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Abstract
Single-molecule experiments provide insight into the motion (conformational
dynamics) of individual protein molecules. Usually, a well-defined but coarse-
grained intramolecular coordinate is measured and subsequently analysed with
the help of hidden Markov models to deduce the kinetics of protein conform-
ational changes. Such approaches rely on the assumption that the microscopic
dynamics of the protein evolve according to a Markov-jump process on some
network. However, the manifestation and extent of memory in the dynamics
of the observable strongly depends on the chosen underlying Markov model,
which is generally not known and therefore can lead to misinterpretations.
Here, we combine extensive single-molecule plasmon ruler experiments on
the heat shock protein Hsp90, computer simulations, and theory to infer and
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quantify memory in a model-free fashion. Our analysis is based on the bare
definition of non-Markovian behaviour and does not require any underlying
model. In the case of Hsp90 probed by a plasmon ruler, the Markov assumption
is found to be clearly and conclusively violated on timescales up to roughly
50 s, which corresponds roughly to ∼50% of the inferred correlation time of
the signal. The extent of memory is striking and reaches biologically relev-
ant timescales. This implies that memory effects penetrate even the slowest
observed motions. We provide clear and reproducible guidelines on how to test
for the presence and duration of memory in experimental single-molecule data.

Keywords: memory, protein dynamics, non-Markovian behaviour,
plasmon ruler

1. Introduction

Dynamics of biological systems, including data obtained in single-molecule experiments,
are often analysed by (Hidden) Markov modelling [1, 2]. This method allows to infer meso-
scopic states and Markovian transition rates between them from time series, which can be
obtained from time-resolved distance measurements, e.g. by Förster resonance energy transfer
(FRET) [1, 2], plasmon rulers [3], and optical [4, 5] or magnetic tweezers [6]. Markov models
have been used extensively for analysing such data but their validity critically hinges on the
assumption that the observed process is memoryless, meaning that transitioning from one state
to another is independent of previous states and that the dwell times within states are exponen-
tial random variables [7]. The latter assumption in particular also implies that the transition
paths between meso-states are infinitely fast [7]. If either (or both) of the above assumption
is violated, the interpretation in terms of Markov models may lead to inconsistent conclu-
sions (see e.g. [8]). Parametrically, memory effects in observed dynamics can be incorporated
by hidden Markov models (HMMs). However, the magnitude and duration of memory in the
observed dynamics strongly depend on the choice of the underlying (microscopic) Markov
model. Importantly, the magnitude and extent of memory in observed dynamics has not been
consistently tested in any of these experimental studies. As a result, the sensibility and accur-
acy of HMMs of single-molecule observations [1, 2] has not yet been scrutinised.

Generally, memory is defined as the absence of Markov behaviour, and can emerge
from ‘time lumping’ or ‘state lumping’ [7–13]. Microscopic classical as well as quantum-
mechanical dynamics is deterministic and thus nominallyMarkovian. Memory effects in phys-
ical systems are thus strictly the results of some sort of lumping of microscopic states [11, 12,
14, 15]. Time lumping directly results from biophysical measurements as the time resolution is
not infinite and the signal is binned over small time windows. State lumping, on the other hand,
refers to the states of the observed system, and also arises as a consequence of the measurement
procedure: if an intramolecular distance of a biomolecule, for example, is observed over time
by single-molecule FRET (smFRET) or plasmon ruler, the experimental information refers
to only one spatial coordinate, which is the ‘projection’ of many underlying conformational
states. Memory can emerge when two prerequisites are met: first, when there are more degrees
of freedom than those observed, signifying that an observed state is a projection of several
coordinates onto e.g. only one. Second, when dynamically distinct microscopic states become
projected onto the same observable state (for a specific minimal example on how memory
may emerge upon projection of ‘microscopic’ Markov-jump dynamics see figure 3 as well
as [16]). This holds true in the aforementioned example of the biomolecule as it consists of
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numerous atoms (i.e. it has numerous degrees of freedom) and exhibits (well-defined) long-
lived conformational meso-states, but only the distance between two amino acids is observed.
In this situation, memory is automatically induced unless all hidden degrees of freedom relax
infinitely fast, such that the observable ‘feels their presence only on average’.

One important question emerging from this consequential relation is whether such memory
effects are biologically relevant. Therefore, it is crucial to quantify both their magnitude and
duration. If they relax much faster than the observed biological processes, they can be safely
neglected. Conversely, if they relax on a slower timescale, then they may directly affect biolo-
gical processes as, e.g. protein folding, catalysis or signalling where the relevant timescale is
often set by some barrier crossing event [17]. In practice, this is hardly ever known a priori, and
neither the exact microscopic dynamics nor their projection (i.e. the mapping between full and
projected dynamics) are experimentally accessible. This in turn poses the challenging question
how to detect and quantify memory without knowing the underlying microscopic dynamics?

Non-exponential dwell time distributions in given meso-states in principle (i.e. if present)
serve as an indicator for the presence of memory. However, an exponential dwell (i.e. exit time)
distribution in turn is not an indicator for Markovian dynamics, as memory can also emerge
in the sequence of consecutively visited states (see example in [8]).

A preliminary upper bound on the duration of memory can be inferred from the correla-
tion (or ‘mixing’) time tcorr of the signal. The (auto)correlation time may be defined via the
(auto)correlation function C(t) = ⟨qtq0⟩− ⟨qt⟩⟨q0⟩, which is determined as the average over a
(large) ensemble of N observed/projected trajectories or the time average over a sufficiently
long trajectory, i.e.

