2 (the Boltzmann case) this
minimum is located at m= 1, with the probability pm decaying exponentially (and thus F(m)
increasing linearly) as m increases. Thus, the probability of large values of m is exponentially
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Figure 7. Tracking the money belonging to a player for a segment of time for the three
game types, all with the same parameters, N= 10 and ⟨m⟩= 10. Note the two distinct
states dividing the rich and poor in the ϕ = 2/3 game on the right.

Figure 8. ‘Free energy’ defined as − lnpm, for the three regimes of the game corres-
ponding to three values of ϕ, as indicated. In all cases, N= 10 and ⟨m⟩= 10. Note the
second minimum for the free energy observed for ϕ = 2/3. This minimum corresponds
to a value of m that is comparable to the total amount of money in the system,M= 100.

small. For ϕ < 1/2 the single minimum is, roughly, comparable with ⟨m⟩. Again, the probab-
ility pm decays quickly to the right of this maximum, making states withm≫ ⟨m⟩ improbable.
But the case ϕ > 1/2 is qualitatively different, with a second free energy minimum (i.e. prob-
ability maximum) corresponding to the player being in a ‘rich’ state.

Since the total amount of the game’s money,
∑N

i=1mi =M, where mi is the amount of
money that belongs to the i-th player, is conserved, the existence of a super-rich player (say j)
that accumulates more than half of the total money (mj >M/2) will subjugate the rest of the
players to the poor state with mi <M/2, i ̸= j. This means that the trajectories of two different
players, mi(t) and mj(t), must be coupled. The lack of statistical independence of mi(t) and
mj(t) implies violation of the assumptions of the mean-field theory—and, indeed, mean-field
theory predicts a monotonic rather than bimodal distribution pm.

The coupling between mi(t) and mj(t) can be further examined by comparing their joint
distribution pmi,mj with the product of single-player distributions pmipmj . Such a comparison is
given in figure 9.

If the moneys belonging to players 1 and 2 are statistically uncoupled, then their joint distri-
bution is the product of the single-player distributions. The simulation results, however, show
this is not the case, with pm1,m2 qualitatively different from pm1pm2 for ϕ > 1/2 (figure 9). In
particular, the product pm1pm2 has an impossible local minimum atm1 = m2 >M/2, where the
money belonging to the two players exceeds the total amount of moneyM in the game.
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Figure 9. Left: contour plots of the joint distribution pm1,m2 of the money belonging to
a pair of players arbitrarily labeled i= 1 and j= 2. Right: contour plots of the product
of single-player distributions pm1pm2 . If m1 and m2 are statistically independent, then
pm1,m2 = pm1pm2 . Darker color (more violet) correspond to larger values of the probab-
ility. As indicated, the top two plots correspond to ϕ = 2/3 and the bottom two plots to
ϕ = 1/2. For ϕ = 2/3, the local maximum of the probability product pm1pm2 situated
around (m1,m2) = (80,80) represents an impossible state, as the total amount of money
in this game is constrained to 100 units. This indicates that m1 and m2 are not statistic-
ally independent. Such a maximum is notably absent in the ϕ = 1/2 game. Parameters
are N= 10, ⟨m⟩= 10 for the ϕ = 2/3 game and N= 5, ⟨m⟩= 5 for the ϕ = 1/2 game.

To examine, more systematically, how the coupling among players depends on the total
number of players, the value of ϕ, and on the amount of money in the game, we quantify the
coupling between players i and j (i ̸= j) using the mutual information defined as [45]:

Iij =
M∑

mi=0

M∑
mj=0

pmi,mj ln
pmi,mj

pmipmj

. (38)
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Figure 10. (a) Mutual information between the amounts of money possessed by two
players as a function of the number of players N in the game for ϕ = 1/2, ϕ = 2/3,
and ϕ = 1/3, with ⟨m⟩= 5. (b) Mutual information between the amounts of money
possessed by two players as a function of the averagemoney per player ⟨m⟩. The number
of players is N= 10. Increasing money increases the coupling among players in the rich
biased game (ϕ = 2/3), but does not have a significant effect on the mutual information
for the ϕ = 1/2 and ϕ = 1/3 games.

