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Preface
Parts of the results of this thesis have been published in Lauer et al. [1].

Abstract
Synthetic antimicrobial peptides Api137 and Api88 are promising lead compounds in
antimicrobial research. They share the same sequence, apart from the C-terminus, which
is amidated in Api88. Although they both suppress protein synthesis by binding to the
peptide exit tunnel (PET) of the ribosome, recent cryo-EM data suggest that they act
by different mechanisms. Api137 traps release factors and prevents dissociation of the
peptide chain. Api88 binds to the same sites as Api137 but is more deeply positioned into
the tunnel, and the cryo-EM density is less defined. The less defined cryo-EM density of
Api88 can be tentatively modelled by three different conformations.

The conformational diversity of Api88 gives rise to various questions regarding its
binding dynamics. In this work, I examined whether the three Api88 conformations
represent metastable states and howmuch density information can be attributed to each
conformation. Further, I tried to improve the explanation of the density with structures
predicted by MD simulations. Lastly, I compared the binding dynamics of of Api88 to
Api137 and investigated how the chemical differences between the two peptides affect
their flexibility when bound in the exit tunnel.

To address these key questions, I performed all-atom MD simulations starting from
the three modelled conformations of Api88, Api137 and an amidated version of Api137
with the same coordinates in the PET. The results suggest that Api88 adopts metastable
conformational states. To estimate the contribution of the modelled conformations to
the overall conformational ensemble, I computed cryo-EM density maps from the MD
ensembles of each state. After that, I combined the computed maps and optimised the
weights of the states to maximise the correlation with the experimental map. The op-
timally weighted MD ensemble displayed an improved correlation to the experimental
map compared to the optimally weighted initial conformations suggesting that the dy-
namics of the peptide observed in the experiment is captured by the MD simulations.
Additionally, I identified a minimal number of MD structures sufficient to describe the
ensemble. The analysis further shows that one of the three initially modelled conforma-
tions contributes most to the cryo-EM density. Compared to the other two structures,
it shows a slight shift toward the peptidyl transferase centre at the tunnel’s beginning.
In comparison, the modified Api137 exhibits more rigid binding dynamics than Api88.
This effect can be traced back to the chemical modifications in its C-terminal residue.
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1. Introduction

Antimicrobial resistance poses a significant global health threat. Although some bacte-
rial resistance mutations are as old as 30 000 years [2], increased use of antibiotics in the
last decades puts pathogens under high evolutionary pressure and drives the develop-
ment of drug-resistant bacteria. The rising resistance level necessitates the exploration
of novel therapeutic strategies such as antimicrobial peptides (AMPs).

Antimicrobial peptides are genetically encoded and constitute a crucial component
of the innate immune defence system in diverse species. Many antimicrobial peptides
kill bacteria by dissolving their cellular membranes, while others target intracellular
components [3].

Peptides belonging to the subclass of proline-rich AMPs (PrAMPs) use the lattermech-
anism [4]. As their name suggests, these peptides exhibit a high content of proline
residues and arginines. They permeate the outer and inner bacterial membrane and
appear to primarily target the ribosome [5–7], which serves as the protein factory of
every living cell. The ribosome is the catalytic site for translating gene sequences in the
form of messenger RNAs (mRNAs) to peptide chains of amino acids that can fold into
proteins. PrAMPs are expressed in many insects and some species of mammals but have
not been found in humans [4]. Thus, they present a promising avenue for developing
antimicrobial drugs, which could fill a gap in our innate immune system.

This thesis focuses on two synthetic designer PrAMPs, Api88 and Api137, which stall
protein translation at the bacterial ribosome and share great similarities in their amino
acid sequence and binding sites. They are chemical derivatives of the naturally occur-
ring PrAMP apidaecin 1b, which is found in western honey bees (Apis mellifera) [8]. The
amino acid sequence of apidaecin 1b has been iteratively refined to achieve desired prop-
erties such as high efficacy in in vivo and in vitro experiments [9] and stability against
degradation by bacteria [10]. Api88 and Api137 emerged as lead compounds due to
their high antibacterial activity. Florin et al. [7] elucidated the antibacterial mechanism
of Api137. The authors created an atomic model from a 3-dimensional density map
obtained with cryogenic electron microscopy (cryo-EM). The model shows the binding
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1. Introduction

position of Api137 in the ribosomal exit tunnel. The exit tunnel is a narrow space in the
ribosome that hosts the nascent peptide chain during translation. The chain leaves the
ribosome through the tunnel after the translation process is completed.

A more recent cryo-EM investigation of our collaborators in Christian Spahn’s lab
identified a similar binding site for Api88 [1]. In contrast to Api137, three models de-
picting different peptide conformations were needed to describe the cryo-EM density.
The models from Christian Spahn’s lab and the underlying density maps provide the
foundation for this work. Lauer et al. [1] further identified previously unknown binding
sites of Api88 and Api137 in the tunnel and other parts of the ribosome, which are not
discussed here due to their very recent discovery.

Computational approaches like molecular dynamics (MD) simulations can comple-
ment experimental structural biology [11]. MD simulations add dynamic information
to the static structure models. Starting from a single atomic model, an MD simulation
solves the Newtonian equations of motion for each atom, thus generating a trajectory
of structures that capture molecular motions on an atomic level and a temporal resolu-
tion of femtoseconds. Here, I will perform MD simulations starting from the cryo-EM
structures of ribosome-bound Api88 and Api137 to address the following questions.

1. Do the three modelled conformations of Api88 represent metastable states, or can
interconversions be observed on the simulation time scale?

2. The cryo-EMmap of Api88 captures all three modelled conformations. Howmuch
does each conformation contribute to the density?

3. Can MD simulations predict alternative structures for Api88 that might describe
the cryo-EM density better than the original models?

4. How do the binding dynamics of Api88 differ from those of Api137?

Each conformation of Api88 that was present in the cryo-EM sample contributes to
the density, which, therefore, represents an ensemble of different conformations. Cer-
tain conformations might occur more frequently in the sample and contribute more to
the cryo-EM density map. To quantify the contributions of each of the three modelled
conformations, I computed density maps from the MD simulation data and compared
them to the cryo-EM density maps.

I used principal component analysis (PCA) to assess the conformational space sam-
pled by MD simulations of Api88 and to check the metastability of each of the three
conformations on the order of the simulation time scale.
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The simulation trajectories produced an enormous amount of possible conformations
for Api88. I devised an algorithm that performed a guided search of the MD structures to
identify a set of conformations providing a similar or better explanation of the cryo-EM
map than the initial three models.

Lastly, it is interesting to compare the different binding dynamics of Api88 and Api137
since the only chemical difference between the two peptides is in their C-terminus (one
end of the peptide chain), where Api88 carries a carboxamide (CONH2) and Api137 a
carboxylic acid (COOH). The fact that the Api88 density can only be described by an en-
semble of three conformations of Api88 suggests a more flexible behaviour at its binding
site in the exit tunnel compared to Api137. I used simulations of both peptides to further
explore the effect of the C-terminal modification.
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2. Background

2.1. Structure and function of the bacterial ribosome

A comprehensive overview of the structure and function of ribosomes can be found in
Alberts [12], which was used as the source of information for the following section if
not specified otherwise.