C(t) = lim
N→∞

N−1
N∑
i=1

qitq
i
0 −N−2

N∑
i=1

qit

N∑
j=1

q j0


= lim

T→∞;T/t≫1
(T− t)−1

ˆ T−t

0
qτ+tqτdτ −

(
lim
T→∞

(T)−1
ˆ T

0
qτdτ

)2

, (1)

where we assume that the observed process qt is ergodic and that the microscopic dynamics
are stationary and time-homogeneous. The autocorrelation C(t) of a time-series measures the
correlation between the coordinate q at t= 0 and different time points t. In essence, it quantifies
the ‘degree of similarity’ between these lag times. As such, it captures the extend of ‘memory’
of both the observable and hidden initial conditions. The correlation time is defined as (see
e.g. [18])

1
tcorr

≡− lim
t→∞

1
t
lnC(t) (2)

and reflects the timescale on which the entire system (i.e. observable plus any hidden degrees
of freedom) de-correlates from the initial condition. Alternatively, one can instead define a nor-
malised autocorrelation function C(t)≡ C(t)/C(0). Such an analysis is very helpful to obtain
a first upper bound on the memory timescale, since (by definition) if memory exists the cor-
relation time is the slowest timescale in the system. However, it is important to note that the
correlation time does not equal the memory time (see e.g. [19]). In fact, it does not even imply
the presence of memory. To see this, recall that a one-dimensional diffusion in a bi-stable or
even in a single-well parabolic potential both have a non-vanishing correlation time while they
are perfectly Markovian. Moreover, conclusions drawn form so-called ‘normalised correlation
times’ [20, 21], t̂corr ≡

´∞
0 C(τ)dτ , may lead to misconceptions about the underlying dynamics
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when the latter span multiple timescales [19]. A correlation time analysis is also not suitable
for extracting the temporal extent of memory when the latter is present, because it is only an
upper bound and therefore has no implications on the duration of memory.

An elegant indicator of memory in low-dimensional reaction coordinates focuses on the
fluctuations of transition-path times [22] (see also generalisation for dynamics on general
graphs in [7]). This analysis exploits the fact that transition-path times—the durations of suc-
cessful transitions—for a one-dimensional Markov process cannot have a coefficient of vari-
ation exceeding one. Thus, values exceeding one are a reliable indicator of memory. However,
a coefficient smaller than one does not necessarily imply Markov behaviour and this analysis
also requires superb temporal resolution (much faster than the transition duration), which is
often not feasible experimentally.

A more robust (concerning temporal resolution) and model-free (but still not ideal; see
below) test for the presence and duration of memory is to test directly for the violation of
Markov behaviour [18]. This method offers significant flexibility and interpretability, free
from the model-selection challenges [23] inherent to model-based approaches like HMMs.
The approach rests on one general consequence of the Markov property encoded in the so-
called Chapman–Kolmogorov equation. That is, the (two-point) transition probability density
G(q, t|q0,0) for a transition (q0,0)→ (q, t) of any Markov process satisfies

G(q, t|q0,0)
Markov
=

ˆ
dq ′G(q, t|q ′, τ)G(q ′, τ |q0,0)

t−hom
=

ˆ
dq ′G(q, t− τ |q ′,0)G(q ′, τ |q0,0) (3)

where t−hom denotes time-homogeneous Markov dynamics. Note in particular that there is
no dependence on τ . Since the Chapman–Kolmogorov equation holds true for all Markov
processes, one can turn this property into a test for Markovianity by determining the transition
probability density G(q, t|q0,0) for the actual observed (generally non-Markovian) dynamics,
and compare it with the Chapman–Kolmogorov construct

GCK
τ (q, t|q0)≡

ˆ
dq ′G(q, t− τ |q ′,0)G(q ′, τ |q0,0) . (4)

The Chapman–Kolmogorov construct GCK
τ corresponds to a fictitious process in which we

force all hidden degrees of freedom to their stationary distribution at time τ , and thereby erase
all memory (if present). The transition probability density can be determined from the recor-
ded (experimental or simulated) time series {qt}0⩽t⩽T (one-dimensional in our case) of total
duration T= 6h (e.g. see figures 2(d)–(f) or figure 4(a). Assuming that the time-series is sta-
tionary, which is our only assumption that we also verified to be the case here by confirming
that waiting times in the states do not explicitly depend on time, we can determine the two-
point transition probability density as

G(q, t|q0,0) =
⟨δ (qt+τ − q)δ (qτ − q0)⟩

⟨δ (qτ − q0)⟩
, (5)

where as before ⟨·⟩ denotes an ensemble or time average over a long trajectory and δ(x) is
Dirac’s delta distribution. We note that in the analysis we lump the data into bins as we are
limited by the sampling. Generally, the binning itself may introduce memory [13, 24], which
can be gauged by repeating the analysis for different bin sizes (see below). However, the ana-
lysis itself rests on no such assumption, i.e. it can be performed on an arbitrarily fine binning
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as long as sampling permits a reliable inference of G(q, t|q0,0). Due to our assumption that
qt is ergodic, the system reaches a stationary equilibrium density peq(q) for ergodically long
times, i.e. limt→∞G(q, t|q0,0) = peq(q). Note that, given sufficient statistics, one can infer
G(q, t|q0,0) and GCK