Ifmi andmj are statistically independent then pmi,mj = pmipmj , and so Iij= 0; non-zero values
of mutual information indicate coupling between mi and mj. Of course, since all players are
equivalent, Iij is independent of i and j.

As seen from figure 10(a) and, especially, figure 10(b), the mutual information between
pairs of players is significantly greater in the rich-biased games (ϕ = 2/3), as compared to the
fair and poor-biased game, given the same number of players. This mutual information further
shows significant dependence on the average amount of money accumulated by a player for
ϕ > 1/2, but not for ϕ ⩽ 1/2 (figure 10(b)), in accord with the above qualitative argument
suggesting strong coupling in this case. In all cases, the mutual information decreases with
the number of players N (given a fixed average amount of money per player). This, again,
is consistent with the expectation that the mean-field theory prediction should be recovered
for N→∞.

8. The finite N case: local equilibrium approximation

The mean field theory-type approximation described in section 5 works in the limit N→∞,
but it cannot explain, even qualitatively, the bistable dynamics and the winner-takes-all scen-
ario occurring in the rich-biased gamewhen the number of players is finite. These are examples
of finite-size effects, which can play an important role in real-world scenarios where economic
markets have a finite number of participants [46–49]. To account for such finite-size effects,
we developed a local equilibrium approximation, which assumes that the dynamics of, for
example, player i (with money mi) takes place in an equilibrated pool of N− 1 players with
total amount of moneyM−mi. In contrast to the mean field approximation, the local equilib-
rium approximation explicitly accounts for a finiteM, and therefore the pool of N− 1 players
does not effectively have infinite money. Similarly to the mean field approximation, the local
equilibrium approximation describes the time evolution of the money owned by any given
player as a one-dimensional random walk (figure 1), where the effective transition rates are
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determined by the steady-state probabilities of the N− 1-player game. Explicit expressions
for the transition rates and steady-state probabilities in the local equilibrium approximation
are given below.

8.1. Two player game

We start with a two player game, where we can calculate the steady-state probability for a
single player to have m units of money, p2,Mm , exactly. For a finite amount of money, M, the
dynamics can exactly be represented by a linear discrete-time Markov chain (figure 1), with
the transition probabilities given by

p2,M (m+ 1|m) =


1, m= 0,

1−ϕ, 0< m<M/2,

1/2, m=M/2,

ϕ , M/2< m<M,

(39)

and p2,M(m− 1|m) = 1− p2,M(m+ 1|m) together with p2,M(M− 1|M) = 1 and p2,M(−1|0) =
0. Since the Markov chain has a linear structure, the steady-state distribution can directly be
obtained from the detailed-balance relation given by equation (6). Together with the normaliz-
ation condition,

∑M
m=0 p

2,M
m = 1, this fully specifies the steady-state distribution. IfM is even,

we obtain from equation (6):

p2,Mm =
2ϕ− 1

4ϕ
(
1− (1/ϕ− 1)M/2

)


1, m= 0∨m=M,

2(1/ϕ− 1)M/2−1
, m=M/2,

(1/ϕ)(1/ϕ− 1)min(m,M−m)−1
, elsewhere,

, (40)

and if M is odd, then

p2,Mm =
2ϕ− 1

4ϕ− 2(1/ϕ− 1)(M−1)/2

{
1, m= 0∨m=M,

(1/ϕ)(1/ϕ− 1)min(m,M−m)−1
, elsewhere.

(41)

For ϕ = 1/2 the distribution becomes uniform (with an exception for the tails)

p2,Mm =
1
2M

{
1, m= 0∨m=M,

2, elsewhere.
(42)

8.2. The N player game

Our next aim is to evaluate the steady-state probability pN,Mm for a single player in the money
game with N> 2 players. Note that by definition,

M/N=⟨m⟩
lim
N→∞

pN,Mm = pm, (43)

where pm is the steady-state probability distribution for the infinite money game with infinite
amount of players (see section 5).
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Unfortunately, owing to the nonlinear structure of the Markov chain, in combination with
the presence of steady-state probability fluxes as shown in figure 2, we cannot simply use
detailed balance to infer the steady-state probability. To overcome this problem, we assume
that the dynamics between any N− 1 players is equilibrated before the Nth player makes a
move. This renders an effective one-dimensional transition landscape for theNth player, where
the transition rates are determined by averaging over all possible encounters, leading to the
following expression:

pN,M (m+ 1|m) =



M∑
n=1

pN−1,M
n , m= 0,

ϕ

m−1∑
n=1

pN−1,M−m
n +pN−1,M−m

m /2+(1−ϕ)

