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B I O P H Y S I C S

Bayesian electron density determination from sparse 
and noisy single-molecule X-ray scattering images
Steffen Schultze and Helmut Grubmüller*

Single molecule x-ray scattering experiments using free-electron lasers hold the potential to resolve biomolecular 
structures and structural ensembles. However, molecular electron density determination has so far not been 
achieved because of low photon counts, high noise levels, and low hit rates. Most approaches therefore focus on 
large specimen like entire viruses, which scatter sufficiently many photons to allow orientation determination of 
each image. Small specimens like proteins, however, scatter too few photons for the molecular orientations to be 
determined. Here, we present a rigorous Bayesian approach to overcome these limitations, additionally taking 
into account intensity fluctuations, beam polarization, irregular detector shapes, incoherent scattering, and back-
ground scattering. We demonstrate using synthetic scattering images that electron density determination of 
small proteins is possible in this extreme high noise Poisson regime. Tests on published virus data achieved the 
detector-limited resolution of 9  nm, using only 0.01% of the available photons per image.

INTRODUCTION
Ultrashort pulse x-ray scattering experiments using x-ray free-
electron lasers (XFELs) offer the possibility to take “snapshots” of 
biomolecular structures with subnanometer spatial and femtosec-
onds time resolution (1–4). In these “diffraction before destruction” 
experiments (5) (Fig. 1A), a stream of sample particles is hit by a 
series of high intensity, ultrashort (femtoseconds) x-ray pulses; and 
for each pulse, the scattered photons are recorded as a scattering im-
age. Crucially, the pulses are so short that scattering outruns sample 
destruction (6).

Currently, most of these experiments focus on nanocrystals. 
These serial femtosecond crystallography experiments have provided 
both static (7, 8) and time-resolved structures at resolutions better 
than 3 Å (9–11). Despite these successes, the need to grow sufficiently 
well-ordered crystals and the inevitable ensemble averaging pose 
severe limitations (11).

The “holy grail” is therefore to perform x-ray scattering experi-
ments on single noncrystalline particles or even single molecules such 
as proteins (3, 6). Although the high repetition rates of current XFELs 
of up to 27  kHz (12) allow the collection of millions of such images 
even at rather low hit rates (13), substantial challenges remain, 
such as low photon counts, unknown sample orientation, and low 
signal-to-noise ratios. These have so far limited such experiments to 
relatively large particles such as viruses at moderate resolutions of 
ca. 10 nm (14–16). Here, we address these challenges using a rigorous 
Bayesian approach, and demonstrate that de novo electron density 
determination should be possible also for single molecules.

The first challenge is that, because of the small molecular size, the 
number of scattered photons is typically very low (6). For single pro-
teins, and despite the high photon flux provided by the XFEL, only 
ten to several hundred recorded photons per scattering image are 
expected (17). In this extreme Poisson regime, each scattering image 
thus does not reveal the full scattering intensity distribution (light 
blue color on the detector, Fig. 1A), but rather consists of only a few 
discrete photon positions (red dots), distributed according to the 
unknown scattering intensity.

The second challenge is that, for each hit, the sample orientation 
is different, random, and unknown, preventing a naive approach 
based on averaging many images. Several new methods have been 
developed over the past 20 years to overcome this challenge. Most 
methods aim to determine the molecular orientation from the posi-
tions of the scattered photons separately for each image. Subsequently, 
the properly oriented images are assembled in Fourier space into a 
full three-dimensional scattering intensity (18–25), from which the 
electron density is derived using established phase retrieval methods 
(26–28). These orientation determination approaches, including the 
expansion-maximization-compression (EMC) algorithm (13, 25, 29) 
and manifold embedding algorithms such as diffusion map (30–33), 
typically require 102 to 104 coherently scattered photons per image to 
determine the sample orientation with sufficient accuracy. Moreover, 
they are rather sensitive to noise, precluding their application to single 
molecules. For realistic noise levels and photon counts, the informa-
tion content per scattering image is far too low for successful orienta-
tion determination of individual images (20).

To circumvent this problem, it has been proposed to extract only 
orientation-invariant quantities from the scattering images, in par-
ticular correlations (17, 34–41). Notably, using three-photon corre-
lations, it has been shown that density determination should be 
possible from as few as three recorded photons per image (17, 42) 
as the ultimate limit. However, by neglecting higher correlations, 
much of the scattering information is discarded (17).

The third challenge is posed by several additional sources of ex-
perimental noise and uncertainties, mainly due to incoherent scat-
tering, background scattering, and beam intensity fluctuations, as 
well as incomplete and irregular coverage of the scattering solid 
angle by the detector (Fig. 1B) (2, 17, 19, 20). These noise sources 
are particularly prohibitive at the single-particle level, and the usual 
subtraction of an estimated background noise level and fortuitous 
error cancellation through averaging fail in this extreme Poisson 
regime with noise levels of up to 90% (13, 43, 44). Because of the 
lack of a combined, systematic treatment of all three sources of un-
certainty, de novo electron density determination of single proteins 
has so far been out of reach.