τ (q, t|q0) directly from the measured time series qt, and that in particular,
there is no need to specify any underlying model for the observed (projected) and microscopic
dynamics. The comparison between G and GCK

τ may be done via the Kullback–Leibler diver-
gence (also called relative entropy) [25]

Dτ,q0 (t)≡
ˆ

dqG(q, t|q0,0) ln
[
G(q, t|q0,0)
GCK

τ (q, t|q0)

]
⩾ 0. (6)

By construction,Dτ,q0(t) = 0 if and only ifG(q, t|q0) = GCK
τ (q, t|q0) for all q. That is,Dτ,q0(t)

will by construction vanish for a Markov process. A non-zero value ofDτ,q0(t) for any τ and t
thus reflects genuinememory in the dynamics in the sense that as soon asDτ,q0(t) ̸= 0 for some
τ and q0 the observed process qt is conclusively non-Markovian. Note, however, that there
are non-Markovian processes which also satisfy the Chapman-Kolmogorov equation (3) [26–
28]—and thus would also result in a vanishing Dτ,q0 . Therefore, while Dτ,q0(t) ̸= 0 implies
memory, the converse Dτ,q0(t) = 0 does not necessarily imply that the observed process is
Markovian.

Notably, for long times t⩾ tcorr, and similarly for τ ⩾ tcorr (and t= τ by construction), one
expects thatDτ,q0(t) approaches zero. AnalysingDτ,q0(t) for different τ and q0 thus allows us
to quantify the magnitude and temporal extent of memory in a model-free manner (see below).
TheKullback–Leibler divergence in equation (6) reflects howmuch the observable qt at a given
time t ‘remembers’ the initial state of hidden degrees of freedom and quantifies how memory
attenuates in the course of time while microscopic trajectories gradually mix in configuration
space. Lastly, it is important to highlight that the information encoded in the temporal evolution
of C(t) and Dτ,q0(t) is fundamentally different. This distinction becomes evident in figures 2
and 3, which compare a Markovian with non-Markovian observations. Even in the absence
of memory, there exists a timescale on which the coordinate qt forgets the initial conditions.
However, in the Markovian case, there is no memory and Dτ,q0(t) = 0 as required. Therefore,
Dτ,q0(t) in contrast to C(t), indeed provides information about the correlation between the
observable qt and the initial conditions of hidden degrees of freedom, thereby offering genuine
information about the extent and duration of memory.

Here, we investigate memory effects in single-molecule time series of the conformational
dynamics of the protein Hsp90 probed by a plasmon ruler, monitoring the distance between
a pair of plasmonic nanoparticles attached to the protein (see figure 1), as well as a set of
HMMs of this observable. Hsp90 is a molecular chaperone (a so-called ‘helper protein’), as
such, it helps other proteins to fold properly and to achieve an active (i.e. biologically func-
tional) conformation. As a heat shock protein, its production is modified by stress conditions.
Hsp90 is highly conserved and one of the most abundant proteins within the cytoplasm of
cells [29–31]. Renowned for its extensive interaction network with numerous cochaperones
(one may call them ‘helper’s helpers’) and protein clients (also called substrates), Hsp90 plays
a pivotal role in the maintenance of essential cellular functions [32, 33]. Structurally, Hsp90
exists as a homodimer, with each monomer composed of three domains, as shown in figure 1:
the N-terminal domain (NTD) containing an ATP-binding site, the middle domain (MD) cru-
cial for ATP-hydrolysis and linked to the NTD via a charged linker sequence, and the C-
terminal domain (CTD), serving as the dimerisation interface with the highest affinity [34, 35].
The Hsp90 dimer can undergo large conformational changes, transitioning from a V-shaped
N-terminally open structure to a tightly closed state, as evidenced by a wealth of structural
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Figure 1. The heat shock protein Hsp90 (green-blue) is a homodimer composed of two
identical proteins, which each have a N, M and C-domain. They are bound to each other
at their C-termini with a high affinity coiled-coil linker. The protein exhibits N-terminal
opening and closing dynamics, as illustrated by the Hsp90 cartoons on the right. This
motion of a single dimer can be recorded by plasmon ruler spectroscopy in a dark field
microscope where two gold nanoparticles are attached to the protein. As the coupling
strength of the gold particles depends on their distance, a smaller distance results in
stronger coupling and therefore larger scattering intensity (plasmon signal (q)).

data [36, 37]. Several investigations have measured time series of N-terminal opening and
closing with single-molecule FRET [38–41]. These studies are limited by photobleaching,
resulting in insufficient statistics to assess the Markov assumption. However, plasmon ruler
spectroscopy allows for a much longer observation of Hsp90’s conformational changes, mon-
itoring its opening and closing dynamics in the range of hours [3]. In the following, we analyse
some of the plasmon ruler data from [3]. The plasmon data is available at [42].

Signatures of memory in the time-series of Hsp90 were already observed in [3] in terms
of non-exponential dwell times in the two respective conformational meso-states. Non-
Markovian behaviour is indeed anticipated to manifest since many protein conformations lead
to the same observable plasmon signal qt, here a proxy for the distance between plasmonic
particles, while microscopic trajectories evolving from an ensemble of conformations with
the same distance between plasmonic particles will be dynamically distinct. The magnitude
and timescale on which memory emerges remain unknown.

