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According to conventional wisdom, a system placed in an environment with a different tempera-
ture tends to relax to the temperature of the latter, mediated by the flows of heat and/or matter that
are set solely by the temperature difference. It is becoming clear, however, that thermal relaxation
is much more intricate when temperature changes push the system far from thermodynamic equilib-
rium. Interestingly, under such conditions heating was predicted to be faster than cooling, which we
experimentally confirm using an optically trapped colloidal particle. More strikingly, we show with
both experiments and theory that between any pair of temperatures, heating is not only faster than
cooling but the respective processes in fact evolve along fundamentally distinct pathways, which we
explain with a new theoretical framework we coin “thermal kinematics”.

Introduction The basic laws of thermodynamics
dictate that any system in contact with an environment
eventually relaxes to the temperature of its surroundings
as a result of irreversible flows that drive the system to
thermodynamic equilibrium. If the difference between
the initial temperature of the system and that of the sur-
roundings is small, i.e. the system is initially “close to
equilibrium” [1], the relaxation is typically assumed to
evolve quasi-statically through local equilibrium states
— an assumption that is justifiable only a posteriori
[1, 2]. However, if the temperature contrast is such that
it pushes the system far from equilibrium, the assump-
tion breaks down and the relaxation path is no longer
unique, but depends strongly on the initial condition.
This gives rise to counterintuitive phenomena, such as
anomalous relaxation (also known as the Mpemba effect)
[3–9] where, a system reaches equilibrium faster upon a
stronger temperature quench, and the so-called Kovacs
memory effect [10–14] which features a non-monotonic
evolution towards equilibrium.

Intriguingly, thermal relaxation was recently pre-
dicted to depend also on the sign of the temperature
change. Namely, considering two thermodynamically
equidistant (TE) temperatures — one higher and the
other lower than an intermediate one selected such that

the initial free energy difference with the equilibrium
state is the same — heating from the colder tempera-
ture was predicted to be faster than cooling from the
hotter one [15, 16]. This prediction challenges our under-
standing of non-equilibrium thermodynamics as it com-
pares reciprocal relaxation processes elusive to classical
thermodynamics. The initially hotter system must dis-
sipate into the environment an excess of both, energy
and entropy, whereas in the colder system energy and
entropy must increase [15, 17]. Moreover, the compari-
son of heating and cooling provokes an even more fun-
damental question, namely that of reciprocal relaxation
processes between two fixed temperatures. According to
the “local equilibrium” paradigm [1] the system relaxes
quasi-statically and thus traces the same path along re-
ciprocal processes. We show, however, that this is not
the case: heating and cooling are inherently asymmetric
and evolve along distinct pathways.

In this work, we use colloidal particles in
temperature-modulated optical traps to interrogate re-
laxation kinetics upon temperature quenches (see Fig. 1),
and unveil three fundamental asymmetries between heat-
ing and cooling. We experimentally confirm the predic-
tion that heating is faster than cooling in three com-
plementary situations, precisely (i) that heating from a
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FIG. 1. Setup for probing the heating-cooling asymmetry. a. Schematic representation of the experiment. A charged
dielectric microparticle dispersed in water is confined in a parabolic trap generated by a tightly focused infrared laser. Its
effective temperature is controlled by an electric field that shakes the particle, mimicking a thermal bath at a higher temper-
ature than the water. An arbitrary signal generator feeds a noisy signal with a Gaussian-white spectrum into a pair of gold
microelectrodes immersed in the liquid, thus producing the required electric field. Therefore, the particle exhibits Brownian
motion inside the trap, featuring a Gaussian distribution whose variance is determined by the effective temperature. b. In
experiments, we track the evolution of the position distribution upon quenches of the effective thermal bath during heating
(red arrows) and cooling (blue arrows). c. Schematic representation of the respective protocols: in the forward protocol, the
system is initially prepared at equilibrium with the thermal bath with a temperature higher (Th) or lower (Tc) than the target
(Tw) temperature. Th and Tc are chosen to be thermodyncamically equidistant from Tw with Th > Tw > Tc. During the
backward protocol the system relaxes at the respective thermodyncamically equidistant temperatures Th and Tc, starting from
a common initial condition that is the equilibrium at Tw. In a third situation, only two temperatures are compared, considering
the evolution of the system upon heating and cooling between them. In b and c solid and dashed arrows stand for the forward
and backward process, respectively, and thick lines indicate faster evolution than thin ones.