Ribosomes are macromolecular complexes that act as protein factories in eukaryotic
and prokaryotic cells. An average E. Coli bacterium contains approximately 20 000 ribo-
somes [13]. Each ribosome is assembled from a small and a large subunit. The subunits
are typically denoted by their sedimentation coefficient, measured in Svedberg units. In
bacterial ribosomes, the small subunit has a coefficient of 30S, the large subunit 50S, and
when assembled, the ribosome totals 70S. Ribosomal ribonucleic acid (rRNA), comple-
mented by several ribosomal proteins, constitutes most of the ribosome. The ribosomal
proteins are primarily located at the surface. Specifically, the bacterial 50S subunit in-
cludes two rRNAs (23S and 5S) and 31 ribosomal proteins, while the 30S subunit com-
prises the 16S rRNA and 21 proteins.

Protein translation is the process of producing proteins according to the genetic code,
which is controlled and catalysed by the ribosome. Translation is a multistep process of
initiation, elongation, and termination (Figure 2.1). It involves specific functional sites
of the ribosome that span both subunits. During the translation process, the genetic
information carried by the nucleotides in an mRNA strand is used to build a chain of
amino acids, called peptide, that will later fold into the desired protein. The two termini
of a peptide are called N- and C-terminus. The C-terminus is normally capped by a
carboxylic acid, while the N-terminus is capped by an amide. The amino acid sequence
of a peptide is always written in the direction from N- to C-terminus. Three consecutive
mRNA nucleotides form a codon that can be decoded to one amino acid with the help of
an adapter molecule called transfer RNA (tRNA). The ribosome contains three binding
sites for tRNAs, the aminoacyl (A) site, the peptidyl (P) site and the exit (E) site. A specific
type of tRNA carries a specific amino acid and contains an anticodon nucleotide triplet

5



2. Background

that can form complementary base-pairing interactions with its associated mRNA codon
nucleotides.

The first step in the translation process is initiation, where the 70S ribosome is as-
sembled around an mRNA strand. The two subunits are brought together with the help
of initiation factors IF1, IF2, or IF3, resulting in the mRNA running along the subunit
interface while being anchored to an mRNA binding site at the small subunit. At the
same time, an fMet-tRNA is placed at the P site. The fMet-tRNA contains the anticodon
for the start codon AUG, which marks the beginning of a protein-coding sequence on
the mRNA and carries the corresponding amino acid N-formylmethionine.

New amino acids are iteratively added to the C-terminus of the nascent peptide chain
during the elongation phase. The elongation factor EF-Tu delivers an aminoacylated
tRNA to the A (accommodation) site at the beginning of an elongation step. If it car-
ries the correct anticodon, it will bind tightly to the ribosome. Subsequently, the N-
formylmethionine (first elongation step) or peptide chain (later elongation steps) de-
taches from the P-site tRNA and attaches to the amino acid at the A-site tRNA (transpep-
tidation). The ribosome acts as an enzyme and catalyses this peptidyl transferase reac-
tion. The catalytic activity occurs in the peptidyl transferase centre (PTC) in the large
subunit, at the CCA-tail of the P-site tRNA, where the peptide is bound. Further, the
PTC marks the beginning of the peptide exit tunnel (PET), which provides the necessary
space for the peptide chain to grow. Subsequently, the ribosome shifts by one codon in
the reading direction along the mRNA strand while the two tRNAs stay in place (translo-
cation). After translocation, the former P-site tRNA, which is now deacylated, resides at
the E site, where it is ejected from the ribosome, while the former A-site tRNA holding
the nascent chain has been transferred to the P site. The A site is now free to accommo-
date another aminoacylated tRNA for the next elongation step.

The elongation cycle continues until a stop codon is encountered, leading to the ter-
mination of the translation process. The stop codon is not recognised by a tRNA but
rather by one of the release factors RF1, RF2, or RF3. These factors cleave the peptide
chain from the P-site tRNA. The peptide leaves the ribosome through the exit tunnel.
After that, the 70S ribosome is disassembled into its subunits, which can be reused in
another translation process.
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2.1. Structure and function of the bacterial ribosome

Figure 2.1.: Schematic overview of the translation process. During the initiation phase,
the ribosome is assembled, and a fMet-tRNA (blue) binds to the P site. The
nascent peptide chain is elongated by aminoacylated tRNAs (magenta) that
bind to the A site and connect their carried residue to the chain. A release
factor (black) cleaves the peptide chain and initiates the termination of the
translation process.
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2. Background

2.2. Proline-rich antimicrobial peptides

Proline-rich antimicrobial peptides (PrAMPs) are integral components of the innate im-
mune system found in arthropods and mammalian species [4]. The peptides are synthe-
sised within immature phagocyte cells and stored in granules [14] as inactive precursors.
Upon bacterial infection, phagocytes release the PrAMP-precursors into the extracellu-
lar space or sequester bacteria within phagosomes, subsequently merging them with
PrAMP granules [15]. At the site of action, the inactive precursors undergo activation
through proteolytic cleavage of the pre-and post-sequences that render them inert [15].
The membrane transporter SbmA transports activated PrAMPs into the bacterial cyto-
plasm [4].

PrAMPs exert their antimicrobial activity by binding inside the ribosomal exit tunnel.
Initially, research suggested that the molecular chaperone DnaK was the primary target
of PrAMPs [16]. DnaK is a heat shock protein that protects cells from thermal stress
by catalysing the correct folding of freshly synthesised proteins. However, this model
did not fully explain the effectiveness of PrAMPs against E. Coli strains that lack DnaK
[5]. Subsequent research identified the ribosomal exit tunnel as the primary target of
PrAMPs [7].

PrAMPs can be categorised into two classes based on their bindingmode [4]. Oncocin-
type PrAMPs, including oncocin and pyrrhocoricin i. a., exhibit an inverted orientation
within the peptide exit tunnel relative to the nascent peptide chain during translation,
with their N-terminus reaching into the A site. These peptides occupy the A-site binding
pocket, the A-site crevice, and the upper region of the peptide exit tunnel. In contrast,
apidaecin-type PrAMPs, such as apidaecin 1b, Api88, and Api137, bind in the same di-
rection as the nascent peptide chain, with their C-terminus oriented towards the A site.
Unlike oncocin-type PrAMPs, apidaecins do not penetrate the A-site binding pocket.

2.3. Mechanisms of Api88 and Api137

Thefirst detailed description of a termination-stallingmechanism of Api137 can be found
in Florin et al. [7]. Api137 exerts its inhibitory effect on translation termination by trap-
ping release factors at ribosomes, thus depleting the available factors needed to release
peptide chains at other ribosomes. When a completed peptide chain leaves the ribo-
some, Api137 can enter the exit tunnel and bind to the release factor attached to the A
site (Figure 2.2). This trapping of release factors initiates downstream effects that impede
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protein production. Ribosomes directly stalled by Api137 cannot participate in subse-
quent translation rounds, but this affects only a limited subset of ribosomes. Given the
relatively smaller pool of available release factors compared to the number of ribosomes,
the translation machinery relies on a rapid turnover rate of these factors. At sufficiently
high concentrations, Api137 effectively captures nearly all release factors. Consequently,
Api137 stalls most active ribosomes by making them incapable of releasing their peptide
chains due to a shortage of release factors. Florin et al. [7] further proposed that the
resultant scarcity of free release-factors may increase stop-codon read-through, conse-
quently inducing protein mistranslations. The inhibitory mechanism of Api88 is not yet
understood.

Api88 and Api137 have nearly the same amino acid sequence. The only difference lies
in the C-terminus. A carboxylic acid (Gu-ONNRPVYIPRPRPPHPRL-OH) caps Api137,
while Api88 has an amide (Gu-ONNRPVYIPRPRPPHPRL-NH2). In their deprotonated
states, the C-terminus of Api88 is negatively charged (COO-) and the one of Api137
neutral (CONH).