2. Simulated single-molecule time series

2.1. Data simulation

In order to examine the consistency and limitations of this approach, which requires lots of
data, we start with simulated time-series of model systems both with and without memory, and
in or driven out of equilibrium. All the three models consist of four states each (figures 2(a)–
(c)) and are described by Markovian jump dynamics on the microscopic level. Moreover, we
consider dynamics on a discrete time, ‘probed’ with a frequency of 10Hz, since in the practical
context of biophysical measurements (see section 3) the recordings are inherently discrete
(which here in the limit of long measurements is expected to essentially become equivalent to
continuous-time dynamics, e.g. Gillespie simulations [43, 44]). The simulation of time-series
for the full dynamics was done with MASH-FRET [45], which includes (Poissonian) photon
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Figure 2. Examples of simulated time-series for three different four-state models pro-
jected onto two observable states. Each time-series {qt}0⩽t⩽T of total duration T= 6h
(only 10000s depicted) is shown for a four-state Markov model with (a+d) uniform
transition rates, (b+e) with Hsp90-inspired transition dynamics that obey detailed bal-
ance, (c+f) with Hsp90-inspired transition dynamics that is driven out of equilibrium.
(g) Probability density functions peq(q) of one example time-series for each of the intro-
duced model systems (almost lying on top of each other). The two peaks correspond to
the closed (higher q) and open (lower q) conformation. (h) Averaged autocorrelation
function C(t) of simulated time-series of the corresponding models. The timescale tcorr
is identified from the long-time behaviour of C(t) as detailed in the main text.

shot noise, similar to the noise occurring in single-molecule FRET time series, yielding a signal
that is not dichotomous anymore.

The respective model parameters (in particular signal intensities) were chosen to mimic the
distinct protein conformations observable in the experiments. Corresponding kinetic trans-
itions rates between states were either chosen to be identical (figure 2(a)), or inspired by
those recently obtained from single-molecule FRET data of Hsp90’s conformational dynamics
(figures 2(b) and (c)) [41]. In the latter case, the first system (see figure 2(b) models Hsp90
dynamics in equilibrium (i.e. transition rates obey detailed balance) whereas the second system
(see figure 2(c) is out of equilibrium with an cycle-affinity of 10 kBT [46].

To allow for a better comparison with experimental data in later sections, all simulated
4-state models were divided into two low intensity (centred at q= 0.05; open) and two high
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intensity (centred at q= 0.95; closed) states which are consecutively lumped together to cre-
ate hidden states, giving rise to only two observable meso-states. The resulting ‘projected’
dynamics qt (figures 2(d)–(f)) thus now mimic the effective two-state dynamics observed in
the experimental setup (compare figure 4(a). Recall that the noise introduced byMASH-FRET
blurs the discrete-state trajectory, ultimately giving meso-states a finite extension as seen in
the stationary histograms peq(q) in figure 2(g).

The followingmemory analysis will be carried out for data sets comprising 100 independent
time-series for each system with a duration of T= 6h and time resolution of 10Hz each—
identical parameters as in the experimental case. Simulation and analysis of the data were
performed independently by different researchers. The person analysing the data thus had no
prior knowledge of the underlying system.

2.2. Analysis of simulated single-molecule time series

We start our analysis by first determining the normalised autocorrelation function C(t) (see
equation (1)) for each individual time-series of the three introduced models, and consecutively
take the corresponding sample-average over the respective 100 independent measurements
(see figure 2(h)). Furthermore, the correlation times tcorr are determined by fitting the long-time
behaviour of C(t) to an exponential C(t)≃ exp(−t/tcorr). The inferred values are tcorr ≈ 49.1s,
tcorr ≈ 14.5s, and tcorr ≈ 3.4s, respectively, as indicated by the markers in figure 2(h) (further
details are given in table 1).

Next we quantified thememory via the Chapman–Kolmogorov construction 4 (see figure 3).
The transition probability density G(q, t|q0,0) for the recorded time-series was determined
according to equation (5) via a histogram analysis. Since the probability density functions
peq(q) of all considered models (also for the experimental data; see section 3) are bimodal,
indicating two well-defined and well-separated meso-states (see figure 1), we start by lumping
the state-space into two equal bins of width lbin = 0.5, centred at 0.25 and 0.75 respectively.
As a result, q is now discrete-valued, q= {0,1}, and refers to a pair of bins at 0.25 and 0.75
with a width lbin = 0.5. Each bin encompasses one of the two wells, such that q0 = 0.25 corres-
ponds to the open state and q0 = 0.75 to the closed state throughout, respectively. Note that the
precise position of q is thus immaterial. Consequently, the reference Chapman–Kolmogorov
construction and in turn also the Kullback–Leibler divergence Dτ,q0(t) are straightforwardly
obtained via equations (4) and (6) by replacing integrals by sums over the two lumps. For the
following analysis, we choose q0 = 0.25 and for completeness show the corresponding results
for q0 = 0.75 in the appendix since they are almost identical. Moreover, for the experimental
Hsp90 time-series (see below) we additionally repeat an analogous memory analysis for a finer
spatial lumping into four equal bins of size lbin = 0.25, and eight equal bins of size lbin = 0.125,
is illustrated in figure 7 of the appendix and displays essentially quantitatively equivalent beha-
viour. We note that binning alone of truly one-dimensional Markovian dynamics may cause
memory effects (see [13]). However, the memory here is genuinely projection-induced (i.e. by
observing the plasmon signal only) and is therefore expected to persist even for an ‘infinitely
fine’ binning of the plasmon signal (see e.g. [26]), for which, however, exponentially more
data is required for an equivalent analysis.
A priori, the consistency of our approach requires that no detection of memory is expected

