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Abstract

Detecting microsecond structural perturbations in biomolecules has wide relevance in

biology, chemistry, and medicine. Here, we show how MHz repetition rates at X-ray free

electron lasers (XFELs) can be used to produce microsecond time-series of protein

scattering with exceptionally low noise levels of 0.001%. We demonstrate the approach by

deriving new mechanistic insight into Jɑ helix unfolding of a Light-Oxygen-Voltage (LOV)

photosensory domain. This time-resolved acquisition strategy is easy to implement and

widely applicable for direct observation of structural dynamics of many biochemical

processes.

Main Text

Biomolecular transformations, reactions, and interactions are at the basis of all life.

Deciphering these mechanisms in a time-resolved manner and with sub-molecular precision

opens a new dimension of biological understanding. Access to sub-millisecond timescales in

near-native environments is particularly important, but remains challenging.

There are two primary acquisition schemes to acquire time-resolved data. In ‘pump-probe’

mode, each reaction trigger is followed by a probe pulse at a defined time delay and

time-series are constructed by repeated measurement of many time points. This mode

enables femtosecond time-resolution and has been used at XFELs for time-resolved protein

crystallography and protein solution scattering1–3. In practice, this method limits acquisition

rates leading to larger sample consumption. An alternative approach is to read out a series

of probe pulses following a single trigger event. In this way, the efficiency of data collection is

vastly improved, reducing sample consumption and suppressing experimental noise through

massive averaging4. Here, the time-resolution is limited by the X-ray repetition and detector

acquisition rates.

MHz repetition rates at second-generation XFELs now open up the opportunity to use the

latter scheme for time-resolved studies in the microsecond range. The European XFEL

(EuXFEL) is the first in this class and delivers trains at 10 Hz containing up to 2700 X-ray

pulses with a variable repetition rate up to 4.5 MHz (Figure 1b) 5. Thus far, the high repetition

rate has posed severe technical challenges for single-pulse detection of scattering and

diffraction images, due to electronic noise and nonlinear gain in the detector readout, as well

as shockwaves or explosions in the jet6. For these reasons, this unique timing capability has

only been used in X-ray microscopy, dynamic compression experiments, and X-ray photon

correlation spectroscopy,7–9, but not yet in the pursuit of biomolecular structural dynamics

https://sciwheel.com/work/citation?ids=14689337,5879957,2308244&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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through protein scattering. Here, we demonstrate the realization of this approach through

time-resolved wide-angle X-ray scattering (TR-WAXS) at the EuXFEL.

TR-WAXS can resolve structural changes of biomolecules and chemicals in solution,

providing an ~atomic-scale glimpse of their function under near-native conditions4,10,11. We

investigate the phototropin LOV2 domain from Avena sativa (AsLOV2), which features a

prototypical signaling mechanism, where a C-terminal helix (Jɑ, 22 residues) detaches from

the core in response to photoexcitation12,13. This unique photoactivity has been exploited in a

broad range of optogenetic applications and has been the subject of intense experimental

investigation14–19. Despite this interest, the mechanism and timing of Jɑ unfolding and the

structure of the unfolded state are not definitively known.

To record microsecond TR-WAXS at the EuXFEL, the sample was carried in a liquid jet via

3D-printed Gas Dynamic Virtual Nozzle (GDVN)20 to the interaction point of the optical and

X-ray beams at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond

Crystallography (SPB/SFX) endstation (Figure 1a)21. Photoexcitation was achieved with

nanosecond laser pulses timed to the start of every second X-ray pulse train (Figure 1b).

The scattering was recorded on the AGIPD detector for each probe pulse, covering a

q-range from 2.1 Å⁻¹ > q > 0.08 Å⁻¹ (corner resolution). The 2D scattering was integrated into

rings as a function of the momentum transfer (q) and delay time (t) along the pulse train.

Approximately 30% of the data were excluded, because the shape of the scattering was

affected by fluctuations in the jet (see online methods). After averaging over several repeats,

the difference scattering ΔS = Slight(q,t) - Sdark(q,t)was computed (Figure 1c). We found that it

was crucial to subtract entire laser-on from the laser-off trains from each other, reducing the

effect of systematic noise in the detector (Supplementary Figure 2). An experimental time

resolution of 1.77 µs corresponds to the inverse of the repetition rate of the XFEL (564 kHz)

and the data span a time window of ~300 µs.

The X-ray scattering of AsLOV2 shows microsecond evolution with oscillations extending

beyond q-values of 1.5 Å-1, which translates into a spatial resolution of 4.2 Å. The data have

an exceptionally low noise floor corresponding to 0.001% of the total signal, which is at least

one order of magnitude lower than previous accounts for this method (Supplementary Figure

3)22. Deconvolution of the data using spectral decomposition with exponential conversion

laws indicated that the data are best fit to a sequential model of type A→B→C, yielding base

patterns for the three states (Figure 2b, Supplementary Figure 4). In TR-WAXS, large

difference signals at low q < 0.15 Å-1 typically indicate changes of the radius of gyration (Rg)

of the protein3. From this we deduce that the structural change in state C is sizable, but that
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changes in states A and B are comparably smaller. We assign state C to the unfolded state

(vide infra), which is further underpinned by its timescale, emerging within ~300 µs (Figure

2a), in agreement with kinetics inferred from infrared spectroscopy17,18. States A and B could

only be resolved because of the low noise floor of the new scattering method approach.