Our collaborators found that Api88 binds to the exit tunnel in a position similar to
that of Api137 (Figure 2.3). Still, the cryo-EM density is less defined, necessitating the
usage of multiple conformations to model it. The density showed that Api88 could take
a downward (conformation I) or upward (conformation II) conformation near its Arg17
residue. Further, the density protrudes towards the PTC, which could only be explained
by conformation III. The latter model is shifted by 3.2 Å compared to the other confor-
mations.

2.4. Cryogenic electron microscopy

The following section is based on Milne et al. [17], if not specified otherwise.
Cryogenic electronmicroscopy (cryo-EM) is a type of transmission electronmicroscopy

that is used to study biological macromolecules under cryogenic conditions. It has
evolved as one of the leading imaging methods for the structure determination of bi-
ological macromolecules, along with X-ray crystallography and nuclear magnetic reso-
nance spectroscopy [17]. Transmission electron microscopy exploits Abbe’s law, stating
that the resolution of a microscope is inversely proportional to the wavelength of the
illumination source by using electrons as an illumination source. The De-Broglie wave-
length of electrons is much shorter than that of electromagnetic waves in the visible
spectrum, leading to higher resolution in transmission electron microscopes than con-
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2. Background

Figure 2.2.: Api137 (red) bound to a release factor (blue) at the ribosomal A site. A cross-
section of the surrounding 70S ribosome is depicted in the background (grey).
The ribosome model was taken from Florin et al. [7] (PDB ID 5O2R).
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2.4. Cryogenic electron microscopy

Figure 2.3.: Cryo-EM structures of Api137 and Api88. The upper panel shows three dif-
ferent conformations of Api88, while the lower shows a single Api137 model.
The surrounding cryo-EM density is shown as a black mesh.
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2. Background

ventional light microscopes. However, imaging a biological sample like a protein with
a transmission electron microscope at room temperature would be difficult because the
electron dose needed for a sufficient signal-to-noise ratio would inflict massive radiation
damage on the sample. Cryo-EMmicroscopists overcome this obstacle by shock-freezing
(vitrifying) the sample in liquid nitrogen or liquid helium before imaging, because low
temperatures drastically decrease the amount of radiation damage inflicted upon the
sample. A fast cool-down of the sample prevents the formation of ice crystals and en-
sures the sample retains a near-native state.

Single-particle cryo-EM is used to obtain structures of individual macromolecules.
The workflow starts with spreading a solution of sample molecules on a carbon grid,
where the samples are ideally spread evenly in a variety of orientations. After that, the
sample is vitrified. From the resulting 2-dimensional micrographs of the randomly ori-
ented particles, a 3-dimensional electron density map can be calculated with specialised
software tools, e. g. SPIDER [18] or IMAGIC [19]. After further refinement of the map,
an atomic model is fitted to it with software tools like ChimeraX [20] or Coot [21].

The resolution of a 3D reconstruction is measured by the Fourier shell correlation
(FSC). The FSC is a measure of cross-correlation as a function of spatial frequencies
between independent 3D reconstructions in Fourier space, each computed from half of
the 2D micrographs. The map resolution is determined at a specific FSC cutoff-value
(normally 0.143) [22].

2.5. Molecular dynamics simulations

2.5.1. The MD algorithm

MD simulations are a computational method for studying the dynamics of atomic sys-
tems based on numerically solving Newton’s equations of motion. They forego a com-
putationally expensive quantum mechanical approach that relies on directly solving the
time-dependent Schrödinger equation

𝑖ℏ𝜕𝑡Ψ = 𝐻Ψ. (2.1)

Instead, molecular dynamics useswell-motivated approximations and semiempirical force
fields to achieve experimentally verifiable results. A comprehensive overview of the MD
algorithm can be found in Berendsen et al. [23]. The first step to simplify the description
of motions a system of atoms performs is to apply the Born-Oppenheimer approxima-
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2.5. Molecular dynamics simulations

tion. It is based on the observation that electrons move much faster than their cor-
responding nuclei, making it possible to separate the atomic wave function Ψ into an
electronic and a nucleic part: Ψ = 𝜓𝑛𝜓𝑒. The second approximation is the treatment
of the nuclei as point particles that follow Newtonian equations of motion, which are
solved via a leap-frog Verlet algorithm

⃗𝑣𝑖 (𝑡 + Δ𝑡
2

) = ⃗𝑎𝑖(𝑡) + ⃗𝑣𝑖 (𝑡 − Δ𝑡
2

) (2.2)

𝑚 ⃗𝑎𝑖(𝑡) = −∇𝑉 (𝑅⃗𝑖(𝑡)). (2.3)

The effect of electrons, which are assumed to be in their quantum mechanical ground
state, on the dynamics of the nuclei is approximated as a potential energy surface. Equa-
tion 2.2 represents the velocity update step of an atom 𝑖 at position ⃗𝑅𝑖 from the velocity
of the previous time step. The force acting on that atom is calculated from the force field
𝑉 (Equation 2.3).

The forces that govern the nucleic motion can be approximated as a sum of bonded in-
teractions with a purely quantum mechanical origin and non-bonded interactions with
an electrostatic or hybrid origin. Bonded forces describe the covalent interactions be-
tween atoms. Their associated potential

𝑉bonded = 𝑉bond + 𝑉angle + 𝑉dihedral (2.4)

consists of contributions from bond lengths, bond angles and dihedral angles. The non-
bonded forces describe the electrostatic and van-der-Waals (vdW) interactions:

𝑉nonbonded = 𝑉electrostatic + 𝑉vdW. (2.5)

Hydrogen bonds are treated as purely electrostatic for computational simplicity, al-
though they have a quantum-mechanical contribution. All of these energy terms can
be expressed as a specific functional form, e.g. a harmonic, Lennard-Jones, or Coulomb
potential, with particular parameters. A collection of functional forms and parameters
makes up a force field, which serves as computationally simplified approximation of the
true quantum-mechanical forces. Parameter values are often inferred from experiments
but can also be computed ab initio from quantum-chemical simulations of individual
molecules. Many different force fields are available and users must carefully examine
their system and choose the force field that fits their needs. Some of the most commonly
used include GROMOS [24], AMBER [25], CHARMM [26] and OPLC [27].
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2.5.2. Solvent treatment

As biomolecules do not exist in a vacuum, the solvent must also be considered in MD
simulations. For many MD simulations of biomolecules under physiological conditions,
the solvent will mainly consist of water molecules interspersed with a few ions to repro-
duce physiological salt concentrations and neutralise the system’s net charge. There are
different options to simulate water molecules. The most straightforward method rep-
resents the oxygen and hydrogen atoms with a point charge, resulting in a three-point
water model, e. g. TIP3P [28]. To save computational costs, two-point models are avail-
able that aim to approximate the electrostatic charge field of the whole water molecule
rather than represent each atom [29]. Four-point or higher-order models are also used
in many circumstances because the additional point charges provide a more accurate
representation of the molecule’s charge distribution [30]. Of course, there cannot be in-
finite solvent molecules, so the simulation system must be finite in size. All solute and
solvent atoms are placed in a three-dimensional box, whose specific shape depends on
many factors. Cubic or dodecahedral box shapes are often used. MD simulations nor-
mally are performed under periodic boundary conditions, where the box size has to be
chosen large enough so that the solute is not influenced by its periodic image.