M−m∑
n=m+1

pN−1,M−m
n , 0<m<M/2,

ϕ

M/2−1∑
n=1

pN−1,M/2
n +pN−1,M/2

M/2 /2, m=M/2,

ϕ

M−m∑
n=1

pN−1,M−m
n , M/2<m<M.

.

(44)

The backward transition probabilities are, again, given by pN,M(m− 1|m) = 1− pN,M(m+
1|m) for 0< m<M, and pN,M(M− 1|M) = 1. Since the local equilibrium approximation res-
ults in an effective one-dimensional transition landscape, the steady-state distribution can dir-
ectly be determined from the effective transition rates as

pN,Mn =

(
δn,0 +

n∏
k=1

pN,M (k|k− 1)
pN,M (k− 1|k)

)/(
1+

M∑
l=1

l∏
k=1

pN,M (k|k− 1)
pN,M (k− 1|k)

)
. (45)

Note that equation (44) is very similar to equation (20). The difference, however, is that
equation (44) explicitly depends on the steady-state probability for themoney gamewithN− 1
players. Hence, to obtain the steady-state probability of theN player game, wemust first obtain
the steady-state of the N− 1 player game (and so forth). For example, for the 3 player game,
we need to insert p2,Mn into equation (44). Therefore, the local equilibrium approximation is an
iterative procedure to obtain the steady-state probabilities.

Comparison of the local equilibrium approximation with simulations for a three player
game shows nearly perfect agreement as shown in figure 11. In particular, the local equilibrium
approximation captures the bimodal distribution of money for ϕ > 1/2 (figure 11(b)).

8.3. N player no-bias game

For a biased game with ϕ ̸= 1/2 it is rather difficult to obtain closed-form expressions for
equation (45), but for ϕ = 1/2 this can be done. For example, for N= 3 we obtain

p3,Mm =
2M

1+ 2M2


1, m= 0,

2(1−m/M) , 0< m<M,

1/(2M) , m=M.

(46)
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Figure 11. Probability distribution p3,Mm of the money belonging to a single player for a
poor-biased game (a) and rich-biased game (b) with N= 3 players and ⟨m⟩= 10. Solid
lines are obtained from simulation, and dashed lines are given by the local equilibrium
approximation obtained with equation (45).

We can generalize this result to arbitraryN. Upon setting ϕ = 1/2 the effective transition rates,
given by equation (44), take the simple form

pN,M (m+ 1|m) =


1− pN−1,M

0 , m= 0,(
1− pN−1,M−m

0

)
/2, 1⩽ m<M,

0, m=M.

(47)

Inserting equation (47) into the general solution equation (45), we obtain the following
expression

pN,Mm =
1

NN,M


1, m= 0,

2 1−1/NN−1,M

1+1/NN−1,M−m

∏m−1
k=1

1−1/NN−1,M−k

1+1/NN−1,M−k
, 1⩽ m<M,

(1− 1/NN−1,M)
∏M−1

k=1
1−1/1/NN−1,M−k

1+1/NN−1,M−k)
, m=M,

(48)

where the normalization constant NN,M is determined by the normalization
∑M

m=0 p
N,M
m = 1.

In particular,

N3,M =
1+ 2M2

2M
, N4,M =

8M+ 4M3

3+ 6M2
, N5,M =

3+ 10M2 + 2M4

8M+ 4M3
, etc. (49)

For M≫ 1, the normalization constant can be expanded as

NN,M =
2M
N− 1

+O
(

1
M

)
, (50)

which, after re-inserting into equation (48), allows us to determine the steady-state distribution
asymptotically
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pN,Mm =
N−1
2M


1, m= 0,

2(m−M)(N−2(M+1))
M(N+2(M−m−1))

(N/2−M)m−1

(2−N/2−M)m−1
, 0< m<M,

(1+M−N/2)(N/2−M)M−1

M(2−N/2−M)M−1
, m=M,

+O
(

1
M3

)
, (51)

where (a)n = a(a+ 1) · · · (a+ n− 1) denotes the Pochhammer symbol.