State A forms within the first time point of our measurement at 1.77 µs, in agreement with

previous reports of FMN-cysteinyl adduct formation23. We assign state B to a previously

unrecognized intermediate state, which occurs subsequent to Cys adduct formation and

prior to large changes in the Jɑ helix. Interestingly, intermediate states in Jɑ unfolding have

been previously proposed through a long MD simulation24, but not clearly observed

experimentally.

Focusing on state C and to assess the extent of Jɑ unfolding, we refined structural models

predicted by AlphaFold25, where a large variability was obtained through sampling with

dropout enabled inference (20000 structures predicted)26 and a number of glycine mutations

in the Jɑ helix. We then determined best fits against the predicted structures by comparison

of the root-mean-square of residuals (R2) between theoretical and experimental difference

scattering curves (Figure 2d). Since we compare the curves on absolute scales, this

selection is also based on appropriate computed activation factors of the structural pairs

(further described in Supplementary Information, the boxed region in Figure 2c includes

6032 structures). All of the selected structures show unfolded Jɑ helices (subset shown in

Figure 2f), with an increase of Rg by 5-7Å yielding the best fits (Figure 2e). Interestingly, an

inspection of the best-fitting models shows that the residues directly preceding the Jɑ

segment, which form a loop segment in the dark, form an ordered helical domain

(Supplementary Figure 7). Finally, we find that the N-terminal A’ɑ helix is unfolded in most

structures. Our data establishes that (i) the Jɑ helix unfolds in a two-step mechanism within

300 µs, (ii) that it completely unfolds, and (iii) that additional structural changes accompany

this process. This concludes a long series of investigations into Jɑ unfolding14–19,24, and

demonstrates the promising capability of this new time-resolved X-ray scattering method.

Our new implementation of TR-WAXS realizes the unused potential of MHz XFELs to

provide unique structural information about transient states on the important microsecond

timescale. The additional timing information is gained with only minor adjustments of existing

XFEL acquisition schemes and is highly compatible with other methods that use short X-ray

pulses, e.g. serial crystallography1–3 or X-ray emission spectroscopy27. The method also

exploits the high average X-ray flux at the EuXFEL resulting in exceptionally low noise

levels. This enabled the identification of a new transient state in Jɑ unfolding, opening the

door for investigating reaction dynamics with dilute samples of proteins, peptides, RNA or
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DNA, especially when combined with ongoing development of ultrastable liquid jet sample

injection technology28. It also permits detection of difference scattering signals to very high

scattering angles (q > 1.5 Å-1, Figure 1c), suggesting that time-resolved and high-resolution

structural information can be obtained in crystallography29–31 or single-particle diffraction

experiments32. Overall, the presented method accelerates knowledge gain for dynamic

enzymatic and chemical mechanisms.
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Figures

Figure 1. Microsecond TR-WAXS facilitating the MHz repetition rate at the EuXFEL. a.
Schematic depiction of the X-ray and optical laser path, GDVN liquid jet, and recorded scattering with

the AGIPD detector (not drawn to scale). b. Pulse train structure and laser excitation scheme used to
obtain microsecond time-resolution. The 10 Hz trains comprise 175 pulses at 564 kHz (1.77 µs

interval). The blue arrow depicts the timing of optical excitation of every other pulse train. c.

TR-WAXS data of AsLOV2. The momentum transfer was defined as , with 2θ and λ as𝑞 = 4π sin θ/λ
the scattering angle and the X-ray wavelength, respectively. The data was normalized in the q-range

1.6 Å⁻¹ > q > 1.4 Å⁻¹, and scaled for better visualization as indicated in the panel.



Figure 2. TR-WAXS yields a new intermediate state and the structure of the Jɑ unfolded state
in a LOV domain protein. a. The time evolution of constituent states and b. their spectral

components derived from kinetic decomposition of TR-WAXS data. c. Structural modeling results

generated using our adapted AlphaFold method. R² is used as an indicator of a good fit between

experimental and theoretical difference signals. Darker blue shades correspond to increasing

numbers of mutations in the Jɑ helix. Structures with mutations in the N-terminal helix are also

included. The best models were selected by choosing those that have both a photoactivation yield of

15 ± 5% (as derived in supplementary Figure 6) and R² > 0.9, resulting in 6032 candidate models

(black box). d. The theoretical difference scattering of the best fits (gray) and the scaled experimental

scattering profile of state C (blue) are shown. e. R² of the top candidate structures versus change in

radius of gyration (ΔRg). f. The new structural dynamics results are shown in the canonical

photoactivation mechanism of AsLOV2. This work finds that Jɑ unfolding occurs in a biphasic manner



within 300 µs. The structure of the unfolded state C is depicted as a subset of 50 selected from the

best fits.
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