The Bayesian method we developed and assessed here approaches 
the problem from a different angle. Rather than attempting to orient 
each individual scattering image, the Bayesian posterior probability 
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given the whole set of images (typically thousands to millions) is 
considered and either sampled or maximized. The posterior is com-
puted by marginalizing over all possible orientations for each image, 
thereby avoiding the need to determine or estimate the orientation 
of each single image. As a further important advantage, this Bayesian 
approach allows for a systematic inclusion of noise in terms of a 
physics-based forward model of the scattering experiment and its 
uncertainties. Further, and in contrast to correlation-based methods, 
the full information content of all scattering images is used, thus 
reducing the required number of images to achieve a particular 
resolution. Last, posterior sampling provides error bounds and 
uncertainty estimates for the obtained electron density.

We tested our approach both on noisy synthetic scattering images 
and on downsampled experimental images. Even for a small single 
protein (crambin), resolutions of 8  to 10.4  Å were achieved under 
realistic conditions, and up to 4.2 Å under noise-free conditions. As 
a test using experimental images, we successfully recovered the elec-
tron density of the coliphage PR772 (45) at 9-nm detector limited 
resolution using only 0.01% of the recorded photons per image.

RESULTS
Bayesian inference of single-molecule x-ray scattering
We first summarize the Bayesian formalism and our approach. For 
each scattering event j = 1…N, the positions of the nj scattered 
photons are recorded on the detector as a scattering image and are 
converted into scattering vectors k(j)

1
, … , k

(j)
nj

. For each possible 
electron density function ρ, a Bayesian posterior probability is cal-
culated given the set of scattering images ℐ =

{

k
(j)
1
,… , k

(j)
nj

}

j=1…N

from which the most probable electron density as well as its uncer-
tainty is derived.

The likelihood function P(ℐ∣ρ) contains an appropriate physical 
forward model of the scattering process, including noise, intensity 
fluctuations, polarization, and irregular detector shapes (see Materials 
and Methods). Because each image is an independent event, the 
likelihood decomposes into a product of the likelihoods of each 
single image j

In the absence of information on the orientation of the sample 
molecule during each scattering event, the single-image likelihood 
function is given by marginalizing, i.e., as an average over all possible 
orientations R of the corresponding conditionalized probability of 
the scattering image j

Here, SO(3) denotes the set of all three-dimensional rotation ma-
trices. The latter was calculated from the forward scattering model 
as described in Materials and Methods. To maximize or sample 
from the Bayesian posterior, a combined Markov chain Monte Carlo 
(MCMC) simulated annealing approach was used.

As a physics-motivated real-space representation of the electron 
density ρ, we chose a sum of Gaussian functions, with size and number 
depending on the target resolution. This choice serves both to mini-
mize the number of required degrees of freedom and as a means of 
regularization. While one may think of these Gaussians as represen-
tation of, for example, an atom, an amino acid, or a larger domain of 
the sample, their purpose is only to represent electron densities, not 
structural entities. Notably, by using such a representation for the 
electron density as opposed to its Fourier transform, our approach 
circumvents the phasing problem.

For a typical target protein consisting of up to several hundred 
amino acids, the number of required degrees of freedom remains 
nevertheless large and poses a formidable sampling challenge. To 
achieve sufficient sampling, we applied a hierarchical simulated an-
nealing approach as described in Materials and Methods. In brief, 
starting at very low resolution and correspondingly few Gaussian 
functions, the electron densities were sampled in multiple hierar-
chical stages of increasing resolution; and in each of these stages, 
the previous electron density of maximal posterior probability was 
used as a proposal density for the MCMC steps.

Electron density reconstruction from noise-free images
We first tested our method on synthetic noise-free images, using 
the same 46–amino acid protein crambin (46) that was used for the 
assessment of previous correlation-based methods (17). Because 
our Bayesian approach uses all available information, we expect it 
to require fewer scattering images to achieve the same resolution. 

P(ρ ∣ℐ) ∝ P(ℐ ∣ ρ)P(ρ) (1)

P(ℐ ∣ ρ) =

N
∏

j=1

P
(

k
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nj
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)
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P
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∣ ρ,R
)
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(3)

Fig. 1. Single-molecule scattering experiment. (A) Experimental setup for single molecule x-ray scattering [image reproduced from von Ardenne et al. (17)]. (B) Irregular 
detector shape used for our simulated scattering experiments, modeled after the detector used at the European XFEL (60). Note that the apparent “curvature” does not 
reflect the actual detector geometry but is instead an artifact of the projection onto the Ewald sphere.
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To test this expectation, a total of 108 noise-free synthetic scattering 
images were generated, containing a realistic average number of 15 
photons each (17, 47). As described in Materials and Methods, for 
each image, a random molecular orientation was chosen, and for 
each orientation, the number of photons per image was drawn 
from a Poisson distribution. Here, an intensity of 1012 photons per 
pulse was assumed with a beam diameter of 1 μm (43). Figure 2A 
shows several of these images as an example.