for the first system (figure 2(a)), since in this case all possible microscopic paths are equivalent
(i.e. all transition rates are identical). Indeed, as anticipated, the Kullback–Leibler divergence
Dτ,q0(t) (6) was found to be zero (within statistical errors) for all times t and shown values of τ
(see figure 3 first column). Only for increasingly large values of τ , a noisy result was obtained
due to undersampling of the functions G entering the Chapman–Kolmogorov construction (4)
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Figure 3. Analysis of memory in projected dynamics for three different simulated
model systems with 100 time-series of 6h duration each. The Kullback–Leibler diver-
genceDτ,q0(t) in equation (6) between the transition probability density of the observed
dynamicsG(q, t|q0) and its Chapman–Kolmogorov constructionGCK

τ (q, t|q0) as a func-
tion of time t for underlying dynamics of (a)–(c) a four-stateMarkovmodel with uniform
transitions, (d)–(f) a four-state Markov model with Hsp90-inspired transition dynamics
that obey detailed balance, and (g)–(i) a four-state Markov model with Hsp90-inspired
transition dynamics that is driven out of equilibrium, respectively. Initial condition was
set here to q0 = 0.25, corresponding to the open conformation of Hsp90 (see appendix
for q0 = 0.75). Memory in the Chapman–Kolmogorov construct is reset to zero at dif-
ferent times τ and the memory time-scale tmem (red marker) is obtained by fitting the
long-time behaviour according toDτ,q0(t)≃ exp(−t/tmem). Shaded areas depict stand-
ard deviations σD(t), obtained by averaging over 100 independent simulated trajectories
and insets depict the same analysis for only one trajectory that is 100 times as long. The
correlation time tcorr is indicated by a yellow marker.

necessarily yielding a positive Dτ,q0 . Note that the uncertainty emerging for large τ is due to
undersampling, i.e. can be overcome by longer traces (see inset figures 3 and 6). We remark
that while no memory was (correctly) identified, the system displayed a correlation time of
tcorr ≈ 49.1s, underscoring that the correlation time tcorr (yellow marker) is a bad proxy for
inferring memory. It does provide an upper bound on the duration of memory if the latter is
present, but in turn has no implication for the presence of memory.

For the two remaining models with rates inspired by single-molecule FRET data of Hsp90
dynamics in equilibrium (figure 2(b)) and driven out of equilibrium with an affinity of 10
kBT (figure 2(c)), an analogous analysis confirms the presence of memory. In both instances,
the system displays memory identified by a non-vanishing Kullback–Leibler divergence over
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Figure 4. Overview of experimental single-molecule time-series for the Hsp90 pro-
tein. (a) Recorded example time-series {qt}0⩽t⩽T of duration T= 6h via plasmon ruler
spectroscopy [3]. (b) Probability density function peq(q) of four recorded Hsp90 time-
series qT. The two visible peaks correspond to the closed (higher population) and open
(lower population) conformation of the Hsp90 protein, respectively. (c) Autocorrelation
function C(t) of the recorded experimental time-series. The correlation time tcorr (see
equation (2)) is identified via an exponential fit of the long-time behaviour of the (aver-
aged) autocorrelation C(t).

approximately one decade in time (figure 3 2nd and 3rd column). For the system in equi-
librium, memory was best detectable for a τ = 1s. As before, large values of τ gave rise
to undersampling and in turn larger fluctuations (compare shaded regions), and the results
become noisier and less reliable. When using longer time traces, more data points are avail-
able and this problem does not emerge (see insets in figure 4 for single trajectories that are
longer by a factor of 100). For practical applications, this means that longer measurements
or experiments with a higher time resolution result in a more stable and reliable analysis. In
particular, an analysis of long traces performs better than the same amount of data split into
several short traces (all longer that the correlation time). This is because for a given lag time
t in equation (5) one has a total interval T − t available for averaging per trajectory of dura-
tion T, and thus a total interval p× (T− t) for p trajectories of length T and a total interval
p×T− t for a single trajectory of length p×T. If the correlation time is tcorr, one thus has
roughly ≈ p× (T− t)/tcorr statistically independent realisations with p trajectories compared
to ≈ (p×T− t)/tcorr statistically independent realisations with a single long trajectory.

In line with the correlation time, one may analogously introduce a memory time-scale tmem

as

1
tmem

≡− lim
t→∞

1
t
lnDτ,q0 (t) , (7)

which is inferred by fitting the longest time-scale to an exponential Dτ,q0(t)≃ exp(−t/tmem).
Consistently, we always find tmem ⩽ tcorr where, for the considered parameters of τ , the equi-
librium system was found to take values in the range of tmem ≈ 6.2s to tmem ≈ 6.5s and the
driven system comparably tmem ≈ 2.1s to tmem ≈ 6.5s (see figure 3 and table 1).
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3. Experimental single-molecule time series