2.5.3. Calculation of long-range electrostatic interactions

Generally, most of the available computational power in an MD simulation is spent
computing nonbonded electrostatic interactions. These pose computationally intensive
problems, as they are long-ranged and undirected. The computational effort scales pro-
portional to the square of atoms in the system (𝒪(𝑛2)). Thus, it is required to compute
the interactions of each atom with every other atom. Particle Mesh Ewald provides an
algorithm significantly reducing computational effort to 𝒪(𝑛 log𝑛) [31]. The under-
lying theory of Ewald summation states that the electrostatic interactions can be split
into short-ranged and long-ranged contributions, the latter of which can be evaluated in
Fourier space. This trick allows the long-range part calculation to converge more rapidly
than it would in real space.

2.5.4. Temperature and pressure coupling

A simulation conducted as described above would always keep the sum of kinetic and
potential energy constant, representing a microcanonical (NVE) ensemble. This does
not represent realistic experimental conditions, where a sample constantly exchanges
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energy with its surroundings. Therefore, it is important to couple the simulation system
to virtual heat (thermostat) and pressure (barostat) baths to obtain canonical (NVT) or
isothermal-isobaric (NPT) thermodynamic ensembles. There are various ways to imple-
ment thermostats and barostats. Two common options implemented in the GROMACS
simulation software [32] are described here:

The v-rescale thermostat

The stochastic velocity rescaling thermostat (v-rescale) [33] was introduced to sample
a correct NVT ensemble while allowing for fast equilibration of the system to a target
temperature with the corresponding average kinetic energy 𝐾̄. At every integration step
𝑑𝑡 the total kinetic energy 𝐾 is updated by

𝑑𝐾 = (𝐾̄ − 𝐾) 𝑑𝑡
𝜏

+ √2𝐾
𝛽𝜏

𝑑𝑊 (2.6)

and the kinetic energies of the particles are rescaled to enforce this value. The first term
is a relaxation of the system towards the target temperature with the time scale 𝜏. The
second term adds a stochastic fluctuation in the form of a Wiener process 𝑑𝑊. 𝛽 refers
to the inverse target temperature.

The c-rescale barostat

The stochastic cell rescaling barostat (c-rescale) [34] relies on a similar idea as the v-
rescale thermostat. Its application leads to the correct sampling of the NPT ensemble.
At each integration time step, the strain

𝜖 = ln
𝑉
𝑉0

(2.7)

is updated. 𝑉0 refers to a reference volume and 𝑉 to the volume of the simulation box at
the current time. The update step takes the form

𝑑𝜖 = −𝛽𝑇
𝜏𝑃

(𝑃0 − 𝑃) 𝑑𝑡 + √2𝑘𝐵𝑇 𝛽𝑇
𝑉 𝜏𝑃

𝑑𝑊. (2.8)

𝑃0 refers to the external pressure of the barostat, 𝑃 to the system’s internal pressure, 𝛽𝑇

to the isothermal compressibility of the system and 𝜏𝑃 is the time scale of the pressure
coupling.
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2. Background

2.6. Principal component analysis

Molecular dynamics trajectories exhibit diverse fast and slow, small- and large-scale mo-
tions. It can be difficult to identify the functionally relevant conformational changes
in an MD trajectory. Principal component analysis (PCA) can greatly reduce the di-
mensionality of a given trajectory’s configurational space by defining a new basis set
in configurational space. The axes are chosen to maximise the variance of the trajec-
tory projections onto the axes. Those projections then show collective motions with the
largest fluctuations, which we assume to be also the functionally most significant ones.

The following section is based on a review of principal component analysis by Palma
and Pierdominici‐Sottile [35].

In Cartesian space, a snapshot of a system of𝑁 atoms is represented by𝑁 3-dimensional
vectors, while in configurational space it can be written as a single 3𝑁-dimensional vec-
tor. The whole trajectory is thus a set of 𝑀 snapshots { ⃗𝑥(𝑘)}, with 𝑘 running from 1 to
𝑀. The following steps are applied for PCA.

1. Remove translational and rotational motions by rigid-body-fitting all snapshots to
a reference structure.

2. Calculate the covariance matrix

𝐶𝑖𝑗 = 1
𝑀

𝑀
∑
𝑘=1

(𝑥(𝑘)
𝑖 − ⟨𝑥𝑖⟩) (𝑥(𝑘)

𝑗 − ⟨𝑥𝑗⟩) . (2.9)

⟨𝑥𝑖⟩ and ⟨𝑥𝑗⟩ represent the average values of all snapshots for the 𝑖th and 𝑗th
coordinates respectively.

3. Diagonalise the covariance matrix by solving the eigenvalue equation

𝐶 ⃗𝑣𝑛 = 𝜆𝑛 ⃗𝑣𝑛 (2.10)

The eigenvectors { ⃗𝑣𝑛} form a new orthogonal basis set. The eigenvalues corre-
sponding to the eigenvectors are the variance of the respective trajectory projec-
tions. When sorted by the magnitude of corresponding eigenvalues in decreasing
order, the first eigenvector is oriented to maximise the variance of the data pro-
jected onto it. The second eigenvector has the same property under the additional
condition of being orthogonal to the first.

4. Project the trajectory onto the subspace spanned by one or more eigenvectors.
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2.7. Computation of density maps from atomic models

A projection onto the subspace spanned by e. g. the first two eigenvectors shows the
simulated molecule’s movement along the two most essential axes of motion.

When the simulation has not converged to equilibrium yet, it is possible that ran-
dom diffusion resembles large-scale collective motion and is therefore described by the
first few eigenvectors. In order to not mistake eigenvectors that describe random diffu-
sion for functionally relevant motions, the cosine content of the respective eigenvectors
should be examined. A high cosine content of the projection onto the corresponding
eigenvector signifies a high similarity to random diffusion [36].

2.7. Computation of density maps from atomic models

To compare molecular dynamics data to an experimental density map, it is useful to
calculate a density map via Gaussian spreading from snapshots of molecular dynamics
trajectories [37]. From each atom, an isotropic point spread function is derived. It takes
the form of a superposition of 𝑁𝐺 Gaussians. At distance 𝑑, the density is

𝑃(𝑑) =
𝑁𝐺

∑
𝑖=1

𝐴𝑖𝑒−𝐵𝑖𝑑2 . (2.11)

𝐴𝑖 and 𝐵𝑖 are coefficients derived from the specific atom type’s scattering factors. These
differ depending on the experimental scattering method used for the reference map (X-
ray scattering or cryo-EM). The software GROmaρs, which is used here for density map
calculation, has tabulated values of the coefficients for X-ray crystallography and cryo-
EM [37]. The total density distribution 𝜌 of all 𝑁 atoms in the system is calculated as
a superposition of the individual atoms’ contributions. It is evaluated on a discrete 3-
dimensional lattice with 𝑀 lattice points { ⃗𝑔𝑗|𝑗 = 1, ..., 𝑀}:

𝜌( ⃗𝑔𝑗) =
𝑁

∑
𝑖=1

𝑃 (∥ ⃗𝑔𝑗 − 𝑅⃗𝑖∥) (2.12)

𝑅⃗𝑖 represents the position of the 𝑖th atom.