From these images, the electron density was determined in five 
hierarchical stages (Fig. 2b), increasing the number of Gaussian 
functions representing the electron density ρ by a factor of two in 
each stage. For the final stage, 184 Gaussian functions were used, 
which is four times the number of amino acids. For more details, see 
table S1. A similar Fourier shell correlation resolution (48) of 4.2  Å 
(Fig. 2C) was obtained as in the previous study of our group (17) 
using only half the number of scattered photons. Here, the Fourier 
shell correlations were used to compare the reconstructed electron 
density map (Fig. 2D) with the ground-truth density (Fig. 2E) that 
was used to generate the synthetic scattering images. As a further 
measure of quality, the optimal transport plan between the recon-
structed and reference electron densities was computed using a stan-
dard algorithm (49), obtaining an earth mover’s distance of 1.45  Å.

Density determination from noisy images
To assess our method also in the presence of realistic noise sources, 
we tested it on synthetic noisy scattering images for the same pro-
tein crambin (46). Because estimates for the experimentally achiev-
able noise level vary and depend on the exact experimental setup 
(13, 43, 44), two different noise levels were considered: One million 
synthetic images were generated at a noise level of 75% (Fig. 3, A to 
D), and three million at a noise level of 90% (Fig. 3, E to H), which 

both are within experimental reach (13, 43, 44). Figure 3 (A and E) 
shows representative examples of these images. Here, the same average 
number of 15 coherently scattered signal photons (red) per image as 
above was assumed. Only these contain structural information but 
are indistinguishable from the noise photons (black). In addition, a 
total of on average 44 (Fig. 3A) or 137 (Fig. 3E) photons per images 
of all detected photons were assumed to be incoherent. As shown in 
Fig. 3 (B and F), these were assumed to be from background scatter-
ing on carrier gas or solvent molecules (orange, described here by a 
normal distribution with SD 0.35  Å−1), as well as from incoherent 
scattering (green, described by a uniform distribution). For more 
details, see Materials and Methods and table S1.

Despite these low signal-to-noise ratios, Fig. 3 (C and G) shows 
that structural information is recovered at a conservative Fourier 
shell correlation resolution estimate of 8  Å in the case of 75% noise 
and 10.4  Å in the case of 90% noise. Here, representations consist-
ing of 12 and 23 Gaussians were used. Note that the smaller number 
of Gaussians was adapted to the expected lower achievable resolu-
tion of the obtained electron densities compared to the noise-free 
images. Figure 3 (D and F) shows the obtained electron densities 
that represent the overall shape of the molecule at the two resolu-
tion levels.

Application to experimental data
Having assessed our method using synthetic data for which the 
“ground truth” is known, we next tested it on published experimental 
data for the icosahedral coliphage PR772 (45). Because this virus is 
much larger than the protein molecule considered above, on average 
about 400,000 photons per scattering image were recorded. Notably, 
only photons up to k = 0.69  nm−1 were recorded, which limits the 
resolution to 9  nm. For a fair assessment, and to mimic the more 
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challenging low photon counts expected for single-molecule scatter-
ing experiments, we downsampled the original images by a factor of 
r = 10−4 using rejection sampling to obtain images with an average of 
40 photons per image (Fig. 4A). A dataset consisting of 2 ⋅ 105 such 
images was emulated by randomly downsampling the same images 
multiple times. Because the intensity distribution of the incoming 
beam is unknown due to the applied hit selection, intensity fluc-
tuations were taken into account via normalization as described 
in Materials and Methods.

The virus electron density was described by n = 400 Gaussians 
functions of width σ = 3  nm, adapted to the resolution set by the 
experimental data as described in Materials and Methods. To better 
represent the virus electron density at this scale, both the positions 
yi and the heights hi of the Gaussian functions were considered 
unknown and determined during the annealing. After the annealing 
procedure, the density was further sampled for 8 ⋅ 106 MCMC steps. 
As shown in Fig. 4E, the autocorrelation between these MCMC 
samples decreases to zero after about 2,000,000 steps, suggesting 
that a sufficient number of MCMC samples are largely uncorrelated. 
The thus obtained sample of electron densities was rotationally 
aligned and averaged. The resulting density (Fig. 4B) resembles the 
expected icosahedral structure of the virus. As shown in Fig. 4F, even 
the internal structure consisting of multiple concentric shells was re-
solved. An animated version of Fig. 4B is provided as movie S1.