colder temperature towards an intermediate target tem-
perature is faster than cooling from the corresponding
TE hotter temperature [15]. Unexpectedly, we also show
(ii) that the reverse process, i.e. heating from the in-
termediate temperature to a hotter temperature is faster
than cooling to the corresponding TE colder tempera-
ture. Most surprisingly, we show (iii) that between a
fixed pair of temperatures, heating is faster than the re-
ciprocal cooling. In all cases, we provide mathematical
proofs that establish these asymmetries as a general fea-
ture of systems with (at least locally) quadratic energy
landscapes.

A key result is that the production of entropy within
the system during heating is more efficient than heat dis-
sipation during cooling. Asymmetries (ii) and (iii) fur-
ther imply that the microscopic relaxation paths during
heating and cooling are distinct. Moreover, whereas a
system prepared at TE temperatures is by construction
equally far from equilibrium in terms of free energy, we
show that the colder system is in fact statistically far-
ther from equilibrium and yet heating from said colder

temperature is faster. Developing a new framework we
coin “thermal kinematics” we explain the asymmetry by
means of the propagation in the space of probability dis-
tributions, which is intrinsically faster during heating.

Heating and cooling at thermodynamically
equidistant conditions

Thermal relaxation kinetics beyond the “local equi-
librium” regime can be quantified within the framework
of Stochastic Thermodynamics [18–20] which requires the
knowledge of statistics of all slow degrees of freedom. In
the present work, where we use a colloidal particle with
a diameter of 1 µm in a tightly focused laser (see Fig. 1),
the overdamped regime ensures that only the position
has to be analyzed [21–23]. Due to the symmetry of
the tweezers setup, it suffices to follow a single coordi-
nate of the particle as a function of time which we de-
note by xt. We consider two different initial conditions.
By the nature of the setup (see Fig. 1) xt is initially in
equilibrium in the optical potential U(x) at either the
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“hot”, Th, or “cold”, Tc, temperature, respectively, with
a probability density P jeq(x) = e(Fj−U(x))/kBTj where

Fj ≡ −kBTj ln
∫∞
−∞ e−U(x)/kBTjdx is the equilibrium free

energy at temperature Tj . In the following, equilib-
rium probability densities are denoted by P jeq(x), where
j = h,w, c refers to the bath temperature Tj . Observ-
ables with both, subscript and superscript i, f = h,w, c,

for example Afi , denote transient observables where the
subscript refers to the initial and the superscript to the
target state. The state of the system at any time is fully

specified by, P fi (x, t), the probability density of the par-
ticle’s position at time t.

We first focus on the forward protocol where the
relaxation occurs at the “warm” temperature Tw and
i = h, c. The dynamics is ergodic and therefore Pwi (x, t)
relaxes towards Pweq(x). We use 〈. . .〉wi to denote aver-
ages over Pwi (x, t) and quantify the instantaneous dis-
placement from the equilibrium distribution Pweq(x) by
means of the generalized excess free energy given by
[15, 24, 25]Dwi (t) = 〈U(x)〉wi −kBTw〈lnPwi (x, t)〉wi −Fw =
kBTwD[Pwi (x, t)||Pweq(x)] for i = h, c, where D[P ||Q] =∫
P ln(P/Q)dx is the relative entropy between the proba-

bility distributions P and Q. Temperatures Th and Tc are
said to be TE from Tw when the initial excess free ener-
gies are equal, i.e., Dwh (0) = Dwc (0) [15]. The unexpected
prediction was made in Ref. [15] that Dwc (t) < Dwh (t) at
all times t > 0. That is, the system heats up to the tem-
perature of its surroundings faster than it cools down.
Albeit an asymmetric relaxation is counter-intuitive, our
experiments quantitatively corroborate this prediction to
be true, see Fig. 2.