2.8. Root mean square deviation

The root mean square deviation (RMSD) is an observable that can be used to compare
the structural similarity of two models or investigate the deviation of a trajectory from
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2. Background

its initial structure as a function of time [38]. Before calculating the RMSD, all involved
structures should be rigid-body fitted to a reference structure. Otherwise, a translation
or rotation of the whole model might skew results, because it would lead to a large
RMSD without the internal model structure being necessarily different from the refer-
ence model. Assuming we want to compare a structure with 𝑁 atoms taken from an MD
trajectory at time 𝑡2 with the simulation’s initial structure at time 𝑡1, the mass-weighted
RMSD is calculated as follows:

RMSD(𝑡1, 𝑡2) = √ 1
𝑀

𝑁
∑
𝑖=1

𝑚𝑖 | ⃗𝑟𝑖(𝑡1) − ⃗𝑟𝑖(𝑡1)|2 (2.13)

⃗𝑟𝑖 is the position of atom 𝑖 and 𝑚𝑖 its mass. 𝑀 = ∑𝑁
𝑖=1 𝑚𝑖 denotes the total mass.

The RMSD is often consulted as a convergence indicator when plotted as a function of
simulation time. For a fully equilibrated simulation, it is necessary for the RMSD to not
show a continuous upward-trend anymore. However, a flat RMSD-over-time function
is not a sufficient criterion to prove that a simulation with finite length has reached
equilibrium.

2.9. Root mean square fluctuation

The root mean square fluctuation (RMSF) measures the fluctuation of an atom 𝑖 around
its mean position ⟨ ⃗𝑟𝑖⟩, i. e. it represents the standard deviation of the atom position ⃗𝑟𝑖

[39]:

RMSF𝑖 = √⟨| ⃗𝑟𝑖 − ⟨ ⃗𝑟𝑖⟩|
2⟩ (2.14)

In contrast to the RMSD the RMSF does not highlight the deviation of a structure from its
initial coordinates over the course of a simulation but measures a molecule’s flexibility.
Regions with high RMSF values show high structural flexibility, while regions with low
RMSF values are more rigid.

2.10. Pearson correlation coefficient

The Pearson correlation coefficient is a statistical measure to calculate the linear corre-
lation between two data sets [40]. Given data 𝑋 and data 𝑌, their correlation is defined
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2.11. Bootstrapping

as the covariance of 𝑋 and 𝑌 divided by their respective standard deviations:

𝜌 = ⟨(𝑋 − ⟨𝑋⟩)(𝑌 − ⟨𝑌 ⟩)⟩
√⟨(𝑋 − ⟨𝑋⟩)2⟩√⟨(𝑌 − ⟨𝑌 ⟩)2⟩

(2.15)

In the context of this thesis, it is be used to determine the correlation of two electron-
density maps.

2.11. Bootstrapping

Bootstrapping is a method of inferring the statistics of a population from a sample of that
population via resampling [41]. In many situations, only a small sample of an unknown
underlying population is known. Thus, the statistical properties of the sample will differ
with a certain unknown error from those computed from the population. In this case, 𝑁
resamples of the original sample can be produced via sampling with replacement. From
the resamples, a distribution of the desired statistic can be calculated. If the sample is
representative of the population and 𝑁 was chosen sufficiently large (normally on the
order of magnitude of 1000 or 10 000 resamples), this distribution will asymptotically
approach one obtained from resampling the true population 𝑁 times.
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3. Methods

3.1. Simulation Setup

3.1.1. System preparation and energy minimisation

Our collaborators from the group of Christian Spahn (Charité Berlin) provided us with
four structure models based on cryo-EM maps of 50S-Api complexes, one for Api137
and three for the different conformations of Api88. To isolate the influence of the C-
terminus, I created an additional structure from the Api137 structure, where I kept all
atomic coordinates but changed the C-terminal acid into an amide. This resulted in a
structure which chemically corresponds to Api88 and has the conformation of Api137
and will be referred to as Api137-NH2. I then carried out simulations starting from five
structures: conformations I, II, and III of Api88 as well as Api137 and Api137-NH2. To
obtain an extensive sampling of the conformational space and to be able to calculate
uncertainties of the results, I ran 15 independent replica simulations from each of these
five initial structures of Api88/137 in the ribosomal exit tunnel for a duration of 2 µs.

Since in the cryo-EM structures the 50S subunit is unchanged, with the exception
of the tunnel residues in contact with the antimicrobial peptide, I simulated a cut-out
volume centred around the peptide, thereby reducing the computational effort. To that
aim, all residues located within 3.5 nm around the Api peptide were included in the
simulation system. Due to the hard cutoff distance, some RNAs or proteins were broken,
because a single or more nucleotide or amino acid residues lay outside the cutoff distance
and was not included in the cutout volume. When only a single residue was outside
the 3.5 nm radius, but its 5’- and 3’- (n- and c-) neighbours were inside, the residue
was included in the simulation volume. When more than one consecutive residue in a
nucleotide or peptide chain were outside the radius, the nearest neighbours inside the
radius were treated as terminal residues. All peptide chains (except Api) were capped
by an N-terminal acetyl and a C-terminal amide. Subsequently, I used WHATIF [42] to
determine the protonation states of histidine residues. Missing hydrogen atoms were
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3. Methods

added with gmx pdb2gmx.

As the cryo-EM structures did not contain structural ions andwatermolecules, I added
them from another previously resolved 50S subunit structure. To that aim, I superim-
posed the structure of an E. coli (PDB id: 6PJ6) [43] 50S subunit on the five 50S-Api
structures and copied the ions and water molecules in the 3.5 nm cutout volume and
0.5 nm distance to the atoms of the 50S-Api structure.

Then, I placed each structure in a dodecahedral simulation box with a distance of at
least 1.5 nm between the outer atoms and the box boundaries.

Next, the simulation box was solvated with water molecules and ions. I recreated
a physiological salt concentrations of 3.5mmol L−1 for MgCl and 150mmol L−1 for KCl
and then neutralised the total system charge with K+ ions by using the GROMACS pro-
grammes gmx solvate and gmx genion [32]. I used the K+ and Cl− ion parameters from
Joung and Cheatham [44] and the microMg parameters from Grotz and Schwierz [45].
Amber14sb [25] was chosen as a force field, and OPC3 [46] as a water model.

To increase the simulation time step from 2 fs to 4 fs, the hydrogen atoms were were
described as virtual sites, adding their masses to the heavy atoms they were linked to.
Their positions during the simulations were then calculated geometrically. The virtual
sites represent the centre of mass of all hydrogen atoms linked to the same heavy atom.
The centre of mass moves much slower than the actual hydrogen atoms, allowing for a
larger integration time step. All simulations were conducted with the GROMACS 2023
simulation suite [47].

The solvated structure was used as input to a potential-energy minimisation that
moved solvent atoms into positions where their energy corresponded to a local mini-
mum. This step is crucial because otherwise, an MD simulation might become numeri-
cally unstable due to large initial forces. The energy was minimised for 6000 steps using
a steepest-descent algorithm with an initial step size of 0.01 nm for the atom positions.
The potential energy was regarded as converged to a local minimum when the maxi-
mum force was smaller than 10 kJmol−1 nm−1. Solute atoms (including structural water
molecules and ions) were kept in place with position restraints to maintain the exper-
imentally determined structure. Position restraints are additional harmonic potentials
(here with a spring constant of 1000 kJmol−1 Å−2) centred on the initial positions of the
atoms and energetically punish movement of the restrained atom.
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3.1. Simulation Setup

3.1.2. Solvent equilibration

The system had to be adequately equilibrated before gathering any data from the simula-
tion. The equilibrationMD simulation started from the atomic coordinates of the energy-
minimised structure and initial velocities were drawn from a Boltzmann distribution at
a temperature of 300 K. The solute atoms were held in place with the above-described
position restraints, and the solvent was equilibrated for 50 ns in the NPT ensemble. The
temperature was set to 300 K and the pressure to 1 bar. I used the v-rescale thermostat
for temperature coupling and the c-rescale barostat for pressure coupling.

