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1. Introduction

A virus is a small infectious agent affecting cells. It uses the infected host cell to replicate itself
and is, in some cases, the cause for the emergence of diseases. To disrupt the processes essential
for a virus survival, it helps to know how they are triggered and controlled. Viral proteins are
important for both structural composition and function of a virus, rendering their synthesis a
crucial process. Every information needed for protein synthesis is encoded in a sequence of nu-
cleotides in the virus, which takes up space and resources. However, a virus is small (by a factor
of 100 to 1000 smaller than human cells). Therefore, using as little storage space as necessary
is vital [1]. A way in which a virus reduces the storage space is a process called programmed
ribosomal frameshifting (PRF) [2]. This enables the storage of the information required for the
synthesis of two different (poly-)proteins in the same sequence. How often each of the two
proteins is produced is described by the frameshifting efficiency. In the host cell proteins are
synthesized by macromolecular complexes called ribosomes. Also the synthesis of virus pro-
teins and, thus, PRF take place on the ribosomes of the host cells.
A thermodynamic approach on how frameshifting is controlled has been published by Bock
et al. [3]. Here -1 programmed ribosomal frameshifting efficiencies have been successfully
explained by taking into account base-pair free-energy differences. Base-pairs form between
nucleotides to decode the information for protein synthesis. As frameshifting results in the
production of two different (poly-)proteins, the given synthesis information has to be decoded
differently for each protein. Therefore, different base-pairs form. The difference in free-energy
between two base-pairs is called the base-pair free-energy difference. To determine the free-
energy differences, Bayes’ theorem was applied. In this previously published study, the model
has been tested on 85 sequence variants (64 sequences in vitro, 21 sequences in vivo) of the
dnaX frameshifting element. As dnaX is part of the Escherichia coli mRNA, the ribosomes
involved in the frameshifting process where bacterial ribosomes.
A large data set of frameshifting efficiencies was recently published by Mikl et al. [4], and
includes more than 13000 sequences from different viruses and human mRNA. This data set
enables testing the thermodynamic frameshifting model under different conditions. The new
set of frameshifting efficiencies was obtained in the in vivo environment of human cells and,
therefore, the ribosomes involved are human ribosomes. An in vivo environment is closer to
the physiological conditions of virus replication, but also more complex than an in vitro en-
vironment due to the presence of additional, and possibly interacting, elements. Thus it is of
interest to test if the model of Bock et al., mostly tested in vitro, still applies to sufficiently
predict frameshifting efficiencies in vivo [5]. Additionally, even though their cores are similar,
bacterial and human ribosomes display significant differences (for example in size). These dif-
ferences motivate to test the method for human ribosomes as well [6]. The third difference with
respect to Bock et al.’s work is the usage of mRNA sequences from severe acute respiratory
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syndrome coronavirus (SARS-CoV) to test the model.
SARS-CoV is a human coronavirus which can lead to severe symptoms similar to pneumonia.
During a SARS-CoV outbreak in 2002 about 8000 people were infected by the virus in half
a year and, of those, 800 died [7]. Furthermore, the portion of the SARS-CoV sequence sur-
rounding the site of frameshifting is very similar to that of SARS-CoV-2. The outbreak of this
variant in 2019 caused a global pandemic with over 3.5 million deaths (outbreak until march
2022)[8–10]. In SARS-CoV, frameshifting results in the production of polyproteins, which are
essential to mediate transcription and replication of the virus (pp1a, pp1ab) [11, 12]. Therefore,
understanding the mechanism of PRF in SARS-CoV might help to develop medical interven-
tions that inhibit viral replication.
In this bachelor thesis, I tested if the thermodynamic model by Bock et al. is applicable to deter-
mine and predict frameshifting efficiencies for variations in the SARS-CoV slippery sequence.
For this, base-pair free-energy differences are determined based on the data made available
by Mikl et al. [4] from measurements in an in vivo environment with human ribosomes. For
one of the sequence variants, the frameshifting efficiency is predicted based on the determined
free-energy differences.

2. Biological Background

Starting from an introduction on the relevant polynucleotide structures and the central dogma,
the following sections will then focus on ribosomal translation and frameshifting. Finally, an
overview on the SARS-CoV and its properties will be provided.

2.1. Genetic information storage and the central dogma

Genetic information in cells is stored in DNA (deoxyribonucleic acid). DNA has a double helix
structure with high stability and is made of a sequence of nucleotides (nt). A nucleotide always
consists of a five-carbon sugar bound to a phosphate group and an organic nitrogenous base
(nucleobase). According to the number of rings in their structure, the nucleobases are classified
into purines (two rings) or pyrimidines (one ring). Among the canonical nucleobases present in
DNA, adenine (A) and guanine (G) are purines, while cytosine (C) and thymine (T) are pyrim-
idines. The sugar in DNA is deoxyribose. [13]. From now on the nucleotides are labeled by
their organic base.
In order to protect the genetic information, and thus the DNA in the nucleus, the information
flow in cells follows the central dogma of molecular biology. The direction of information flow
in cells occurs from DNA to mRNA (messenger ribonucleic acid), to proteins made of chains
of amino acids. mRNA is the polynucleotide molecule where the genetic information is trans-
ferred to during transcription. mRNA molecules are single stranded nucleotide sequences. As