To obtain an error estimate, the Fourier shell correlations of a 
randomly selected small subset of these sampled electron densities 
relative to the averaged density were computed (Fig. 4C). As can be 
seen, the 9-nm resolution limit imposed by the detector geometry 

was largely achieved. In contrast to Hosseinizadeh et al. (29), icosahe-
dral symmetry was not imposed, and therefore, the electron density 
determined here deviates from a perfect icosahedral symmetry (as is 
also obvious from the slices shown in Fig. 4F), which has also been 
observed for this dataset using other methods (40, 50).

Last, we asked how the obtained resolution depends on the 
number of photons per image, here governed by the downsam-
pling ratio. To that end, further runs were performed at downsam-
pling ratios r = 5 ⋅ 10−5 and r = 2 ⋅ 10−4, that is, on average, 20 and 
80 photons per image, respectively. The electron densities ob-
tained from these runs are shown in fig. S1. As shown in Fig. 4D, the 
Fourier shell correlation does increase with increasing number of 
photons per image, as one might expect. Note, however, that this 
does necessarily imply a further increase in resolution, because, as 
mentioned above, only photons up to k = 0.7  nm−1 were recorded in 
the experiment. The larger Fourier shell correlation values at k > 
0.7  nm−1 likely result rather from an increasing overdetermination of 
the positions of the Gaussians. We therefore also investigated how the 
determined density depends on the number of used Gaussians (see 
fig. S2) and found that for 200 and 300 Gaussians, respectively, gran-
ularity artifacts are seen in the electron density, in particular for 200 
Gaussians, indicating that this number is insufficient for an accurate 
representation of the electron density.

DISCUSSION
We have demonstrated electron density determination from highly 
noisy and sparse single-particle x-ray scattering images using a 
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Fig. 3. Electron density determination from noisy images. Electron density determination at [(A) to (D)] a noise level of 60% and [(E) to (H)] of 90%. (A and E) Sample 
synthetic noisy images, showing coherent signal photons (red) and noise photons (black). (B and F) Radial distribution of photons from coherent scattering, background, 
and incoherent (uniform) noise (stacked histogram). (C and G) Fourier shell correlations between reconstructed and ground-truth reference densities show the achieved 
resolutions of 8  Å and 10.4 Å. (D and H) Reconstructed electron densities.

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 25, 2024



Schultze and Grubmüller﻿, Sci. Adv. 10, eadp4425 (2024)     25 October 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 11

rigorous Bayesian approach. Uncertainties such as unknown sample 
orientation, beam intensity fluctuations, polarization, irregular 
detector shapes, Poisson noise due to the typically very few recorded 
photons per image, and noise from incoherent and background 
scattering have been taken into account using a realistic physics-
based forward model. This model can be adapted to specific experi-
mental conditions and can be generalized to include other noise 
sources such as detector noise as well.

Our simulated scattering experiments demonstrate that electron 
densities can be reliably determined even in this high noise regime 
well beyond 1-nm resolution. There is no fundamental limit to 
achieving even higher resolutions, given sufficient numbers of scatter-
ing images. In contrast, for approaches based on orientation determi-
nation, the resolution is limited by the number of photons per image 
(20). While for approaches based on orientation determination the 
resolution is limited by the number of photons per image (20), there 
is no fundamental limit for our Bayesian approach to achieving even 
higher resolutions, given sufficient numbers of scattering images.

Because our approach uses all available information, fewer scat-
tering images and fewer photons per image are required to achieve 
the same resolution than by previous approaches, in particular com-
pared to correlation methods (17). For the coliphage test case, 104 
times downsampled images sufficed to recover the icosahedral struc-
ture at the detector-limited resolution of 9  nm. Ten to 100 times 
fewer photons per image were required than what was so far con-
sidered the “low signal limit” (50). For this comparison, note that 
our photon counts refer to entire images, whereas Ayyer et al. (50) 
report photon counts excluding the central speckle that contains 
most of the photons.

Although there is no fundamental resolution limit to our approach, 
Bayesian sampling in high-dimensional search spaces generally poses 
computational challenges. The problem-adapted hierarchical sampling 
method presented here alleviated this technical limitation markedly 
and allowed the optimization of electron density representations with 
up to 1200 degrees of freedom. Nevertheless, for increasing sample 
size to resolution ratios, the main bottleneck of our approach is the 
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computational effort, both due to the required sampling and the 
large number of scattering images. For example, the final stage in 
the noise-free test scenario took about 1500 GPU-hours of parallel 
computation time (Nvidia RTX 3090) and the MCMC sampling for 
the coliphage about 1600 GPU-hours (Nvidia RTX 4070). Although 
a brute-force approach is possible due to inherently parallel compu-
tations, improved optimization and sampling methods will be help-
ful to address this issue (51), as may the use of prior structural 
information from, for example, structure databases, AlphaFold (52), 
or molecular dynamics force fields.