8.3.1. Convergence to the Boltzmann distribution. Equation (51) converges to the
Boltzmann distribution of equation (13) when N≫ 1. To see this, let us calculate the moments
of equation (51), which read

M∑
m=0

mkpN,Mm =
k!Mk

(N)k
+O

(
Mk−1

)
. (52)

For N≫ 1, we can use (N)k = Nk+O(Nk−1), to obtain

M∑
m=0

mkpN,Mm =
k!Mk

Nk
+O

(
(M/N)k−1

)
. (53)

Here we immediately recognize the moments of the exponential distribution withM/N≡ ⟨m⟩.
Therefore, in the limit N→∞, while keeping M/N fixed and finite, equation (51) converges
to the Boltzmann distribution with temperature ⟨m⟩, in accord with equation (13).

9. The ϕ > 1/2, finite N case: non-Markov effects in barrier crossing dynamics

The theory described in section 5 projects N-dimensional dynamics onto a single degree of
freedom and considers a one-dimensional random walk performed by the money m(t) owned
by a single player. Importantly, despite the nonequilibrium character of the N-dimensional
dynamics (when ϕ ̸= 1/2), the corresponding one-dimensional random walk always obeys
detailed balance. The nonequilibrium character of the underlying dynamics is therefore not dir-
ectly observable in the trajectories m(t), even though it is indirectly reflected in the probability
distributions pm or, equivalently, in the effective free energies, figure 8. The one-dimensional
dynamics m(t) can, in this case, be viewed as one-dimensional random walk/diffusion in the
presence of the effective potential F(m).

The situation is different at finite values of N, particularly in the case (considered in
section 7) where the potential F(m) is bistable. Qualitatively, we can still think of the dynam-
ics along m as a one-dimensional random walk governed by the bistable potential F(m). But
because of the coupling between different random walkers, as discussed in section 7, each
individual random walk no longer has the Markov property.

To illustrate this non-Markov behavior, here we analyze the transition paths between the
poor and rich states. A transition path [43, 44] is defined as a segment of a single-player tra-
jectory m(t) that enters a ‘transition region’ between the poor and rich states, i.e. a segment
(mP,mR), through its ‘poor’ boundarymP and stays continuously inside this region until exiting
through the ‘rich’ boundarymR. Analyzing transition paths informs one, for example, whether
the ‘mechanism’ of getting rich is the same as that of getting poor: if this is the case, then
the ensemble of rich-to-poor transition paths is statistically the same as the ensemble of time-
reversed poor to rich transition paths. As a result, then, the mean transition path time (i.e. the
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Figure 12. Probability (orange lines) that m belongs to a transition path from the poor
(mP = 30) to the rich (mR = 50) states shows that the dynamics of barrier crossings is
non-Markov. For Markovian dynamics, the maximum would be 1/4 [51], indicated by
the green dashed line.

mean temporal duration of the transition path) would be the same for the forward and backward
transition path, which is often taken as one of the fingerprints of time reversal symmetry.

For a Markovian one-dimensional random walk m(t) this forward-backward symmetry
always holds because, as noted above, such a random walk always satisfies detailed balance
and thus has time-reversal symmetry [33]. But for a non-Markovian random walk, such sym-
metry may be violated [50]. In all the simulations reported here, we were not able to find any
difference between the mean forward and backward transition path times, to within simulation
errors. This, of course, should not be taken as a proof of the time reversal symmetry of the
random walk.

Another property of the transition path ensemble can be used as a test of Markovianity of
the process m(t): consider the probability P(R→ P | m) that a point m, mP < m< mR, belongs
to a transition path from the rich to the poor state (as opposed to a trajectory that enters and
exits the transition region through the same boundary): for Markovian dynamics this prob-
ability attains a maximum value of 1/2× 1/2= 1/4 corresponding to a committor-one-half
point m where the trajectory starting from m is equally likely to reach either transition-region
boundary [52]. For non-Markov dynamics we expect [51] maxmP<m<mR P(R→ P | m)< 1/4,
and, indeed, this is what we observe in figure 12 which shows the non-Markov character of
the bistable dynamics m(t) observed for ϕ > 1/2.