2



an ribunucleic acid, mRNA contains the pyrimidine uracil (U) instead of thymine [13].
Translation is the step in which an amino-acid chain is formed based on the sequence of nu-
cleotides in a mRNA molecule, and a protein is assembled [13]. For RNA-viruses the genetic
material stored in RNA, therefore, once they have infected the host cell, the central dogma has
two additional steps: the RNA replication and the reverse transcription [6] (figure 1).
In ribosomes, mRNA molecules are translated into proteins where the sequence of nucleotides
encodes the sequence of amino acids in the protein. This genetic information is generally read
in sequences of three nucleotides (codons). Each of the codons encodes a specific amino acid.
The codons are decoded by sequences of three nucleotides called anticodons. Due to the amount
of different components in the code (four different bases) 64 different codons and anticodons
are possible [13].
Like DNA and mRNA, every polynucleotide has a chemical orientation. The end containing a
phosphate or hydroxyl group at 5’ carbon of the terminal sugar is the 5’ end. The end having a
hydroxyl group at the 3’ carbon is called 3’ end. Polynucleotides are read from the 5’ to the 3’
end [13].
Polynucleotides functioning like keys to decode the sequence are called tRNAs (transfer ribonu-
cleic acids). Different tRNAs share a similar composition [14], consisting of a single strand of
RNA (70-80 nt) folded into a 3D L-shape [13]. In 2D it is visible that tRNAs have four main
arms: one of those contains the 3’ and 5’ ends, while the others are loops. The loop in the center
is called anticodon arm. It includes the anticodon sequence, which forms base pairs with the
corresponding codon in the mRNA and therefore decodes the mRNA sequence [6]. All tRNAs
contain a CCA nucleotide sequence at the 3’ end to which a specific amino acid can bind. This
arm is thus called amino acid arm [6]. The amino acids are linked to the corresponding tRNA
by aminoacyl tRNA synthetases [14]. The resulting complex is called aminoacyl-tRNA [13].
Although there are 64 possible codons, there are only 20 amino acids. As a result in most cases
different codons encode the same amino-acid [13].
If codons and anticodons match during translation, base-pair interactions are formed between
the bases in the codon of the mRNA and the bases in the anticodon of the tRNA. The most
common base-pairs are A-U and G-C, and are called Watson-Crick base pairs. The first and
second base pair of the codon anticodon bond are usually of the Watson-Crick type. For the
third base pair nonstandard pairing (Wobble base pair) is possible. Examples of Wobble pairs
are G-U or I-U, I-A and I-C, where the I stands for inosine, which is derived from adenine [13].
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Figure 1: The central dogma for a RNA-virus [6].

2.2. Translation in ribosomes

During translation the mRNA is read in order to form polypeptides, i.e. the proteins [13]. This
synthesis process takes place in the ribosome, which is a biomolecular complex made of rRNA
(ribosomal ribonucleic acid) and proteins [14] (figure 2). The ribosome consists of two sub-
units: the large ribosomal subunit (LSU) and the small ribosomal subunit (SSU). Generally the
LSU is important for the coordination of the translation process and the formation of the peptide
bond between amino acids to form a polypeptide. Decoding, i.e. the pairing between codons
and anticodons takes place in the SSU [15]. In eukaryotic cells, the LSU has a size of 60 S and
the SSU of 40 S [14]. The unit S stands for Svedberg, which gives information on the size and
is based on a sedimentation rate [13]. Furthermore, the ribosome contains three binding sites
for the tRNAs: A site, P site and E site (aminoacyl, peptidyl and exit site). Before translation
starts, the two subunits of the ribosome are separate [15].
The protein synthesis itself is subdivided into three steps: initiation, elongation and termination
[14]. During the initiation step a methionyl aminoacyl-tRNA binds to the AUG-start codon of
the mRNA and to the P site of the SSU [13, 14]. In eukaryotic cells this is controlled by eu-
karyotic initiation factors. Afterwards, the LSU binds to the complex [14].
At this stage elongation [13] begins with the help of proteins called elongation factors. The
binding of the aminoacyl-tRNA to the matching codon in the A site leads to a conformational
change of the ribosome [14]. Afterward, a peptide bond between the amino acid in the P site
and the one in the A site is formed resulting in a peptidyl-chain connected to the tRNA in the
A site and an uncharged tRNA in the P site [14]. This process is catalysed by the large subunit.
During translocation, the ribosome moves along the mRNA by three nts in 5’-3’ direction, re-
sulting in the bound tRNAs moving from P and A site to E and P site [14]. The tRNA in the E
site is then released and a new matching aminoacyl tRNA can bind to the A site.
The cycle is repeated until a stop codon is reached. Thanks to the release factors (proteins), the
ribosome recognizes this codon and terminates the protein synthesis [14].
The sequence of codons translated throughout this process from start to stop codon is the read-
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ing frame [13].