3.1.3. Release of position restraints

All solute atoms were held in place with position restraints for the solvent equilibration.
In the production simulations these had to be released with the exception of the outer
layer of the simulation system: Due to the simulation system being a cutout of a whole
50S subunit, the atoms at the surface of the cutout volume missed interactions with
removed ribosome atoms, which would have lead to the simulation volume falling apart
[11]. The effect of these interactions were mimicked by applying position restraints to
the outer atoms of the simulation volume that allow a similar movement range as they
would have in the intact 50S subunit [48].

The restraints were applied to all atoms positioned at a distance of 25Å to 35Å (outer
layer) from the Api peptide. The spring constants of the outer layer position restraints
were calculated from a previously conducted simulation of an intact 70S ribosome [49].
First, a custom Python [50] script compared atoms in the outer layer of the simula-
tion system and the reference 70S ribosome structure. If atoms in the outer layer of
the apidaecin-50S structure were also present in the 70S reference, the spring constants
were calculated from the root-mean-square fluctuations of the corresponding atoms in
the reference simulation [48]. Otherwise, they were assigned a default spring constant
equivalent to the average of all other spring constants. Over the course of a 20 ns simula-
tion started from the equilibrated system, the position restraints were linearly decreased
to the calculated values for the outer layer and to zero for the remaining atoms. After
that, a production simulation of 2 µs was started and only these trajectories were used
for the following analyses.
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3.2. Post-processing of simulation trajectories

Due to the periodic boundary conditions, molecules appeared broken once they partially
crossed the simulation box boundary on one side and reentered on the other. These
artefacts had to be removed prior to analysis. The GROMACS tool gmx trjconv was used
for that purpose. I used it to return atoms to their original position once they crossed
box boundaries.

I had to realign the simulation trajectories to their respective cryo-EMmodels because
the system preparation introduced a translation of the whole system. I used PyMOL [51]
to align the simulation input structures to the unmodified cryo-EM structures and gmx
trjconv to align the simulation trajectories to the respective input structures via a least-
squares-fitting of rRNA phosphate-atoms.

3.3. Principal component analysis

To examine the conformational changes of Api88,Api137 and Api137-NH2, I performed
principal component analysis. I did not calculate a covariance matrix for each trajectory
individually but rather one for all Api88 trajectories, one for all Api137 trajectories and
one for all trajectories combined. For calculating the covariance over multiple trajec-
tories with different initial structures, I had to ensure that all trajectories contained the
same number of atoms. I used a custom Python script to extract all phosphate atoms that
were present in all starting structures (Api88 conformations I-III, Api137 and Api137-
NH2) and the heavy atoms of the Api peptides. After aligning the trajectory snapshots
with a least-squares-fit of the phosphate atoms, the covariance matrix of the heavy api-
daecin atoms was calculated with gmx covar from the combination of all Api88 (Api137
and Api137-NH2, all) trajectories, sampled at 1 frame s−1. I used gmx anaeig to project
each ensemble of trajectories associated with the same starting conformation onto the
first two principal components of all Api88 (Api137 and Api137-NH2, all) trajectories.
Then, I calculated a two-dimensional probability density from the projections on each
unique pair of principal components up until the third component (associated with the
third-highest eigenvalue).
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3.4. Calculating cryo-EM maps from MD snapshots

3.4. Calculating cryo-EM maps from MD snapshots

In order to compare the MD trajectories to the cryo-EM density, I used GROma𝜌s [37],
a tool that calculates density maps from atomic models. In a preparatory step, I reduced
the cryo-EM map to a box that included the density up until 5 Å around the three Api88
models. The new map was calculated on the same grid points as the reduced cryo-EM
map using only the heavy Api atoms. Ensembles of MD trajectory originating from the
same structurewere represented in a singlemap by calculating amap for every trajectory
snapshot and then averaging the density over all snapshots.

I chose the atom spreadwidth 𝜎 to produce amap resembling the experimental density
as close as possible. To that end, I calculated multiple maps of the whole 50S subunit
model with 𝜎 ranging from 0.05 nm to 0.3 nm in steps of 0.01 nm. Then I calculated the
Pearson correlation coefficient between each calculated 50S map and the cryo-EM map.
The largest correlation could be achieved with 𝜎 = 0.11 nm.

3.5. Quantifying the contributions of Api88
conformations to the cryo-EM density

The cryo-EM density represents an ensemble of multiple conformational states of Api88,
which occurred with certain frequencies in the microscopy sample. One of my research
aims was to quantify the contributions (i. e. probability of occurrence) of the confor-
mations I to III to the density. For this reason I calculated a density map for each con-
formation (Section 3.4) and combined them into a single map with a weighted linear
combination

Map𝑊𝐿𝐶 = 𝑤1Map𝐼 + 𝑤2Map𝐼𝐼 + 𝑤3Map𝐼𝐼𝐼. (3.1)

The normalised weights represent the contributions of conformations I-III to the cryo-
EM density. To determine there values, I treated them as optimisation variables in the
context of maximising the Pearson correlation coefficient between the calculated map
and the cryo-EM map. I used scipy [52] to solve this local optimisation problem for the
weights𝑤1,𝑤2, and 𝑤3 under the constraint that they are normalised (𝑤1+𝑤2+𝑤3 = 1).
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3.6. Finding optimal MD structures

Th MD simulations generated a large number of snapshots of Api88 in different con-
formations. I wanted to find out if a combination of 𝑁 snapshots might describe the
cryo-EM density better than the initially modelled conformations I-III. For that purpose,
I designed an algorithm that searches a large pool of MD snapshots from Api88 sim-
ulations for a set of 𝑁 structures that provide an optimal description of the cryo-EM
density. The likeliness to the cryo-EM map is quantified by the correlation coefficient
between the cryo-EM map and a weighted linear combination of maps calculated from
the 𝑁 structures.

The search started with an initial set of 𝑁 structures and iteratively exchanges struc-
tures to increase the correlation. First, I extracted a frame every 250 ns from each of the
75 Api88 trajectories and calculated the respective density map of each of these frames
These make up the pool of structures to choose from. After that, I picked a set of 𝑁 maps
from the pool at random, with 𝑁 being a fixed integer. Using these maps, I constructed
a new map as a weighted linear combination that maximises correlation to the cryo-EM
map. The set of maps was edited iteratively to increase the correlation to the cryo-EM
map. Each iteration consisted of the following two steps:

1. Randomly pick one of the 𝑁 selectedmaps and exchange it for another map picked
randomly from the pool.

2. Construct the correlation-optimising weighted linear combination.

If the correlation exceeded the result of the previous iteration, the updated set of struc-
tures was used as input for the next iteration. Otherwise, it was discarded.

The above procedure was performed for several set sizes 𝑁 separately. For quicker
sampling, five independent searches were started for each 𝑁. Each search continued
until 5000 iterations had passed. Inspections of the final correlation coefficients from
each run showed disagreement no larger than 1 × 10−3 between the search runs for a
fixed 𝑁.
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4.1. Principal component analysis of Api88
trajectories

One of the research questions I wanted to address was finding out if the Api88 confor-
mations quickly interconvert or represent metastable states for an extended time period.
This question can hardly be answered by simply looking at the trajectories. PCA pro-
vides a way to easily visualise which areas in conformational space are occupied by
which trajectories. When performed in cartesian space, the principal components cor-
respond to conformational changes of the analysed molecules, therefore I will refer to
them as conformational modes.