3.1. Experimental data acquisition

The experimental data analysed here has been recorded by plasmon ruler spectroscopy [42].
For these measurements, two gold nanoparticles (diameter about 60 nm) were attached to yeast
Hsp90 via flexible PEG (polyethylene glycole) polymer linkers, one at each monomer. For the
attachment of the PEG, Hsp90 was mutated for a cysteine at position 285 in the M-domain.
These constructs were immobilised on a glass substrate and observed in a dark field micro-
scope. Due to plasmon coupling between the two gold nanospheres, their plasmon resonance is
shifted to higher wavelengths, and the scattering intensity increases when the interparticle dis-
tance is decreased [47]. The scattering intensity is recorded and allows to monitor one spatial
coordinate of Hsp90’s conformational changes. The open Hsp90 dimer shows a low plasmon
scattering intensity in arbitrary units, while the closed dimer gives a high signal (see figure 1).
We analysed four time series of duration T= 6h each with a recording rate of 10Hz from
previously published data [3]. All traces were from Hsp90 in equilibrium, i.e. in the absence
of nucleotides. One exemplary trace is shown in figure 4(a). The effect of the coupling of the
gold nanoparticles to the here investigated Hsp90’s dynamics could already be excluded in the
original publication [3], with the diffusion time of 0.1µs for 60nm gold nanoparticles being
around six orders of magnitude faster than the observed Hsp90 dynamics here.

3.2. Reliability analysis via bootstrapping

To gauge the reliability and robustness of the results with respect to (an unavoidably) limited
sampling, we employ a simple bootstrapping routine. In addition to performing the analysis
of the relative entropy in equation (6) inferred from the complete dataset, we repeated the
analysis on bootstrapped sets. Precisely, we determined the relative entropy from M= 100
independent bootstrap samples obtained by randomly neglecting 20% of the data. From the
respective relative entropies of the bootstrapped samples D(i)

τ,q0(t), we determine the standard
deviation σD of Dτ,q0(t) as

σ2
D (t)≡M−1

M∑
i=1

D(i)
τ,q0 (t)

2 −

(
M−1

M∑
i=1

D(i)
τ,q0 (t)

)2

. (8)

3.3. Analysis of experimental single-molecule time series

Figures 4(a) and (b) show a measured trajectory qt and the equilibrium probability density
functions peq(q) of the four analysed trajectories, respectively. As in the simulations, the two
peaks correspond to the closed (high q) and open (low q) conformation of the Hsp90 protein.
Note that the plasmon signal (here q) was normalised between zero and one and scaled such
that the peak positions inferred from individual traces match. The normalised autocorrelation
functions C(t) of the four traces shown in figure 4(c) are found to nicely superimpose and
display an (averaged) correlation time of tcorr ≈ 90s (see table 2), as above, obtained via an
exponential fit of the long-time behaviour.

The Kullback–Leibler divergence for different ‘memory reset times’ τ are shown in figure 5
for different initial conditions q0, respectively. Note that the memory profile, in particular the
magnitude, depends on the initial condition of the observable. That is, when starting in the open
state (q0 = 0.25, blue curve in figure 5), the maximum ofDτ,q0(t) is smaller than when starting
from the closed state (q0 = 0.75, orange curve in figure 5). From a biophysical perspective,
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Figure 5. Analysis of memory in experimental Hsp90 time-series. Kullback–Leibler
divergence Dτ,q0(t) in equation (6) between the transition probability density of the
observed dynamics G(q, t|q0) and its Chapman–Kolmogorov construction GCK

τ (q, t|q0)
as a function of time t. Two different initial conditions q0 of the Hsp90 protein are con-
sidered, corresponding to starting in the left (blue) and right (orange) peak in the probab-
ility density peq(q), respectively. Memory in the Chapman–Kolmogorov construction is
reset to zero at times (a) τ = 1s, (b) τ = 3s, and τ = 6s, respectively. Error bars depict
the standard deviation σD(t), obtained by systematically neglecting 20% of the recor-
ded data for M= 100 independent bootstrapped repetitions and subsequent averaging.
Memory time-scales are identified via an exponential fit of the long-time behaviour.
Note that tmem (orange and blue markers) is always smaller than the correlation time
tcorr (pink marker).

this is not too surprising, given the structural complexity of Hsp90 and the fact that the open
state is much more flexible than the closed state [48]. In any case, the finding seems to indicate
that a reduced model for qt in terms of memory-kernels must not be of convolution type and
should depend explicitly on q0.

Signatures of memory emerged already at very short times (on the scale of the temporal res-
olution of the experiment). Themaximumwas reached after just a few seconds (figure 5). Then,
the memory decreased slowly and was completely lost only after around 50s. The memory
timescale was again obtained from an exponential fit to the long-term behaviour and was here
tmem ≈ 37.2s to tmem ≈ 47.9s, respectively, for different τ and q0 (see figure 5 and table 2).
Thus, memory was present for over two decades and most pronounced for the ‘well’ corres-
ponding to the closed conformation of Hsp90 (orange in figure 5). This could be due to Hsp90
being more flexible in its open state [48] enabling a faster relaxation of hidden degrees of free-
dom. We stress that the actual memory profile in figure 5 is (qualitatively and quantitatively)
very different from the one predicted by the Hsp90-inspired HMMs in figure 3. In particular,
the actual extent of memory is an order of magnitude longer than predicted by Hsp90-inspired
HMMs (e.g. tmem ≈ 40s (actual) versus tmem ≈ 6s (HMM) at τ = 1s) and also displays (at
least) two distinct time-scales (note the shoulder in Dτ,q0(t) shown in figures 5). Moreover,
the HMM falls short in accurately describing the correlation time (tcorr ≈ 90s (actual) versus
tcorr ≈ 14.5s(HMM)), and fails to capture the observed clear distinction between the open
(orange) and closed (blue) conformation. The choice of the HMM thus directly affects the
memory profile. A model that fails to capture the memory profile of the observed dynamics—
an intrinsic signature of the actual coupling of the observable to hidden degrees of freedom—
does not provide an adequate representation of the underlying microscopic dynamics.