Figure 2: Schematic 2D graphic of translation in a ribosome for an AAC example codon in
the A site.

2.3. Ribosomal frameshifting

Ribosomal frameshifting is an event during translation during which the reading frame is altered
due to a shift of the tRNAs in the ribosome relative to the mRNA by a number of nt different
from 3 [2]. Spontaneous frameshifting which results in erroneous proteins, only happens with
a very low probability due to control mechanisms. In contrast, programmed frameshifting has
evolved as a mechanism to change the reading frame at a specific position with a high probabil-
ity (frameshifting efficiency) [16]. During �1 programmed frameshifting, the reading frame is
shifted by one nt towards the 5’ end of the mRNA [17].
Viruses use frameshifting to maximize the amount of information which can be stored in a se-
quence and to control the relative ratio of the two products. As they have little space available,
frameshifting is extremely beneficial to the viruses [2]. However it is crucial for the virus that
programmed frameshifting occurs with the correct probability, so that the required amount of
each protein is produced [17].
Frameshifting is regulated and promoted by specific structures in the mRNA (cis-regulatory
elements) as well as other factors (trans-acting factors). The main cis-regulatory elements are
the slippery sequence, the secondary structure of the downstream sequence and sometimes the
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upstream structure [16, 18].
The slippery sequence is a nucleotide sequence often of the structure X XXY YYZ, where X,Y,
and Z stand for any of the nucleotides. With the use of Wobble base pairs this sequence enables
base-pairing in 0 frame (before -1 programmed frameshift) as well as -1 frame (after -1 pro-
grammed frameshift) [16].
The slippage is generally enabled when the secondary structure (for example a stem-loop or
pseudoknot), located a few nt downstream of the slippery site, stalls the translation process [16,
19].
It is likely that the frameshift occurs while the tRNAs move from the A and P sites to the P and
E sites during translocation [3, 16].

2.4. Frameshifting in SARS-CoV

As previously mentioned, frameshifting is important for viruses to expand and fine-tune the
storage and expression of proteins. This also applies to SARS-CoV [9], although it is an un-
usually large RNA virus (the genetic code consists out of approximately 30000 nt [12]). In
general coronaviruses have the ability to rapidly adapt due to the unique open reading frames
(orf) toward the 3’ end of the sequences [7]. Therefore, they are slightly different from one
another. However, a similarity they share is the importance of frameshifting for the formation
of a replication/transcription complex (RTC) [9, 11].

Figure 3: Secondary structure repre-
sentation of the SARS-CoV cis-acting
factors. Figure adapted from [8].

The repilicase-transcriptase proteins are part of
polyproteins translated from the two open reading
frames orf1a (0 frame) and orf1ab (-1 frame) [9]. The
distribution of the two polyproteins is controlled by the
frameshifting efficiency, which has been shown in pre-
vious studies to be 18-40 % for WT coronavirus se-
quences [20].
This efficiency is, in turn, controlled by specific cis-
acting factors. These factors are mainly the slippery
sequence U_UUA_AAC [9] (figure 4), and a mRNA
pseudoknot consisting of three stem loops as down-
stream secondary structure (figure 3). The pseudoknot
of SARS-CoV follows a spacer region positioned af-
ter the slippery sequence [8, 20].This downstream sec-
ondary structure generates a back-pull which leads to
stalling of the translation process, and thus enables slip-
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page on the slippery sequence [9]. As an evidence of the crucial role played by frameshifting, it
has been shown that even single mutations in the range of the slippery sequence and pseudoknot
can prevent viral replication [9].

a b

Figure 4: a SARS-CoV WT slippery sequence in the 0 frame. b SARS-CoV WT slippery
sequence in the -1 frame.

3. Thermodynamic Background

3.1. Free energy on a macromolecular scale

The thermodynamic background and the equations of this section are based on Nelson et al. [21].
Free energy is defined as the quantity that is minimized when a system a is in equilibrium. De-
pending on whether the volume V or the pressure p of the system is fixed, this quantity is either
Helmholtz free energy Fa (fixed volume)

Fa = Ea � TSa, (1)

or Gibbs free energy Ga (fixed pressure)

Ga = Ea + pVa � TSa, (2)

where Sa is the entropy, Ea is the total energy, T is the temperature and Ea+pVa is the enthalpy.
On a molecular scale, the free energy is defined as

Ga = hEai � TSa, (3)

where the energy Ea is averaged for all possible states hEai =
P

j PjEj and the entropy is
Sa = �kB

P
j Pj ln(Pj).