This computational bottleneck does not preclude the application 
to larger specimen, like the coliphage studied here. Rather, the com-
putational effort increases with the complexity of the used electron 
density representation. Whereas we have, under ideal conditions, 
demonstrated that a resolution of 4.2  Å can be achieved for a small 
soluble protein, for larger complexes such as the ribosome, substan-
tial computational resources would be required to achieve resolu-
tions better than about 3  nm.

Whereas our results demonstrate that our Bayesian approach should 
enable structure determination from noisy single-molecule x-ray scat-
tering images, we have so far only assessed its performance and accu-
racy on synthetic scattering images or on preprocessed images from 
diffraction experiments on much larger virus specimen. Because the 
approach only rests on a physical forward model of the experiment, 
further sources of noise of experimental uncertainties can be readily 
implemented in a systematic way. Although the forward model pre-
sented in this work turned out to be sufficiently accurate to enable 
successful reconstruction of the PR772 virus, future calibration and 
improvements will be beneficial, such as more complex detector 
models, the effect of a possible solvation shell around the molecule, 
structural heterogeneity, or the identification of hits versus misses.

Of note, at intensities higher than 1019  W/cm2, as required for 
smaller particles or single molecules, ultrafast ionization distorts 
the electron density already during the few femtoseconds exposure 
(53) and, hence, presents a further challenge for its reconstruction. 
Although simulations of these electron dynamics have been reported 
(54), more research will be required to include these within our 
Bayesian framework.

From a more general perspective, our fully Bayesian approach 
should also be transferable to other imaging methods with high noise 
levels. In particular, single-molecule cryogenic electron microscopy 
(cryo-EM) shares many similarities, in particular unknown and 
random orientations of the sample molecule. As a result, also es-
tablished analysis methods, such as RELION for cryo-EM (55) and  
EMC for XFEL imaging (25), both rest on the same mathematical 
technique (expectation maximization). It will therefore be very in-
teresting to see if our approach is able to also extract more informa-
tion for these experiments.

MATERIALS AND METHODS
Noise-free forward model
In the experiments, single sample molecules enter a pulsed femto
second XFEL beam, and for each pulse, the positions of the scattered 
photons are recorded on the detector as a scattering image. Each loca-
tion on the detector corresponds to a specific scattering vector k = 
ki−ks on the Ewald sphere E in Fourier space, where ki is the incident 
wave vector and ks the wave vector after scattering. Each scattering 
image is, therefore, given by a list of scattering vectors k1,…, kl. Their 

probability distribution is given by three-dimensional intensity func-
tion Iρ(Rk) = ∥ ℱ {ρ}(Rk)∥2, which for coherent scattering is given by 
the Fourier transform of the electron density ρ. Here, R ∈ SO(3) is a 
rotation matrix describing the orientation of the molecule.

The likelihood that an image k1,…, kl is observed for a given elec-
tron density ρ is obtained by averaging the conditional likelihood 
over all possible orientations R. This conditional likelihood is given 
by the product of a Poisson distribution for the number of photons 
l and, because the photons are conditionally independent given R, a 
product of the intensity function evaluated at the scattering vectors 
of the scattered photons

Here, I0 represents the incoming beam intensity. Note that here 
and subsequently normalization factors and constants such as the 
electron radius are omitted. Instead, they are absorbed into the value 
of I0, which is chosen at the end such that the correct photon counts 
are obtained.

This likelihood, given by Eqs. 2 and 4, represents the complete 
noise-free forward model, which forms the basis for the subsequent 
inclusion of error models.

Incoherent and background scattering
In addition to the coherent photons, also incoherently scattered 
photons from, for example, Compton scattering and Auger decay, are 
observed. They represent up to 90% of the total scattered photons but 
are distributed uniformly on the Ewald sphere. They therefore spread 
over a much larger solid angle than the coherent photons, such that the 
effective amount of noise due to this incoherent scattering is smaller. 
For this reason, the noise due to incoherent scattering is larger for 
increasing resolutions, whereas at lower resolutions of about 10  nm 
that have been demonstrated for viruses, it can be neglected.

A second source of noise is scattering from other molecules, such 
as water molecules attached to the sample in aerosol delivery (56), 
bulk water for liquid beam (57) or sheet (58) delivery, or remaining 
gas molecules in the beam volume. These molecules scatter both co-
herently and incoherently, but, because of the random positions and 
orientations of these particles, incoherent summation to Iρ is a good 
approximation.

Neglecting beam polarization for a moment, the distribution of 
the photons from incoherent and background scattering is radially 
symmetric. For simplicity, here, a uniform distribution on the Ewald 
sphere is assumed for the incoherently scattered photons and a 
Gaussian distribution centered at the origin of reciprocal space for 
the background scattering. Other radial distributions, for example, 
from measurements, can of course be readily implemented.