We note that as a result of limited resolution and sampling, in our analysis we decided to
bin the data in two, four, and eight bins respectively, whereby the binning had no significant
effect on the memory profile past the expected fact that smaller binning introduced larger
uncertainty (see green curves in figure 7). We stress that binning is not a requirement of the
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approach (i.e. one can use an arbitrarily fine binning). It is the limited sampling that causes
the need for binning. This may be important to consider, since binning itself may introduce
memory [13, 24]. However, the effect of binning alone is conceptually easily assessed. If it
plays a significant role, the inferred memory profile will show a strong dependence on the size
of the bins.

In the case of Hsp90 we expect very similar memory profiles also for ‘point-like’ binning
(i.e. if one infers the respective probability densities with continuous support). For an exper-
imental example where this is very clearly demonstrated see analysis of force-spectroscopy
data on DNA-hairpin folding in [18]. The memory persists at arbitrarily fine binning because
making bins finer only reduces lumping of the plasmon signal that, however, itself inherently
corresponds to many microscopic states lumped into the same plasmon signal.

Our analysis thus suggests that the transition between opening and closing of Hsp90 occurs
on timescales influenced by memory, and therefore is affected by the initial conditions of the
hidden degrees of freedom.

4. Discussion and conclusions

The conformational dynamics of proteins are often measured between two sites in a protein
by single-molecule methods. The resulting time-series are then typically analysed by Hidden-
Markov based methods, without properly assessing the representation of the coupling of the
observable with hidden degrees of freedom that is parametrically encoded in the underlying
fullMarkov model. Here, we analysed long single-molecule time-series of the conformational
dynamics of the Hsp90 protein probed by a plasmon ruler. In particular, we carried out a
model-free analysis of the non-Markovian behaviour and conclusively confirmed and quanti-
fied the memory in the observed dynamics. This was presumably the first time that the con-
formational dynamics of a protein were quantified in a model-free manner and in such detail in
an experimental setting (model-based approaches have been used before [49–53]). Moreover,
our analysis allowed us to quantify the lifetime of the memory in the time-series of Hsp90.
Strikingly, the memory was confirmed to be present for up to 50s. Recall that the effect of the
coupling of the gold nanoparticles to Hsp90’s dynamics on the investigated time scales could
already be excluded in the original publication [3], such that we can attribute the memory to
Hsp90 dynamics alone. The here quantified duration of memory is on a time scale which is
significant for many biological processes of the observed protein, therefore it is conceivable
(if not very likely) that memory has biological relevance and implications. This means, for
example, that interactions with client proteins are affected by Hsp90’s conformational dynam-
ics and vice versa. Thus, Hsp90’s interactions have long lasting effects and are influenced by
its dynamics and interactions for up to 50s. To set the timescale into perspective, human RNA
is translated to a protein at a rate of approximately 5 amino acids per second [54]. For a pro-
tein consisting of 400 amino acids, translation would take about 80s. If Hsp90 — fulfilling its
chaperone function— assists in folding this protein into its mature form, the starting conform-
ation of Hsp90 would directly affect how Hsp90 assists in the folding process. Furthermore,
our analysis is also suitable for inferring memory in non-equilibrium (driven) systems as we
have exemplified in figure 3. We anticipate that this will be very important in the future, as
compared to Hsp90’s ATPase rate (1 ATP per min [55, 56]) memory of 50s is still long with
likely significant impact on Hsp90’s non-equilibrium dynamics.

We note that the most general, non-linear versions of Zwanzig-Mori projection-operator
methods with non-linear drifts and explicitly time-dependent and non-linear (i.e. non-
convolution-type) memory kernels (see e.g. equation (33) in [57], equation (9.58) in [58],
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equation (2.7) in [59] or equations (6-7) in [60]) may formally also be considered as model
free as they are essentially identities of the Liouville equation. However, the exact equations of
motions obtained in an approximation-free manner are nominally not closed, and a model for
the non-equilibrium initial conditions of hidden degrees is required for closure and averaging.
In practice, space-independent and linear convolution-type memory kernels are assumed,
whichmay thus not be faithfully considered as truly beingmodel free. Furthermore, linear gen-
eralized Langevin equations for the auto-correlation C(t) may formally also be considered as
model free [61]. However, extending the explanation in the Introduction, the resulting memory
kernel generally does not reflect memory, only the presence of multiple time-scales in the
attenuation of correlations (for a direct counterexample see figure 4(a) in [19]). One may, of
course, nevertheless infer a ‘memory time’ from the respective memory kernels, which, how-
ever, has a different meaning than the memory time we investigate here. The relations between
the respective memory times remain an interesting open question for future work.