Consider a complex macromolecular system that can occupy two possible states, indicated by
the index l 2 1, 2. If each state consists of Nl substates, the total number of substates is
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N = N1+N2. The probability for a system to be in one of the substates j follows the Boltzmann
distribution

Pj =
1

Z
e�Ej/kBT , (4)

where the normalising factor Z is the partition function

Z =
NX

j=1

e�Ej/kBT . (5)

The probability for a system a to be in state l 2 1, 2 consisting of Nl substates therefore is

Pl =
1

Z

NlX

j=1

e
�

Ej
kBT . (6)

The free energy of a system a in state l 2 1, 2 can, based on equation (3), be deducted to

Ga,l = hEail � TSa,l

=
NlX

j

Pj,lEj + kBT
NlX

j

Pj,l ln(Pj,l)

= �kBT lnZl, (7)

where Zl =
PNl

j=1
e�Ej/kBT and Pj,l is the probability for the system to be in the substate j,

when it is in state l. For a more detailed deduction see equation (54) in the appendix. Based on
(7), the free energy difference between the two states is �G = Ga,1�Ga,2 = �kBT ln(Z1/Z2).
Using equation (6) it can be shown that the ratio of probabilities equals the ratios of partition
functions P1/P2 = Z1/Z2. This results in

P1

P2

= e��G/kBT . (8)

Solving for P1 gives the probability for a system to be in state 1

P1 =
e��G/kBT

e��G/kBT + 1
. (9)

3.2. Relation between free-energy differences and frameshifting
efficiencies

The frameshifting efficiency is defined as the probability for a sequence to be translated in the
-1 reading-frame. The model proposed by Bock et al. assumes that, if the translation process
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occurs slowly enough, as in the case of stalling induced by a downstream mRNA secondary
structure element, the system can be approximated as being in equilibrium. Therefore, the free-
energy difference between the -1 and 0 frame is the only parameter determining the frameshift-
ing efficiency [3]. The free-energy difference results from different interactions between mRNA
and tRNA due to a different codon-anticodon match when the frameshifting takes place. This
assumption enables to classify this complex problem into two overall states. One state corre-
sponds to the 0 frame and the other to the �1 frame. As described in section 3.1, this results in
the following frameshifting efficiency (FS) for a given sequence:

FS =
e��G/kBT

e��G/kBT + 1
, (10)

where the difference in free energy is �G = G�1�G0. Accordingly, a negative free-energy dif-
ference results in a frameshifting efficiency above 50% [3]. The relation between the frameshift-
ing efficiency and the free-energy difference is visualised in figure 5.

Figure 5: Frameshifting efficiency as a function of the free-energy difference between 0 and
-1 frame, according to (10) for T=310.15 K.

The different interactions between mRNA and tRNA due to a different codon-anticodon match
can be further split down into different interaction between bases. It is assumed that these
tRNA-mRNA base-pair free-energy differences are additive and result in the overall free-energy
difference between 0 and -1 frame. This assumption leads to

�Gj =
mX

r=1

�Gbp,r, (11)

where m is the overall number of base-pair changes occurring in a frameshifting event with se-
quence j and �Gbp,r are the free-energy differences corresponding to specific base-pair changes
for the sequence j[3]. The base-pair free-energy difference depends on the position of the bases
in the codons and ribosome. As a result, changes between the same base pairs but at different
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positions are counted as different base-pair changes [3].

4. Bayesian statistics

In Bayesian statistics a statistical model is created based on the Bayes’ theorem to analyse ex-
perimental data. This model can be fitted to determine unknown parameters by using a Markov
Chain Monte Carlo algorithm, like the Metropolis-Algorithm [22].

4.1. Bayes’ Theorem

A conditional probability is defined as

P (Ci|T ) =
P (T \ Ci)

P (T )
, (12)

where Ci, with i 2 I , and T are two events and the probability of Ci, P (Ci|T ), depends on the
occurrence of T [23]. I is the ensemble of all possible outcomes for C. According to Bayes’
theorem this can also be written as [24]

P(Ci|T ) =
P(T |Ci) · P(Ci)P

�2I
P(T |C�) · P(C�)

, (13)

where P(T |Ci) is called the likelihood, P(Ci) is the prior, and the evidence is P(T ) [25]. Here
the evidence is defined as

P(T ) =
X

�2I

P(T |C�) · P(C�). (14)

In the Bayesian setting, the conditional probability P(Ci|T ) is called the posterior probability.
When this theorem is applied in Bayesian statistics, Ci is a parameter set and T the experimental
data. Therefore, the probability to have a set of parameters when given the experimental data
P(Ci|T ) is described [22].

4.2. The Metropolis-Algorithm

In the framework of Bayesian statistics, to determine the parameters of ones statistical model,
one samples the distribution function of the posterior and thereby obtains the parameter distri-
butions. This can be done using the Metropolis-Algorithm [22].
In a Markov chain, the probability to move from one state to another is independent of all
previous states. The Metropolis-Algorithm is a Markov chain Monte Carlo algorithm, which
generates a Markov chain that converges to a given distribution. The Metropolis-Algorithm
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compares probabilities to decide on the chain links [26].
In the beginning of the algorithm a start value C0 is given, as well as a density function f

and a symmetric proposal distribution q(Y |C). The latter describes how likely it is to change
states from C to Y without knowledge of any previous state. First, a value Y is randomly se-
lected given the proposal distribution q(Y |C0). With this value the acceptance probability ↵ is
calculated as [26]

↵(C, Y ) = min

⇢
f(Y )

f(C)
, 1

�
. (15)

Then a random value u is generated using the uniform distribution in range [0,1] [27]. The next
element of the chain Ci+1 given the previous chain element Cj is determined with [26]

Ci+1 =

(
Y, u  ↵(Ci, Y )

Ci, otherwise
. (16)

This algorithm converges, however the right choice of proposal density is crucial for efficiency
[27].