To include incoherent and background scattering within the 
likelihood function, their distributions are added to the intensity 
function, replacing Iρ by

in Eq. 4. Here, the constant Iu describes the contribution from uni-
form incoherent scattering, and

is the Gaussian distribution describing background scattering.

P
(

k1,… , kl ∣ ρ
)

∝ ∫SO(3)dR Il
0
exp

[

−I0 ∫EIρ(Rk) dk

] l
∏

i=1

Iρ
(

Rki

)

(4)

In(k, ρ) = Iρ(k) + Ib(k) + Iu (5)

Ib(k) =
Cb

2πσ2
exp

(

−
k
2

2σ2

)

(6)
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Polarization
To additionally include the linear polarization of the XFEL beam, the 
scattering intensity is changed by a factor fp(k) = cos2θ + cos2ϕsin2θ = 
1−(kyλ/2π)2, where θ is the scattering angle and ϕ the azimuthal an-
gle relative to the direction of polarization (59). As a consequence, 
for each scattering vector k, the expected number of photons from 
coherent and Compton scattering is reduced by fp(k). In contrast, the 
distribution of photons arising from Auger decay is unaffected. For 
our forward model, we assume therefore that the Gaussian noise Ib is 
multiplied by this factor while the uniform noise is not.

Accordingly, In is replaced by

which now also depends on the molecular orientation. As result, 
rotating the molecule around the beam axis does no longer corre-
spond directly to rotating the scattering images because the polar-
ization orientation is stationary. The likelihood becomes

Irregular detector shape
Most x-ray detectors have irregular shapes. For example, the detector 
used at the European XFEL (60) is composed of 16 separate modules 
arranged as shown in Fig. 1B. In the forward model, the shape of the 
detector is encoded in the detection probability pd(k) that a photon 
with scattering vector k is registered by the detector. This formalism 
allows for the inclusion of any detector shape and can also be used to 
include individual detection probabilities per pixel.

The resulting likelihood function is a straightforward extension 
similar to the above polarization, the only difference being that here, 
all photons are affected. As a consequence, the factors pd(ki) in the 
product over i factor out and can be omitted because they do not 
depend on the images

Intensity fluctuations
Fluctuations of the incoming beam intensity I0 are described by a γ 
distribution I0 ∼ 〈I0〉Γ(α, β), where 〈I0〉 is the average intensity (61–
63). The shape and rate parameters α and β depend on the specific 
free-electron laser. For the forward model, α = β = 4 was assumed, 
which has been determined for an XFEL operating at 32-nm wave-
length (63).

To include these fluctuations within the likelihood function, an 
additional integral over I0 weighted by the probability density of the 
gamma distribution is required

Conveniently, this integral can be carried out analytically, and 
the likelihood reads

The likelihood function in Eq. 11 represents the so far complete 
forward model, including incoherently scattered photons, background 
scattering, beam polarization, the irregular detector shape, and 
intensity fluctuations. Accordingly, here, it was used for the tests on 
noisy synthetic data.

Note that Eq. 11 assumes knowledge of the probability distribu-
tion of I0. Such knowledge is not always given, however. An example 
is the coliphage dataset considered here. For this dataset, the images 
were preselected such that only images classified as hits were re-
tained, and because the hit selection is affected by the number of 
photons per image, the beam intensity distribution distribution for 
the selected images is not well defined and best regarded as un-
known. To adapt the likelihood function to this situation, intensity 
fluctuations were treated by considering the probabilities condition-
alized on the number of photons l, replacing P(k1,…, kl  | ρ) with

in Eq. 2. As this form is independent of I0, the intensity does not 
have to be integrated as a nuisance parameter. The importance of the 
likelihood function is illustrated in fig. S3, showing a virus electron 
density determined using the “wrong” likelihood from Eq. 11.

Structure representation
Electron density functions of the reference structures were de-
scribed by a sum of m Gaussian beads with positions yi, heights hi 
and SDs σi

Electron density functions of the determined electron densities 
were described similarly, with one common SD σ = σi and one com-
mon height h = hi for the tests on crambin but independent heights 
hi for the test on the coliphage. These were treated as unknowns and 
determined together with the positions yi.