I performed PCA on all Api88 trajectories together (see section 3.3). The first mode
represents a shift of the peptide towards or away from the PTC, while the second displays
mainly a disposition of the N-terminal residues (Figure 4.1). They have eigenvalues of
𝜆1 = 11.58 nm2 and 𝜆2 = 4.16 nm2 respectively. Together, the first two conformational
modes account for 48.73 % of the variance in the Api88 trajectory data.

Figure 4.1 shows a clear separation between the projections of conformation-III-based
trajectories and the trajectories started from conformations I and II. No trajectories origi-
nating from conformation III cross over to the area occupied by simulations of conforma-
tion I and II. Trajectories starting from conformation III occupy the lower values of the
first conformational mode and the other two conformations occupy the higher values.

The separation of conformation III and conformations I and II projections on the first
conformational mode highlights that the former does not interconvert into the other two
and keeps its C-terminal protrusion towards the PTC. The projection does not show a
distinction between conformations II and III.

The result suggests that conformation III represents a metastable state at least on the
time scale of 2 µs. Apparently, the deeper protrusion towards the PTC is associated with
a high energy barrier, that is only overcome on larger time scales.
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Figure 4.1.: 2D projection of Api88 trajectories onto the first two principal components
(conformational modes). Grey values indicate the sampling probability of the
corresponding point in conformational space. Coloured contours encompass
trajectories starting from the same conformation. Circles of the same colour
denote projections of the respective starting conformations. Red squares
represent a set of six structures from the Api88 MD trajectories that give
an optimal explanation of the cryo-EM map (described in section 4.3). Ex-
treme conformations along each principal component are displayed as dark
and bright turquoise renderings below the x- and left of the y-axis.
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4.2. Contributions of Api88 conformations to the
cryo-EM density

Next, I aimed to use theMD simulation data to quantify the contributions of themodelled
Api88 conformations I-III to the cryo-EM density map. To that end, I calculated density
maps from the Api88 conformations and combined them with weights that maximise
the correlation to the resulting map to the cryo-EM map (see Sections 3.4 and 3.5). With
optimal weighting, a correlation coefficient of 0.375 can be achieved. Conformation III
contributes the most to the calculated map with a weight of 0.46. The conformations I
and II have smaller, but still considerable weights (𝑤1 = 0.22, 𝑤2 = 0.33).

Subsequently, I examined if the inclusion of more conformations increases the cor-
relation to the cryo-EM map. Therefore, I expanded the map calculation from only the
initial conformations to the MD trajectories originating from them. For all trajectories
starting from the same conformation, I calculated an average density map, now repre-
senting the density of a conformational ensemble. The correlation coefficients between
the cryo-EM map and a variety of possible combinations of ensemble maps is shown
in Figure 4.3a. The maximum correlation efficient is 0.414. The corresponding optimal
weights are 0.63 for conformation III, 0.26 for conformation II and 0.11 for conformation
I.

The increase of the correlation coefficient from the initial structure to the MD ensem-
ble gives rise to the question if the correlation is actually stabilised after 2 ns. To assess
how the correlation evolves as a function of simulation time, I calculated optimised cor-
relation coefficients from the ensembles of shortened partial trajectories with lengths of
1 ns, 5 ns, 10 ns, 50 ns, 100 ns, 500 ns and 1000 ns. Figure 4.2 shows how the correlation
coefficient quickly increases after a short simulation time. It rapidly reaches values in
the vicinity of the 2 µs-average and does not increase significantly anymore after about
100 ns. It cannot be ruled out that the correlation would start to increase again in an
even longer trajectory, but this would then be caused by a large conformational change.
For the consideration of a conformational ensemble that remains close to the initial con-
formations, 2 µs is a sufficient simulation time to capture a stable ensemble correlation.

In summary, the weights obtained for the initial structures and the weights obtained
from theMD ensembles show that conformation III contributesmost to the cryo-EMden-
sity and seemingly is the most frequent binding mode of Api88 in the exit tunnel. This
effect is more pronounced when the MD ensemble is considered, highlighting the im-
portance of taking additional conformations into account when describing the cryo-EM
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Figure 4.2.: Cumulative correlation over simulation time. A density map
was calculated for each partial trajectory up until times 𝑡 =
1 ns, 5 ns, 10 ns, 50 ns, 100 ns, 500 ns, 1000 ns and 2000 ns. Then,
the maps were averaged over all replicas. Finally, the maps from all three
simulation ensembles were combined in a weighted linear combination
that optimises the correlation to the cryo-EM density at each point in time.
The dashed black line represents the correlation of the optimally weighted
combination map of the initial structures to the cryo-EM density.
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density. Here, the conformation-III ensemble contributes more than half of the density
to the calculated map that fits the cryo-EM density best.

4.3. Improving explanation of cryo-EM data with
MD-generated conformations

Another aim of this study was to identify MD structures that might describe the cryo-
EM density equally as good or better as the initial three models. In the previous section,
I showed that the MD ensembles started from conformations I-III achieve a better ex-
planation of the cryo-EM density than the models themselves. In this section, I aim to
find a small set of specific structures from the MD trajectories that have an improved
correlation to the cryo-EM map.

For that purpose, I designed an algorithm that repeatedly picks structures from the
Api88 MD trajectories, calculates their corresponding density maps, and finds an opti-
mally weighted linear combination that maximises the correlation of the combined map
with the cryo-EM map for the given set of structures (section 3.6).

I found a set of six structures (Figure 4.4) to achieve a higher correlation than the MD
ensembles (Figure 4.5). Their optimised weights are uniform. The correlation coefficient
would likely increase further with larger sets, but I used the ensemble correlation as a
reference point to avoid over-fitting. Six structures were sufficient to achieve a correla-
tion similar to the ensemble correlation. The projections on the principal components of
the six selected structures is shown in Figure 4.1. Four of six structures were obtained
from the MD trajectories based on conformation III.

In summary, the six MD structures describe the cryo-EM density better than the three
initial conformations and equally as good as the MD ensembles. Four of those structures
showcase a similar shift towards the PTC as in conformation III, providingmore evidence
that the PTC-shifted position of Api88 contributed most to the cryo-EM density.

4.4. Influence of the C-terminus on binding dynamics
of Api88 and Api137

The only chemical difference between Api137 and Api88 is their C-terminus. Api137
carries a carboxylic acid, COOH, which is negatively charged in deprotonated form,
while Api88 carries the carboxamide CNH2. I examined the effect of the altered C-
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(a)

(b)

Figure 4.3.: (a): Correlation coefficient between cryo-EM map and weighted linear com-
bination of the maps computed from the MD ensembles originating from
Api88 conformations I, II and III. Possible combinations of weights in steps
of 0.05 are shown. The axes are labelled with the weights of conformations I
and II. The weight of conformation III can be deduced from them, as they al-
ways sum to 1. The black cross signifies the maximum correlation coefficient
under optimal weighting. (b): Correlation coefficient between cryo-EM map
and a weighted linear combination of the maps computed from the initial
Api88 conformations I, II and III. Note that the colour scale for the correla-
tion coefficient is mapped to values different from the one in panel (a).
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Figure 4.4.: Six snapshots from the Api88 MD trajectories. The structures were chosen
to optimise the correlation coefficient between the density map calculated
from snapshots and the cryo-EM map (black mesh).