What may be even more surprising, heating also
turns out to be faster along the reversed, backward
protocol. That is, we prepare the system to be in
equilibrium at the “warm” temperature Tw and track
the relaxations at Th and Tc, respectively. Likewise,
we quantify the kinetics via the relative entropy
Diw(t) ≡ kBTwD[P iw(x, t)||Pweq(x)], such that Dhw(t) and
Dcw(t) evolve from zero and asymptotically converge to

Dh/cw (∞) = Dwh/c(0). Although Diw(t) sensibly quantifies

the departure from Pweq(x), it is strictly speaking not an
excess free energy, in contrast to Dwi (t) defined above,
because Tw and Pweq(x) no longer refer to the target

equilibrium. We observe in Fig. 2 that Dhw(t) > Dcw(t)
for all times t > 0, i.e. the system heats up to the new
equilibrium at Th faster than it cools back to Tc. This
observation is remarkable as it shows that heating is
inherently faster than cooling at TE conditions.

To confirm these observations theoretically, we as-
sume that the particle’s dynamics evolve in a parabolic
potential with stiffness κ, U(x) = κx2/2, according to the
overdamped Langevin equation dxt = −(κ/γ)xtdt + dξit
with friction constant γ given by the Stokes’ law γ =

6πrη where η is the viscosity of water. The thermal noise
dξit, where i = h,w, c denotes the temperature of the
reservoir, vanishes on average and obeys the Fluctuation-
Dissipation Theorem 〈dξitdξit′〉 = 2(kBTi/γ)δ(t− t′)dtdt′.
Under these assumptions we determine TE temperatures
Th and Tc(Th), i.e., we calculate Tc after we arbitrarily

set Th, (see Eq. (S6) in the SM) and Dw/ii/w(t) reads

Dw/ii/w(t) =
kBTw

2
[Λ
w/i
i/w(t)− 1− ln Λ

w/i
i/w(t)], (1)

where Λwi (t) = 1 + (Ti/Tw − 1)e−2(κ/γ)t and Λiw(t) =
Ti/Tw + (1 − Ti/Tw)e−2(κ/γ)t . We consider Dwi (t) dur-
ing the forward and Diw(t) during the backward proto-

col. According to Eq. (1), by plotting Dw/ii/w(t)/kBTw as

a function of ρ = Λ
w/i
i/w(t) all data should collapse onto

the master curve f(ρ) = (ρ − 1 − ln ρ)/2, which is in-
deed what we observe in Fig. 2. Having established the
validity of the model, we prove (see Theorem 1 in SM)
that our observations hold for all TE temperatures and
for any κ and γ, i.e.

Dwc (t) < Dwh (t) and Dhw(t) > Dcw(t), for all 0 < t <∞.
(2)

Our observations in Fig. 2 and the inequalities (2)
establish rigorously that at TE conditions heating is
faster than cooling.

Notwithstanding, these results are still unsat-
isfactory for two reasons. First, Diw(t), unlike
Dwi (t), lacks a consistent thermodynamic interpreta-
tion and, in particular, is not an excess free en-
ergy. Second, neither the relative entropy D[P ||Q]

nor
√
D[P ||Q] are a true metric; they are not sym-

metric, D[P ||Q] 6= D[Q||P ], and do not satisfy trian-
gle inequalities. The latter in particular implies that
while a Pythagorean theorem holds (see [26]; see SM
for an experimental validation), D[P ieq(x)||Pweq(x)] ≥
D[P ieq(x)||P iw(x, t)] +D[P iw(x, t)||Pweq(x)], where we used

P iw(x, 0) = P ieq(x), the triangle inequality does not, i.e.,

in general
√
D[P ieq(x)||Pweq(x)] 6≤

√
D[P ieq(x)||P iw(x, t)]+√

D[P iw(x, t)||Pweq(x)]. As a result, Dw/ii/w(t) does not mea-

sure “distance” from equilibrium and ∂tDw/ii/w(t) is there-

fore not a “velocity”, which seems to preclude a kinematic
description of relaxation. In the following sections, we
show that combining Stochastic Thermodynamics with
Information Geometry [27] makes it possible to formu-
late a thermal kinematics.