The number of Gaussian functions m has been chosen heuristi-
cally. The main criterion was that it needs to high enough to accu-
rately represent the electron density at the target resolution. For the 
tests on crambin, we chose m as multiples of the number of amino 
acids. As an estimate, the maximum achievable resolution using m 
Gaussians is obtained by the condition that the volume of the sum of 
m Gaussians must equal the known volume V of the molecular elec-
tron density, resulting in an estimated width σ = 3

√

3∕(4π) ⋅ V∕m of 
each Gaussian. Empirically, the maximal achievable Fourier shell 
correlation resolution (using the threshold of 0.5 as described later) 
corresponds to about three times this width. Last, estimating the 

Inp(R, k, ρ) = fp(k)
[

Iρ(Rk)+ Ib(k)
]

+ Iu (7)

P
(

k1,… , kl ∣ ρ
)

∝ ∫SO(3)dR Il
0
exp

[

−I0 ∫Edk Inp(R, k, ρ)
] l
∏

i=1

Inp
(

R, ki , ρ
)

(8)

P
(

k1,… , kl ∣ ρ
)

∝ ∫SO(3)dR Il
0
exp

[

−I0 ∫Edk pd(k)Inp(R, k, ρ)

] l
∏

i=1

pd
(

ki

)

Inp
(

R, ki , ρ
)

∝ ∫SO(3)dR Il
0
exp

[

−I0 ∫Edk pd(k)Inp(R, k, ρ)

] l
∏

i=1

Inp
(

R, ki , ρ
)

(9)

P
�

k1,… , kl ∣ ρ
�

∝

∞

∫
0

dI0 I
α−1
0

exp

�

−
βI0
⟨I0⟩

�

∫SO(3)

dR Il
0
exp

�

−I0 ∫Edk pd(k)Inp(R, k, ρ)
� l
�

i=1

Inp
�

R, ki, ρ
�

(10)

P
�

k1,… , kl ∣ ρ
�

∝ ∫SO(3)dRΓ(l+α)

�

β

⟨I0⟩
+ ∫Edk pd(k)Inp(R, k, ρ)

�−l−α

l
�

i=1

Inp
�

R, ki , ρ
� (11)

P
(

k1,… , kl ∣ ρ, l
)

∝ ∫SO(3)dR
[

∫Edk pd(k)Inp(R, k, ρ)

]−l

l
∏

i=1

Inp
(

R, ki, ρ
)

(12)

ρ(r) =

m
�

i=1

hi
�

σi

√

2π
�3

exp

�

−
1

2σ2
i

∥ r−yi ∥
2

�

(13)
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volume as V ≈ 5  Å3 ⋅ Nheavy, where Nheavy is the number of heavy 
atoms of the molecule, an estimate for the achievable resolution of 
3 3
√

3∕(4π) ⋅ 5 ⋅ 3

�

Nheavy ∕m Å ≈ 3.2 3

√

Nheavy ∕m Å is obtained. From 
these heuristics we expect to achieve a resolution of 9.5  Å for cram-
bin using 12 Gaussians, and 3.8  Å using 184 Gaussians, which is 
very close to the results of our tests. For the coliphage test case, the 
volume was estimated as V = 4π/3 ⋅ (25  nm)3. Here, the above esti-
mate suggests that m = 400 Gaussians should be required to ap-
proach the detector-limited resolution of 9  nm, which also agrees 
very well with our findings that a sufficiently well-defined nongran-
ular electron density is obtained only for this number of Gaussians.

Simulated scattering experiments
The forward model described in above was simulated by the follow-
ing procedure. To generate one scattering image from an electron 
density ρ,

1. Draw the intensity I0 ∼ 〈I0〉Γ(α, β).
2. Draw the orientation R ∼ [SO(3)] from a uniform distribu-

tion on the rotation group.
3. Draw l ∼ Pois

[

I04π(2π∕λ)
2I(R, 0, ρ)

]

, with the intensity function 
I = Iρ for noise-free images or I = Inp from Eq. 7 for noisy images.

4. Draw photon positions k1,… , kl uniformly distributed on 
the Ewald sphere, and accept each with probability pd(ki)Inp(R, 
ki, ρ)/Inp(R, 0, ρ).

Note that this procedure works correctly because the intensity 
function I(R, k, ρ) is always maximal at k = 0. To generate the noise-
free scattering images, I0 was instead set as a constant I0 = 〈I0〉, and 
the detector geometry was given by pd(k) = 1.

Computation of likelihoods
The integral over the orientation R in Eqs. 4, 11, and 12 was approxi-
mated by averaging over a discrete set of typically n ≈ 103 to n ≈ 105 
rotations Ri with weights wi. For example, in the noise-free case Eq. 4 
was approximated as

The rotations Ri and their weights si were constructed by com-
bining a Lebedev quadrature rule on S2 (64) with a uniform quadra-
ture rule on S1, as described by Gräf and Potts (65). To further 
increase the computational efficiency, the photon positions ki were 
discretized. For a more detailed explanation and further implemen-
tation details, see the Supplementary Text.