5. Frameshifting efficiencies from high-throughput
experiments

In a previous publication, Mikl et al. provided measurements related to frameshifting potentials
for more than 13 000 different mRNA sequences associated with PRF. The frameshifting poten-
tial was tested for sections of different viral and human mRNA sequences which are involved
in PRF. The experiments were run on both wild type and variants of the sequences. The mea-
surements were performed by monitoring the expression of GFP (green fluorescent protein) in
the in vivo environment of human cells. The GFP-encoding mRNA sequence was introduced
downstream of the tested sequence sections. In particular, it was positioned in the -1 frame so
that GFP would be produced only if a frameshifting event occurred. The tested sections were
162 nt long and consisted of the slippery sequence plus its immediate upstream and downstream
region. The data were collected for both wild type and variants of each sequence [4].

5.1. GFP expression measurement

The experimental method used by Mikl et al. to obtain the GFP expression percentages is fluo-
rescence activated cell sorting (FACS)[4].
FACS is a high-throughput measuring technique to sort single cells according to their fluores-
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cence [4, 28]. During a FACS experiment, droplets containing single cells pass through a laser
beam. Depending on their fluorescence intensity, the droplets are charged and subsequently
sorted into different bins by an electric field [28].
The measured fluorescence intensity is related to frameshifting because of the inclusion of a
GFP encoding sequence in the -1 reading frame of the tested sequences and because GFP emits
green fluorescence. When frameshifting occurs, the sequence encoding the GFP protein is in
frame and, hence, the protein is synthesized. A higher frameshifting efficiency results in a
higher production of GFP proteins and, thus, in a brighter fluorescence signal [4].
In the experiment performed by Mikl et al., the cells were sorted, according to their fluorescence
intensity, into 16 bins. The green fluorescence of each bin was calculated as the median of the
log2 green fluorescence intensity of all the cells sorted into the bin. If the resulting distribution
was not considered likely, this values were smoothed . For example, bins were set to 0 if their
neighbouring values were zero. The overall green fluorescence reported for a given sequence
was obtained as the weighted average of the intensities of the 16 bins [4].
The measured green fluorescence values were then scaled in such a way that the smallest ob-
served green fluorescence value of the whole data set is interpreted as 0 % GFP expression and
the largest observed value as 100 % GFP expression. As a consequence, the given percentages
of green fluorescence do not necessarily match the actual percentages of occurring PRF events
[4].

5.2. Background fluorescence measurement

The natural fluorescence of the cells introduces background noise in the measurements of the
GFP expression. Mikl et al. measured this background fluorescence by including an early
stop codon upstream of the slippery sequence, thereby preventing any expression of GFP, and
measuring the resulting green fluorescence. The background noise was measured for all of the
tested sequences. Based on these results, a threshold of 1.3 % GFP expression was introduced.
Smaller GFP expressions were attributed to background fluorescence [4].

6. Methods

6.1. Selection of GFP expression measurement points

As mentioned in section 5, the green fluorescence values used as input data for this work were
selected from the more extensive data set published by Mikl et al.[4]. In this section, the criteria
followed in the selection of the input data points are reported.
One of the reasons why not all of the measurements from Mikl et al.[4] could be used is that
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some of the reported GFP expression were calculated by the authors from multimodal fluo-
rescence distributions. Multimodal distributions indicate problems in the measurements or the
interference of other unaccounted factors in the cell, as it is not to be expected that there are
no or several possible frameshifting efficiencies to be assigned to a sequence. Hence, in this
analysis, only data points that were obtained from an unimodal distribution were considered.
In some cases where multiple data points were provided, the range of provided GFP expressions
is very wide, for example 91.36 % for the West Nile Virus. As the presence of outliers misrep-
resents the actual distribution of the measurements, a criteria to identify them was introduced
by defining the interquartile range I . Here, I is defined as the difference between the upper
quartile Q3 and the lower quartile Q1 of all GFP expressions values given for one sequence
[29]. Thus, for data points obtained from the same sequence, all values outside the interval
[Q1 � 1.5 · I,Q3 + 1.5 · I] were excluded. However, if for a sequence less than 4 data points
were provided, none of them was excluded due to the lack of data to determine reasonable quar-
tiles.
This resulted in a subset of the original database containing data points for 15 different virus
and human mRNA WT sequences, 8 sequences of HIV HXB2 variants (including the WT) and
53 sequences of SARS-CoV variants (including the WT).
For the 53 slippery sequences of SARS-CoV variants, the anticondons had to be determined in
order to later determine base-pair changes. To this end, the human tRNAs that are linked to the
each aminoacid were, as a first step, identified using the database GtRNAdb [30]. Afterwards,
the database tRNAdb 2009 [31] was used to search for the presence of any modified nts in the
anticodon of the selected tRNAs. From the resulting set of tRNAs, the anticodons involved in
frameshifting were selected based on the codons of the slippery sequence in the 0 frame. When
doing so, the most likely base-pairing possible was assumed, i.e. Watson-Crick base-pairs were
chosen over Wobble base-pairs. The codon-anticodon pairs that resulted relevant for the 53
analysed SARS-CoV slippery sequences are printed in the appendix in table 1 .
When frameshifting events take place, the 53 SARS-CoV variants result in the 40 different
base-pair changes listed in table 2. The base-pair changes are labeled as for example P3: AU
! GU (figure 6). Here, P is the site in the ribosome where the codon is located, while 3 is the
position of the base in the codon, counted along the 5’-3’ direction of the mRNA. A is the base
of the mRNA at the position P3 in the 0 frame, G is the mRNA base that occupies the same
position in -1 frame. U is the base on the tRNA at the position P3.
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Figure 6: Visualisation of the base-pair change P3: AU ! GU.