Altogether, our study shows that for the analysis of single-molecule time-series, e.g. of
protein dynamics, it is crucial to initially investigate whether memory is present. Only in the
absence of memory on relevant timescales, Markov modelling is justified, because it relies
on the assumption of a memoryless process. Additionally, (hidden) Markov modelling relies
on assumptions about models and—in the context of the model selection process and all its
associated challenges [23, 52, 62] — one typically selects the one with the highest likelihood,
potentially introducing bias and explicitly setting the memory profile. AHMM that fails to cor-
rectly reproduce the memory profile (i.e. its magnitude and especially duration) cannot be con-
sidered as an adequate representation of the underlying dynamics, in particular the coupling of
the observable to hidden degrees of freedom, and thus cannot provide reliable insight. Model-
free methods as described here, on the other hand, can overcome this bias given sufficient
statistics. Transition-path based approaches [63] could then be used. Our data and analysis
indicate a pressing need for such model-free methods that have to be further developed and
optimised to analyse single-molecule time-series. On the positive side, our work demonstrates
that such an analysis, despite requiring substantial statistics, is already within experimental
reach.
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Appendix A. Fit parameters for correlation time tcorr and memory time tmem

Table 1. Correlation timescale tcorr and memory timescale tmem for the three differ-
ent simulated model systems (here q0 = 0.25 and different τ ). Values are obtained by
fitting the long-time behaviour of C(t) and Dτ,q0(t), respectively, to the exponential
≃ exp(−t/ti) where i ∈ {corr,mem}.

tmem [s] tmem [s] tmem [s]
System tcorr [s] τ = 1.0s τ = 2.0s τ = 5.0s

Model 1 49.11 ±
5.94× 10−5

— — —

tmem [s] tmem [s] tmem [s]
τ = 0.5s τ = 1.0s τ = 2.5s

Model 2 14.53 ±
3.50× 10−5

6.29 ± 4.89× 10−2 6.50 ± 2.05× 10−2 6.20 ± 9.50× 10−1

tmem [s] tmem [s] tmem [s]
τ = 0.2s τ = 0.4s τ = 1.0s

Model 3 3.41 ±
2.78× 10−4

2.89 ± 3.37× 10−2 2.14 ± 3.64× 10−3 2.09 ± 3.45× 10−4

Table 2. Correlation timescale tcorr and memory timescale tmem for the experimental
time-series of Hsp90 (here q0 = 0.25 or q0 = 0.75, and different τ ). Values are obtained
by fitting the long-time behaviour of C(t) and Dτ,q0(t), respectively, to the exponential
≃ exp(−t/ti) where i ∈ {corr,mem}.

tmem [s] tmem [s] tmem [s]
System tcorr [s] τ = 1.0s τ = 3.0s τ = 5.0s

Hsp90 (q0 = 0.25) 90.00 ± 0.42 37.22 ± 14.69 45.98 ± 12.81 44.74 ± 17.20

tmem [s] tmem [s] tmem [s]
τ = 1.0s τ = 3.0s τ = 5.0s

Hsp90 (q0 = 0.75) 39.18 ± 16.71 47.92 ± 13.65 45.71 ± 18.46
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Appendix B. Memory analysis for simulated systems for q0 = 0.75

Figure 6. Analysis of memory in projected dynamics for three different simulated
model systems with 100 time-series of 6h duration each. The Kullback–Leibler diver-
genceDτ,q0(t) in equation (6) between the transition probability density of the observed
dynamicsG(q, t|q0) and its Chapman–Kolmogorov constructionGCK

τ (q, t|q0) as a func-
tion of time t for underlying dynamics of (a)–(c) a four-stateMarkovmodel with uniform
transitions, (d)–(f) a four-state Markov model with Hsp90-inspired transition dynamics
that obey detailed balance, and (g)–(i) a four-state Markov model with Hsp90-inspired
transition dynamics that is driven out of equilibrium, respectively. Initial condition was
set here to q0 = 0.75, corresponding to the closed conformation of Hsp90 (see main
text for q0 = 0.25). Memory in the Chapman–Kolmogorov construct is reset to zero at
different times τ and the memory time-scale tmem (red marker) is obtained by fitting the
long-time behaviour according toDτ,q0(t)≃ exp(−t/tmem). Shaded areas depict stand-
ard deviations σD(t), obtained by averaging over 100 independent simulated trajectories
and insets depict the same analysis for only one trajectory that is 100 times as long.
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Appendix C. Memory analysis for experimental time-traces with different
spatial coarse-graining

Figure 7. Analysis of memory in experimental Hsp90 time-series. Kullback–Leibler
divergence Dτ,q0(t) in equation (6) between the transition probability density of the
observed dynamics G(q, t|q0) and its Chapman-Kolmogorov construction GCK

τ (q, t|q0)
as a function of time t. Four different initial conditions q0 are considered, correspond-
ing to starting in the left (a)–(c) and right (d)–(f) peak in the probability density peq(q),
respectively. The four bins (blue, orange) are of equal width lbin = 0.25 and centred at
0.125, 0.375, 0.625, and 0.875. Memory in the Chapman-Kolmogorov construction is
reset to zero at times (a), (d) τ = 1s, (b), (e) τ = 3s, and (c), (f) τ = 6s, respectively.
Error bars depict the standard deviation σD(t), obtained by systematically neglecting
20% of the recorded data for M= 100 independent bootstrapped repetitions and sub-
sequent averaging. Black lines depict Dτ,q0(t) as shown in figure 5 and corresponds to
the initial condition (a)–(c) q0 = 0.75 and (d)–(f) q0 = 0.25, respectively. Green lines
showDτ,q0(t) for spatial lumping into eight equal bins of width lbin = 0.125 and τ = 1s.
Due to limited sampling the analysis was inconclusive for τ = 3s and τ = 6s.
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