Towards thermal kinematics Immense progress
has been made in recent years in understanding non-
equilibrium systems. The discovery of thermodynamic
uncertainty relations [28–31], and “speed limits” [26, 27,
32, 33] revealed that the entropy production rate, which
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FIG. 2. Experimental evolution of the generalized excess free energy during heating and cooling at thermo-
dynamically equidistant conditions. Panels a and c correspond to the forward protocol and b and d to the backward
counterpart. Thick, red arrows stand for heating while blue, thin arrows represent cooling. a., b. Time evolution of the
generalized excess free energy for a characteristic time τc = γ/κ = 0.1844(3) ms, Tc/Tw = 0.11(1), Th/Tw = 3.56(1). Red
circles stand for heating and blue squares stand for cooling. Solid lines correspond to the theoretical predictions without fitting
parameters. Insets represent the initial value of the relative entropy Dw

i (0)/kBTw (y-axis) as a function of the temperature
(x-axis) on the logarithmic scale. The arrows represent the evolution direction along the master curve f(ρ) = (ρ− 1− ln ρ)/2.
The confidence regions have been estimated by quadratic uncertainty propagation from the standard deviation of the experi-

mental histograms. c., d. Generalized excess free energy Dw/i

i/w(t)/kBTw as a function of Λ
w/i

i/w(t), along the master curve f(ρ),

for several different TE conditions. The corresponding time series are included in the Supplemental Material (Fig. S5).

quantifies irreversible local flows in the system, univer-
sally bounds fluctuations and the rate of change, respec-
tively, in a non-equilibrium system. Closely related is the
so-called Fisher Information known from Information Ge-
ometry, which quantifies how local flows change in time
and allows for defining a statistical distance [27, 34, 35].

In our context of thermal relaxation, an infinitesimal
statistical line element may be defined as follows. Since

D[P fi (x, t + dt)||P fi (x, t)] = Ifi (t)dt2 + O(dt3) (see SM,
Eq. (S16)), where we introduced the Fisher information

Ifi (t) ≡ 〈(∂t lnP fi (x, t))2〉fi , we can define the line ele-

ment as dl ≡
√
D[P fi (x, t+ dt)||P fi (x, t)] =

√
Ifi (t)dt

and thus vfi (t) ≡
√
Ifi (t) is the instantaneous statisti-

cal velocity of the system [27] relaxing from P ieq(x) at

temperature Tf towards P feq(x). The statistical length

traced by P fi (x, τ) until time t is Lfi (t) =
∫ t
0
vfi (τ)dτ

and the distance between initial and final states is thus
given by Lfi (∞) and does not depend on the direction,
i.e. Lba(∞) = Lab (∞), for two different temperatures Ta
and Tb. To establish a kinematic basis for quantifying
thermal relaxation kinetics we define the degree of com-

pletion ϕ
w/i
i/w(t) ≡ Lw/ii/w(t)/Lwi (∞), which increases mono-

tonically between 0 and 1.
Assuming that the system evolves according to over-

damped Langevin dynamics in a parabolic potential, we
find (see Sec. A.5 in SM) Lwi (∞) = | ln(Ti/Tw)|/