6.2. Metropolis-Algorithm sampling parameters based on
measured GFP expressions

The first goal of this project was to sample distributions for parameters, based on the proba-
bility of a parameter combination to cause the experimentally provided GFP expression mea-
surements. This was achieved by using the Metropolis-Algorithm (section 4.2) to compare the
probability of different parameter sets of generating the experimental data when introduced in
the tested model. For this, a set of experimentally determined GFP expression measurements
Tall, a set of starting values for the parameters C0, proposal distributions qk for each parameter
Ck in the set, and a density function f are given.
Since a set of parameters was to be optimised instead of only a single parameter, the parameters
were varied, as described in section 4.2, iteratively in each iteration step. Therefore, in each
iteration step, a parameter specific proposal function qk was used to propose a new value for
the parameter. Depending on the acceptance probability, the proposed value was either rejected
or accepted. Gaussian distributions were used as proposal functions. Their mean was equal
to the current value of the parameter value and their standard deviation was parameter specific
(see appendix tables 3, 5). The density function used to calculate the acceptance probability
was derived from the posterior probability P (Ci|Tall), which was calculated using the Bayes’
theorem introduced in section 4.1.
For the whole data set, Tall contains the experimental measurements of the Total amount of
green fluorescence (background noise + signal)

P(Ci|Tall) =
P(Tall|Ci) · P(Ci)

P(Tall)
. (17)

Here Ci with i 2 I is a vector of all varied parameters. I is the index-set over all varied
parameter combinations. As the parameters are continuous rather than discrete, from now on
probability densities will be considered instead of probabilities. Because P(Tall) is independent
from the parameters Ci, it is also possible to compare P(Tall|Ci) · P(Ci) of two steps in the
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algorithm instead of P(Ci|Tall).

P(Ci|Tall) / P(Tall|Ci) · P(Ci). (18)

The prior P(Ci) is defined based on the previous knowledge of the varied parameters. It is spe-
cific to the parameter set and, as a consequence, introduced when the parameter set is defined
(sections 6.4,6.5,6.6).
The likelihood P(Tall|Ci) to obtain all GFP expression measurements Tall given a parameter set
Ci, is characterized by the density function fTj(tj) described below. This function describes the
probability density for one specific sequence j to measure a GFP expression value tj .
As previously stated, the T otal fluorescence in the experimental data is a combination of
Background fluorescence B and GFP fluorescence Signal S (section 5.2). Therefore, for one
sequence j, the total fluorescence Tj can be written as Tj = B + Sj , where we can assume that
B and Sj are independent variables.
For two independent variables B, Sj the following statement on the combined probability den-
sity function is true: [24]

f(B,Sj)(b, s) = fB(b) · fSj(s). (19)

The probability density function for Tj is given by [24]

fTj(tj) =

Z

R
fB(b)fSj(tj � b) db. (20)

For both fluorescences a Gaussian distribution is assumed. The resulting integral, given the
standard deviations �B and �Sj , the mean of the background noise µB, and the mean of the GFP
signal µSj is

fTj(tj) =

Z 1

�1

1

2⇡�B�Sj

exp

✓
�(b� µb)2

2�2

B

◆
exp

 
�
(tj � b� µSj)

2

2�2

Sj

!
db. (21)

The integral is solved using the following relation, which is based on the result of a Gaussian
integral [32] and the completion of the sum in the exponent

Z 1

�1
e�ax2

+bx+c dx =

r
⇡

a
exp

✓
b2

4a
+ c

◆
. (22)
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Therefore, the probability density function for the overall fluorescence Tj of one sequence is

fTj(tj) =
1q

2⇡ · (�2

B + �2

Sj
)
exp

 
�
(tj � µB � µSj)

2

2(�2

B + �2

Sj
)

!
. (23)

All N sequences, with L(j) measured values for sequence j, are combined in Tall and have
to be included in the likelihood for a parameter set. As the measurements were performed
independently, the final likelihood is a product of the density distributions for all considered
sequences evaluated for the measured data points tj,l with j 2 {1, . . . , N}, l 2 {1, . . . , L(j)}
(24).