Monte Carlo–simulated annealing
Optimization and posterior sampling was performed via MCMC-
simulated annealing (66). An exponential temperature schedule 
T(t) = T0 exp (−t ln 2  /  t1/2) was used, with T0 and t1/2 as listed in 
table S1. The sampling challenge due to the high number of degrees 
of freedom at high resolutions was alleviated by determining the 
electron density in multiple hierarchical stages with an increasing 
number of Gaussian beads. In each stage, the density from the pre-
vious stage was used as a proposal density, markedly increasing the 
sampling performance. To define this proposal density, let y1,…, yn 
be the positions of the Gaussian functions from the previous stage 

and z1, …, zm those of the current stage. Then, the proposal density 
was, up to normalization, given by

where w is the width of the Gaussians from the previous stage. In 
effect, each Gaussian bead is kept in the vicinity of one Gaussian 
of the previous stage (with index i mod n). For the first stage, a 
zeroth stage with just one Gaussian placed at the origin was assumed 
as the previous one. The step size d was determined dynamically 
by slightly increasing or decreasing it after accepted or rejected 
steps, respectively.

The number of these hierarchical stages depended on the number 
of Gaussians in the final stage, which in turn depends on the desired 
resolution (as described above). Stages with fewer than 10 Gaussians 
did not substantially reduce the required number of annealing steps. 
Heuristically, the number of stages and the number of Gaussians per 
stage should therefore be chosen by repeatedly halving the final 
number of Gaussians until a value of about 10 is reached.

In each MCMC step, also a new common width σ of the Gaussians 
was proposed, with normally distributed proposals restricted to posi-
tive values. For the coliphage, also the heights hi of the Gaussians were 
determined. Here, separate MCMC steps with Gaussian proposals 
restricted to the uniform prior  (0.1,1) were performed for the 
heights alternatingly with those for the positions, with an indepen-
dently determined step size.

The likelihood function from Eq. 2 is differentiable with respect 
to the electron density, such that it is possible to apply optimization 
methods that use gradient information, like, for example, stochastic 
gradient descent (SGD). While it is expected that such methods of-
fer better scaling behavior (51), efficiently computing gradients on 
GPUs is challenging, in particular when noise is included in the for-
ward model. In contrast, MCMC as described above is much more 
straightforward and was therefore used here to demonstrate the po-
tential of our method. As a further benefit, MCMC allows to easily 
sample from the posterior, which is less straightforward using SGD.

Regularized likelihood function
For stages of reduced resolution, a regularized version of the likeli-
hood function was used. To that end, consider a smoothed version of 
the true electron density function ρ obtained by a convolution with a 
Gaussian kernel, ρ̃ = ρ ∗ (

σreg
)

. The intensity function corre-
sponding to this smoothed version is, due to the Fourier convolution 
theorem, given by the pointwise product of the original intensity 
function and the squared absolute value of the Fourier transform of 
the smoothing kernel, Iρ̃(k) = Iρ(k) ⋅ exp

(

−σ2
reg
k
2
)

. This relationship 
was used to obtain the images that would have been generated for the 
smoothed structure by rejection sampling, which were then used in 
the likelihood instead of the original images for the stages of reduced 
resolution.

In the noise-free case, computational efficiency was further in-
creased substantially by selecting only those original images for the 
likelihood computations that actually contain useful information at 
the respective resolution. As described in the Supplementary Text, 
the Bayesian formalism allows for removing this selection bias.

P
(

k1,… , kl ∣ ρ
)

≈

n
∑

i=1

wiI
l
0
exp

[

−N ∫EIρ
(

Rik
)

dk

]

l
∏

j=1

Iρ
(

Rikj

)

(14)

g
(

z
�

1
,… , z

�

m
∣ z1,… , zm

)

∝

m
∏

i=1

exp

(

−
∥ z

�

i
−zi ∥

2

2d2

)

exp

(

−
∥ z

�

i
−yimodn ∥

2

2w2

) (15)
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Structure alignment and resolution estimate
The resolution of the obtained electron densities was calculated us-
ing Fourier shell correlations (48).

where ρ1 and ρ2 are the densities to be compared and ρ̂ denotes the 
Fourier transform of ρ. The achieved resolution was determined as 
2π/kfsc(ρ1, ρ2), where kfsc(ρ1, ρ2) is the threshold at which the Fourier 
shell correlation drops below the conservative threshold of 0.5 (48). 
Because the orientations of the electron densities are random and 
irrelevant, they were aligned to each other before calculating the 
resolution, by maximizing kfsc(ρ1, Sρ2) over all orthogonal matrices 
S ∈ O(3). Both rotations and reflections were included, as x-ray 
scattering images do not distinguish between mirror images. Here, 
Sρ denotes the rotated electron density obtained by applying S to all 
positions yi from Eq. 13.

Supplementary Materials
The PDF file includes:
Supplementary Text
Figs. S1 to S3
Table S1
Legend for movie S1

Other Supplementary Material for this manuscript includes the following:
Movie S1
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