√
2 and

ϕ
w/i
i/w(t) = 1−

ln(1 + (Ti/w/Tw/i − 1)e−2(κ/γ)t)

ln(Ti/w/Tw/i)
. (3)
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FIG. 3. Thermal kinematics of heating and cooling processes at thermodynamically equidistant conditions.
All data corresponds to the series shown in Fig. 2. As in previous figures, red arrows stand for heating while blue ones
represent cooling, solid and dashed arrows refer to forward and backward protocol, respectively, and thicker lines indicate a
faster evolution than thin ones. a. Initial value of the relative entropy Dw

i (0)/kBTw as a function of the temperature. b.
Total traversed statistical distance Lw

i (∞) = Li
w(∞) = L(∞) as a function of the temperature. c-f Temporal evolution of the

instantaneous statistical velocity vwi (t) (c and e) and the degree of completion ϕw
i (t) (d and f) during the forward (c and d) and

backward (e and f) protocol. Red circles stand for heating while blue squares correspond to cooling. Solid lines are theoretical
predictions without fitting parameters. Confidence regions have been estimated by quadratic uncertainty propagation from the
standard deviation of the experimental histograms.

Moreover, we prove (see Theorem 2 in SM) for any pair
of TE temperatures Th, Tc that Lwc (∞) > Lwh (∞) and
yet

ϕwc (t) > ϕwh (t) and ϕhw(t) > ϕcw(t) for all 0 < t <∞.
(4)

That is, the colder system is statistically farther from
equilibrium than the hotter system, but nevertheless,
heating is faster than cooling. On the one hand, Eq. (4)
confirms the asymmetry (2) from a kinematic point of
view. On the other hand, it reveals something more
striking; during heating, the system traces a longer path
in the space of probability distributions but it does so

faster. The reason lies in the propagation speed v
i/w
w/i(t)

at short times that is intrinsically larger during heating
than during cooling. This speed-up is due to the entropy
production in the system during heating being more effi-
cient than heat flow from the system to the environment
during cooling (see also [15]). These predictions are fully
confirmed by experiments (see Fig. 3). The results show
that an initial overshoot in vwc (t) and vhw(t) ensures that
under TE conditions heating is, in both protocols, at all

times faster than cooling according to the inequalities
(4). Since both processes relax to the same equilibrium,
vwc (t) and vhw(t) eventually must cross.

Heating between any pair of temperatures is
faster than cooling We now take our thermal kinemat-
ics approach one step further and consider two arbitrary
fixed temperatures T1 < T2 and observe heating, i.e re-
laxation at T2 in a temperature quench from an equilib-
rium prepared at T1, and the reverse cooling, i.e. relax-
ation at T1 in a temperature quench from the equilibrium
at T2. By construction, the distance between initial and
final states along the reciprocal processes is the same,
L1
2(∞) = L2

1(∞). Nevertheless, according to our model,
in particular Eqs. (3), we have for any T1 < T2 (see The-
orem 3 in SM) that

ϕ2
1(t) > ϕ1

2(t) for all 0 < t <∞. (5)

That is, between any pair of temperatures heating is
faster than cooling, which is a much stronger statement.
Notice that it was not possible to make such a state-
ment based on the generalized excess free energy, since in
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FIG. 4. Thermal kinematics of heating and cooling
between any pair of temperatures. The data shown cor-
responds to T1 = 302(3) K and T2 = 2753(7) K, and a char-
acteristic time τc = γ/κ = 0.1844(3) ms. a. Instantaneous
statistical velocity v(t) as a function of time. b. Degree of
completion ϕ(t) as a function of time. Red circles stand for
heating, while blue squares correspond to cooling. Solid lines
are theoretical predictions without fitting parameters. The
confidence regions have been estimated by quadratic uncer-
tainty propagation from the standard deviation of the exper-
imental histograms.

this case, the description of the backward process lacked
physical consistency. This result highlights that heating
and cooling are inherently asymmetric processes and that
this is neither limited to the TE setting nor to strong
quenches. The asymmetry (5) is fully corroborated by
experiments (see Fig. 4). As before, it emerges due to
an initial overshoot in v21(t). However, in this case, the
difference in velocities implies that the pathway taken
during heating is fundamentally different from the path-
way followed during the reciprocal cooling process.