10. Equilibration times

Finally, another interesting dynamical property of our model is the time it takes for the steady-
state distribution to set in, particularly in the N→∞ limit. We set the time between the money
exchanges carried out by a single player as the unit of time; this choice is physically sensible, as
a ‘microscopic’ time unit is independent of the ensemble size.With this choice, time effectively
corresponds to the number of steps performed by the random walker shown in figure 1.

Consider first the specific scenario where each player starts with ⟨m⟩money units: the initial
distribution (measured across the ensemble of players) is infinitely narrow. As this distribution
spreads toward the broader equilibrium distribution, each player will, typically, have to travel a
distance along them coordinate that is comparable to the standard deviation of the equilibrium
distribution,
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∆m=
√
⟨m2⟩− ⟨m⟩2. (54)

Given the diffusive dynamics alongm, and assuming a constant diffusivityD, the time to attain
the equilibrium distribution should be comparable to

τ ∝∆m2/D. (55)

Although this estimate ignores the possible dependence of the diffusivity on m, as well as the
fact that diffusion is not free but biased, it highlights an important observation that is insens-
itive to the above assumptions: if ∆m diverges, then some of the players will have to travel
infinitely far from their starting point m= ⟨m⟩, which will take infinite time, and so we expect
the equilibration time τ to diverge [53].

In particular, for the Boltzmann distribution, equations (13) and (14), the standard deviation
is given by

∆m= 1/β = ⟨m⟩. (56)

Therefore, we expect the relaxation time to diverge in the limit ⟨m⟩ →∞. Similarly, the power
law distribution of equation (35) has infinite variance, and thus the relaxation time should
become infinite for ⟨m⟩ →∞ for any value of the unfairness parameter ϕ that exceeds 1/2.
The case ϕ < 1/2 is different: using equations (24)–(27), it can be shown that the equilibrium
distribution (cf figure 3) has a finite width. Thus, we expect the equilibration time to be finite
even in the ⟨m⟩ →∞ limit.

To study the relaxation timescales of the money game more quantitatively, let us first con-
sider the relaxation dynamics for the single-player variable m, as revealed by its equilibrium
autocorrelation function

⟨m(t)m(0)⟩=
∑
m,m ′

m ′P(m ′, t | m,0)m. (57)

Here P(m ′, t | m,0) is the propagator, i.e. the joint probability to find the player withm′ money
units at (discrete) time t given that this player had m money units initially. In the matrix form,
the one-step propagator is given by P(m ′,1 | m,0) = Tm ′,m, where

T=


p(0|0) p(0|1) 0 · · · · · ·
p(1|0) 0 p(1|2) 0 · · ·

0 p(2|1) 0 p(2|3) · · ·
· · · · · · p(3|2) 0 · · ·
...

...
...

...
. . .

 , (58)

is the matrix of transition probabilities corresponding to the kinetic scheme of figure 1.
Similarly, we have

P(m ′, t | m,0) =
(
Tt)

m ′,m
.

Using equation (57) now, we conclude that the autocorrelation function has a spectral expan-
sion of the general form

⟨m(t)m(0)⟩= a0 + a1λ
t
1 + a2λ

t
2 + . . . , (59)

23



J. Phys. A: Math. Theor. 57 (2024) 155003 M Miao et al

Figure 13. The relaxation time, equation (60), grows indefinitely as a function of ⟨m⟩
for ϕ ⩾ 1/2. For ϕ < 1/2 the relaxation time approaches a plateau.

where λ0 = 1, λ1, λ2,. . . are the positive eigenvalues of T arranged in descending order. Unless
the coefficient a1 happens to be identically equal to zero, the long-time decay of the correlation
function is dominated by λ1, and thus we take

τ =− 1
logλ1

(60)

to be the characteristic relaxation time of m.
To study global relaxation dynamics of the entire system, one needs to introduce a global

order parameter R that describes the system’s dynamics. If R is a linear combination of single-
player variables mi’s or, more generally, some function of the form [54]

R=
∑
i

αi f(mi) ,

then, taking into account the statistical independence of mi and mj for i ̸= j, it is easy to see
that

⟨R(t)R(0)⟩=
∑
i

α2
i ⟨ f [mi (t)] f [mi (0)]⟩,

and thus the autocorrelation function of R has a spectral expansion of the same form as
equation (59). Therefore, we take equation (60) as a measure of both projected and global
relaxation dynamics.