Figure 4.5.: Grey squares show the correlation coefficients between the weighted linear
combination of a correlation-optimised set of structures from the MD trajec-
tories and the cryo-EM maps. The correlation coefficient is displayed as a
function of the set size. The dashed blue line and dash-dotted orange lines
show the correlation coefficient for the MD ensemble and initial conforma-
tions, respectively.
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4. Results and discussion

terminus on peptide dynamics by editing the cryo-EM model of Api137. To that aim, I
exchanged the C-terminal acid for an amide (Api137-NH2) and also started simulations
from the resulting structure.

The root mean square deviations of the MD snapshots from their respective initial
structures show differences between Api137 (Figure 4.6, red) and the amidated Api137-
NH2 (Figure 4.6, purple) as well as Api88 (Figure 4.6, left side). The RMSD time series of
Api137 show less variance than in the other simulations and reach lower RMSD values
overall (Figure 4.6). The RMSD time series of Api88 show now significant differences be-
tween the three conformations. RMSD analysis shows that Api137 remains more similar
to its initial conformation than the other peptides. Apparently the chemical composi-
tion of the C-terminus determines whether the peptide adopts a flexible (Api88) or more
conformationally stable binding mode (Api137).

Next, I studied which peptide regions contribute most to the structure deviation by
computing the root mean square fluctuation for each residue. The RMSF shows de-
creased flexibility in Api137. This is especially noticeable in the C-terminal region, but
the effect extends over the whole peptide. Further, the variance of RMSF values between
replica simulations is smaller for Api137, as evidenced by the 95 % confidence intervals,
which were determined via bootstrapping with 10 000 resamples.

I employed principal component analysis to highlight differing conformational modes
for Api137 and Api137-NH2. I projected the combined trajectories onto their first two
conformational modes (Figure 4.8. The conformational modes represent conformational
changes of the N-terminal region (mode 1) and a combination of a peptide shift along
the exit tunnel and an N-terminal conformational change (mode 2). The trajectories of
Api137-NH2 occupy a larger conformational space than the trajectories of Api137. The
latter also shows a more pronounced N-terminal conformation change along the first
PC.

All three analyses show that Api137 possesses less flexibility than Api88 and Api137-
NH2 which is in agreement with the well-defined cryo-EM density of Api137.

It is interesting to note that the effect cannot be solely attributed to the different po-
sitioning of Api88 and Api137 in the tunnel. Api137-NH2 shares the same starting co-
ordinates as Api137 but still exhibits increased flexibility over the whole peptide chain.
Rather, the modified C-terminus seems to change the peptide’s binding behaviour. My
results suggest that this effect is not restricted to the C-terminal region, but extends over
the whole peptide chain, as shown by the RMSF analysis.
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4.4. Influence of the C-terminus on binding dynamics of Api88 and Api137

Figure 4.6.: Root mean square deviations of MD snapshots from the starting structures
as a function of simulation time. Each time series belongs to one simulation
replica (blue: Api88 conformation I, orange: Api88 conformation II, green:
Api88 conformation III, red: Api137, purple: Api137-NH2).
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4. Results and discussion

Figure 4.7.: Root mean square fluctuation per residue for all Api88 and Api137 simula-
tions. The thick lines denote mean values, and the shaded areas display 95 %
confidence intervals. Mean values and confidence intervals were obtained
via bootstrapping of the 15 simulation replicas per starting structure.
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4.4. Influence of the C-terminus on binding dynamics of Api88 and Api137

Figure 4.8.: Projections of Api137 and Api137-NH2 trajectories onto their first two prin-
cipal components. Circles denote the initial structure. The starting points
for Api137 and Api137-NH2 overlap because its atomic coordinates are the
same.
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5. Conclusions and outlook

In this thesis, I complemented the experimental cryo-EM structural data from our collab-
orators by investigating the binding dynamics of Api88 andApi137withMD simulations.

I aimed to answer several research questions about the binding dynamics of Api88 and
Api137. Three conformations were needed to model the cryo-EM density of Api88 in the
exit tunnel and I investigated if the models represent metastable states of the peptide. In
addition, I studied how much each of the three conformations contributed to the cryo-
EM density, i. e. the probability of each conformation occurring when Api88 binds in the
exit tunnel. Further, I inquired if a collection of MD structures of Api88 could describe
the cryo-EM density better than the three initial models. Lastly, I compared the binding
modes of Api88 and Api137 to elucidate the influence of their chemical difference at the
C-terminus.

With PCA I could identify at least two metastable states of Api88. The MD trajecto-
ries based on conformation III, which features a C-terminal protrusion towards the PTC
compared to the other two model, remain separated from conformation I and II for a
time scale of at least 2 ns.

Furthermore, I could elucidate the contribution of each Api88 conformation and their
respective MD ensembles to the cryo-EM density. I calculated weights for each Api88
conformation that optimised their correlation to the cryo-EM density. The results high-
lighted the significance of conformation III in explaining the density with a weight of
0.46. Nevertheless, the contributions of conformations I and II cannot be neglected
(weights 0.22 and 0.33). This underscores the necessity of using a conformational en-
semble to describe Api88 binding.

I was able to produce additional conformations of Api88 with MD that describe the
cryo-EM density better than the initial models. Most of them were shifted toward the
PTC, similar to conformation III. This finding supports the notion that PTC-shifted con-
formations of Api88 occur more frequently than those positioned deeper in the tunnel.

The comparison between the binding dynamics of Api88 andApi137 illustrated the im-
pact of the C-terminal differences. Api137 trajectories showed significantly less flexibil-
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5. Conclusions and outlook

ity and a closer resemblance to their starting conformation than Api88 and the amidated
variant Api137-NH2 with the same starting coordinates. The modulation of binding dy-
namics by the C-terminus agrees with the cryo-EM data. The better-refined density of
Api137 already shows that the chemical difference to Api88 impacts the dynamics of the
whole peptide.

The precise mechanism of how the C-terminus determines the binding dynamics of
Api88 and Api137 remains to be elucidated. It can be hypothesised that changes in
electrostatic interactionswith the tunnel walls influence the binding of Api88/137, which
not only affect the C-terminus but spread down the complete peptide length.

The focus of this work was mainly on extracting additional information about the
conformations taken by Api88/Api137, but future studies could focus on the interac-
tions between the peptides and the tunnel walls. It would be interesting to see if the
presence of either Api137 or Api88 leads to conformational changes in the RNA and
protein residues that make up the tunnel walls.

With more computational power at hand, it might be worthwhile to extend the simu-
lations beyond 2 ns, in order to observe the the movement of Api88 towards the PTC (i.
e. the transition from conformation I or II to III). Then, the corresponding energy barrier
between the two states could be calculated. Nevertheless, it is unclear if this movement
even occurs on time scales that could be simulated with hard- and software available in
the near future.
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A. PCA of Api88 trajectories

Figure A.1.: Projection of Api88 trajectories onto conformational modes 1 and 3

Figure A.2.: Projection of Api88 trajectories onto conformational modes 2 and 3
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B. PCA of Api137 trajectories
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B. PCA of Api137 trajectories

Figure B.1.: Projection of Api137 trajectories onto conformational modes 1 and 3

Figure B.2.: Projection of Api137 trajectories onto conformational modes 2 and 3
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C. PCA of combined Api88 and
Api137 trajectories
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C. PCA of combined Api88 and Api137 trajectories

Figure C.1.: Projection of Api137 trajectories onto conformational modes 1 and 2

Figure C.2.: Projection of Api137 trajectories onto conformational modes 1 and 3
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Figure C.3.: Projection of Api137 trajectories onto conformational modes 2 and 3
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