Near equilibrium, heating and cooling be-
come symmetric Finally, we show that for quenches
near equilibrium heating and cooling are indeed almost
symmetric, in agreement with linear non-equilibrium
thermodynamics [1]. First, for T+ = (1 + ε)Tw with
0 < ε � 1, we find that T−(T+) = (1 − ε + O(ε2))Tw

(see Eq. (S33) in SM), i.e., near equilibrium, TE temper-
atures are approximately equidistant from the ambient
temperature Tw. Second, we find in this limit (see SM,
Corollary 4) that ϕiw(t) = ϕwi (t) = 1 − e−2(κ/γ)t + O(ε)
and

ϕcw(t) = ϕhw(t)+O(ε) and ϕwh (t) = ϕwc (t)+O(ε). (6)

That is, for near-equilibrium quenches heating and cool-
ing are approximately symmetric and the asymmetry is
thus a genuinely far-from-equilibrium phenomenon, as
claimed.

Discussion Detailed experiments on colloidal par-
ticles corroborated by analytical theory revealed a fun-
damental asymmetry in thermal relaxation upon a rapid
change of temperature; for thermodynamically equidis-
tant temperature quenches as well as between two fixed
temperatures, heating is always faster than cooling.
Moreover, the microscopic pathways followed by a system
during heating and cooling, respectively, are fundamen-
tally different. Therefore, except very near to thermody-
namic equilibrium, thermal relaxation, in general, does
not evolve quasistatically through quasi-equilibria even
for systems with a single energy minimum. We, therefore,
witness a breakdown of the “near equilibrium” paradigm
of classical non-equilibrium thermodynamics [1].

Namely, when the system is brought rapidly out
of equilibrium, such as upon a temperature quench, the
probability density of the system cannot follow the tem-
perature change quasi-statically and a lag develops be-
tween the instantaneous Pwi (x, t) and the new equilib-
rium Pweq(x) [25]. This lag, which here corresponds to
D[Pwi (x, t)||Pweq(x)], is nominally smaller during heating
than during cooling. This is so because for short times
heating essentially corresponds to a free expansion [15],
which is materialized as an overshoot of statistical veloc-
ity and is characterized by a smaller dissipated work. The
latter in turn bounds from above the maximal lag that
can develop [36]. Initial free expansion during heating
also explains the faster departure from the initial equilib-
rium within the backward protocol, as well as for heating
and cooling between any two fixed temperatures.

Our work further underscores that there is a fun-
damental difference between equidistant temperatures,
thermodynamically equidistant temperatures, and kine-
matically equidistant temperatures. The existence
of a zero temperature and the e−1/T -dependence of
Boltzmann-Gibbs equilibrium statistics readily imply
that raising and lowering the temperature by the same
amount pushes the system differently far from equilib-
rium. However, even when temperatures are chosen to
be thermodynamically equidistant, the colder system is
kinematically farther from equilibrium than the hotter
one, and yet it reaches equilibrium faster.

Thermal relaxation, therefore, seems to be much
more complex than originally thought and our results
only scratch at the surface. Relaxation in systems with
multiple energy minima [3, 8, 15, 16], time-dependent
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potentials [22, 23, 37–40], driven relaxation processes
[41, 42], and in the presence of time-irreversible, detailed-
balance violating dynamics [31, 43–45] still remains
poorly understood, and calls for a systematic analysis
through the lens of thermal kinematics.
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[42] D. Guéry-Odelin, C. Jarzynski, C. A. Plata, A. Prados,
and E. Trizac, Driving rapidly while remaining in con-
trol: classical shortcuts from Hamiltonian to stochastic
dynamics, Rep. Prog. Phys. (2022).

[43] M. Polettini and M. Esposito, Nonconvexity of the rela-
tive entropy for Markov dynamics: A Fisher information
approach, Phys. Rev. E 88, 012112 (2013).
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