Figure 13 shows the relaxation times given by equation (60) as a function of the average
amount of money per player. Consistent with the arguments above, this time grows indefinitely
as ⟨m⟩ →∞ for ϕ ⩾ 1/2 but approaches a plateau for ϕ < 1/2.

11. Concluding remarks

In the money exchange model studied here, the Boltzmann distribution could be derived dir-
ectly as the steady-state distribution corresponding to the kinetic laws governing the sys-
tem in the thermodynamic limit (N→∞). It is instructive to consider how the same res-
ult can be obtained using conventional statistical mechanics arguments. As the microscopic
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kinetics of the model is a random walk on a connected graph that is not bipartite, the sys-
tem is ergodic [55]. In the case of a ‘fair’ game (ϕ = 1/2), for most connected pairs of
microscopic states (namely, those with nonzero money) (cf figure 2) detailed balance leads to
equally populated states. Therefore, the principle of equiprobability of the microstates holds.
We can think of the microscopic description of the game as leading to the microcanonical
ensemble. Now, if we view an individual player as a small subsystem exchanging money/en-
ergy with the large ‘reservoir’ formed by the remaining N− 1 players, then the Boltzmann
distribution of this player’s money can be deduced using the usual arguments of statistical
mechanics [15–17].

For ϕ ̸= 1/2, time-reversal symmetry and detailed balance are broken, and the microstates
of the system are no longer equally populated—a microcanonical ensemble description is no
longer applicable. As a result, the distribution of an individual player’s wealth is no longer
exponential. The poor-biased (ϕ < 1/2) and rich-biased (ϕ > 1/2) cases turn out to be qualit-
atively different. The former leads to a bell-shaped distribution of money centered around the
mean, which is attained over a finite equilibration time, even when N→∞. The latter leads,
in the N→∞ limit, to a broad distribution with a Pareto-type power-law intermediate regime
and an exponential tail, such that the first moment of the distribution ⟨m⟩ remains finite. As
⟨m⟩ increases, the range of values of m for which the power law holds becomes broader, with
the exponential tail shifting toward large values of m. Remarkably, the probability distribution
of money in the power-law regime is independent of the total average wealth ⟨m⟩ of a player,
and thus of the total amount of money in the game—that is, the wealth of those ‘moderately
successful players’ is unaffected by the total wealth. At the same time, the fraction of players
in the ‘ground state’ with exactly zero money remains finite regardless of the value of ⟨m⟩,
and it cannot be lower than a certain critical value pc. The power law holds even for m→∞,
and the distribution’s first moment diverges accordingly. The equilibration time also diverges
in this case.

For a finite number of players N, the rich-biased game has an interesting regime with
bistable dynamics, with each player hopping between a ‘super-rich’ state in which they accu-
mulate nearly the entire money pool and a ‘poor’ state. This bistability can be captured within
the local equilibrium approximation discussed in section 8.

Finally, we note that the time evolution of the money belonging to a single player (or, ana-
logously, the energy of a single particle exchanging energy with other particles), can be viewed
as a projection of a highly multidimensional process (in full state space, as in figure 2) onto a
single degree of freedom. Such projected dynamics is generally expected to be a non-Markov
process [56]. But for our system, non-Markov effects are only significant for intermediate
values of N, particularly in the non-equilibrium case of a rich-biased game, where the winner-
takes-all scenario leads to coupling between players. Indeed, such coupling only exists at finite
values ofN where the total amount of money in the game is finite (section 7); on the other hand,
for N= 2 the dynamics of the money belonging to each player is strictly Markovian, as the
conservation of money, m1 +m2 =M, necessitates that both m1 and m2 are one-dimensional,
Markovian random walks.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

25



J. Phys. A: Math. Theor. 57 (2024) 155003 M Miao et al

Acknowledgments

Discussions with Cai Dieball, Irene Gamba, Aljaž Godec, Hagen Hofmann, Matthias Krüger,
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