P(Tall|Ci) =
NY

j=1

L(j)Y

l=1

fTj,l
(tj,l) =

NY

j=1

L(j)Y

l=1

1q
2⇡ · (�2

B + �2

Sj
)
exp

 
�
(tj,l � µB � µSj)

2

2(�2

B + �2

Sj
)

!
(24)

Extremely large and small numbers for the likelihood may lead to computational instabilities,
which is why the logarithm of equation (24) was used in the calculations.

6.3. Determining mean and standard deviation of the background
noise µB and �B

As mentioned in section 5.2, early stop codon experiments provided, for each sequence, mea-
surements of the background fluorescence. The distribution fB of all of these measurements
was obtained by plotting them in a histogram. This distribution, for the most part, resembles a
Gaussian distribution. However, in addition, it has a few values that are spread out on the right-
hand side of the distribution. (section 7.1). As the spread-out values were too few to draw any
conclusion on their contribution to the distribution of the background signal, values higher than
99 % of the measured GFP expressions were cut off. The mean µB and the standard deviation
�B of the Gaussian function fitting the remaining data were, then, calculated.

6.4. Determining the standard deviation of the GFP signal �Sj

As shown in equation 24, the likelihood depends on the standard deviation of the GFP signal
�Sj . Deviations might be caused by coincidental frameshifting events, a wrongly constructed
sequence or as a consequence of the measurement technique. However, from the database,
it was not possible to determine �Sj for all the considered sequences, as, for some of them,
not enough individual measurements were gathered to determine a standard deviation. As a
consequence, �Sj had to be considered in the Metropolis-algorithm either as an independent
parameter, or as a function of the GFP signal mean µSj . In order to decide how to proceed, I
tested if and how the standard deviation in the GFP signal �Sj was dependent on the mean of the
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% GFP µSj . For this purpose, a subset containing only WT sequences of different viruses and
human mRNA was analysed. The reason for choosing this subset is that only for WT sequences
enough measurements (8 or more) were reported to estimate the standard deviations. For every
sequence j, the set of measured data points is tj.
As a first step, the Bayesian algorithm introduced in section 6.2 was applied on data sets be-
longing to each WT sequence separately to maximize the probability P(tj|�Sj , µSj)·P(�Sj , µSj)

and obtain, for each sequence j, distributions of the parameters �Sj and µSj . The likelihood for
each sequence j, P(tj|�Sj , µSj), was defined by equation (24) as

P(tj|�Sj , µSj) =
L(j)Y

l=1

1q
2⇡ · (�2

B + �2

Sj
)
exp

 
�
(tj,l � µB � µSj)

2

2(�2

B + �2

Sj
)

!
. (25)

�B and µB were replaced by the values computed in section 6.3. The prior P(�Sj , µSj) was
chosen to prevent negative values for standard deviations or expression percentages as

P (�Sj , µSj) =

(
0, �Sj < 0% or µSj < 0%

1, otherwise
. (26)

The starting parameters C0 and the standard deviations of the proposal distributions are dis-
played in table 3. For each WT sequence 100000 iteration steps were executed. The algorithm
was run twice to check for convergence and the parameters converged in less than 50000 steps.
The mean and the standard deviation of �Sj and µSj were calculated from the last 50000 steps.
Noticeably, the obtained values for �Sj and µSj were correlated, showing a trend of increased
�Sj with increased µSj . From here on, as an approximation, a linear relation between the two
parameters is assumed (section 7.2):

�Sj = m� · µSj . (27)

A value for m� was first determined, as a reference for section 6.5, with an orthogonal distance
regression based on the signal deviations and means for the WT-sequences. This was done
with the python package scipy.odr. However, when running the Metropolis-algorithm over the
complete data set, m� was introduced as a parameter to obtain the most likely distribution of its
values (see section 6.6).
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6.5. The relation between the measured GFP expression and the
frameshifting efficiency

Based on the data provided by Mikl et al. [4] on the GFP expression measurement technique,
it is not clear how the GFP expressions are related to the frameshifting efficiency. One of the
uncertainties stems from the fact that the GFP expression percentages were determined based
on the log2 of the measured green fluorescence. Additionally, the provided percentages of GFP
expression were scaled by the maximal and minimal fluorescence intensities measured in the
experiments (section 5). This does not necessarily mean that a GFP expression percentage of
100% corresponds to a frameshifting efficiency of 1. Furthermore, the measurements were per-
formed in vivo and previous research has shown differences between frameshifting efficiencies
in vivo and in vitro [5]. Based on the provided data, it is not possible to distinguish the contribu-
tion of each one of these factors to the total difference between measured GFP expressions and
frameshifting efficiencies. As a consequence, I made the approximation that all factors result
in the same relation between GFP expression and frameshifting efficiency. All factors were,
therefore, summarised in one relation.
To determine the nature of the relation and its parameters, the GFP expression percentages re-
ported by Mikl et al. were compared to other published in vitro measured values of programmed
ribosomal frameshifting efficiency FS. This was done for eight variants of the HIV HXB2 WT
sequence [33–35] (table 4). For every sequence j the set of measured data points is tj.
To enable comparison, the mean GFP signal µSj was determined, for each sequence, based on
the data by Mikl et al. using the algorithm introduced in section 6.2. Not for all sequences more
than one measurement point of GFP expression was provided, therefore, only one parameter
could be varied. As a consequence �Sj is not varied, but calculated with equation (27) with
the slope m� = 0.24 given by the orthogonal distance regression from section 7.2. Therefore,
the only parameter that is varied is µSj , starting from an initial value of 2 % and using a pro-
posal function with a standard deviation of 0.7 %. For each selected sequence j the following
likelihood was used:

P(tj|µSj) =
L(j)Y

l=1

1q
2⇡ · (�2

B + (0.16 · µSj)
2)

exp

✓
�

(tj,l � µB � µSj)
2

2(�2

B + (0.24 · µSj)
2)

◆
. (28)

�B and µB were replaced by the values computed in section 6.3. The prior for µSj is chosen to
prevent unreasonable probabilities as

P (µSj) =

(
0, µSj < 0% or µSj > 100%

1, otherwise
. (29)
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For all sequences, the mean of the GFP signal mean µSj was calculated after 100000 iteration
steps over the last 50000 steps.
As stated in the beginning of this section the nature of the relation between GFP expression
and frameshifting efficiency had to be analysed, as those do not necessarily match. Based on
the relation observed between the determined µSj and the frameshifting efficiency previously
known, a linear relation was approximated (section 7.3). Based on this the parameter me↵ is
introduced into the density function likelihood P(Tall|Ci) as

µSj = me↵ · FSj. (30)

me↵ is a parameter varied in the Metropolis-Algorithm to determine base-pair free-energy dif-
ferences (section 6.6). To enable comparison with the me↵ distribution resulting from the
Metropolis-Algorithm , me↵ was calculated also via orthogonal distance regressions with a
linear approach µSj = me↵ · FSj + be↵ . This was done with the python package scipy.odr.

6.6. Determining base-pair free-energy differences

To determine base-pair free-energy differences, the algorithm described in section 6.2 varied 50
parameters. Of those, 33 are base-pair free-energy differences
�Gbp = (�Gbp,1,�Gbp,2, ...,�Gbp,33) (parameters C0 � C32) and 15 parameters are free-
energies differences of WT sequences �GWT = (�GWT,1,�GWT,2, ...,�GWT,13) (parameters
C33�C47) (table 5). These 15 free-energy differences are not base-pair free-energy differences,
but rather the overall free-energy differences between 0 and -1 frame for the WT sequences.
They are varied not to quantify their values, but to better approximate m�. This is possible,
because there are more data points for the WT sequences, and therefore, deviations can be
determined more accurately. The two remaining parameters are m� (parameter C48) and me↵

(parameter C49).
The total data set, composed of N data points, was divided into three subsets containing NSARS,
NWT and NHIV sequences. The likelihood was derived from equation (24) and calculated as
the product of three likelihoods, each one computed over the corresponding subset. In all of
the likelihoods, the relation introduced in section 6.4 was taken into account for the standard
deviation of the GFP signal �S for a sequence j:

�Sj = m� · µSj . (31)

The first NSARS sequences were used to determine �Gbp, these are the 53 SARS-CoV se-
quences selected in section 6.1. For these sequences the set of tSARS measurement points is
provided with L(j) measurements per sequence j, where tSARSj,l

2 tSARS, j < 53, l < L(j).

19



The GFP signal µS was modeled as a function of the free-energy differences for a sequence
between 0 and -1 frame according to the thermodynamic approach in section 3.2. Additionally,
the slope parameter me↵ was included as defined in section 6.5, resulting in

µS(�G,me↵) = me↵ · e��G/kBT

e��G/kBT + 1
. (32)

The temperature was set to 310.15 K [4], while kB is the Boltzmann constant (1.38 · 10�23 J/K
[21]). The free-energy differences for the different SARS-CoV sequences can be written as
�GSARS=(�GSARS,1,�GSARS,2, ...,�GSARS,53). For each sequence j, �GSARS,j was calcu-
lated based on the sum of base-pair free-energy differences relevant for the sequence.

�GSARS,j =
mX

r=1

�Gbp,r · g(r, j) (33)

Here m = 33 is the amount of considered base-pair changes for all the sequences. The function
g(r, j) enables to only sum up free-energy differences for base-pair changes, which occur during
a frameshifting event in SARS-CoV sequence j:

g(j, r) =

(
1, base-pairr changes during PRF for sequence j
0, otherwise

(34)

The resulting part of the likelihood function for the NSARS sequences is

P(tSARS|�Gbp,m�,me↵) =
NSARSY
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A . (35)

The next NWT sequences were used in the first place to determine m� more accurately. As a
side-effect, they also contributed to the determination of 15 �GWT distributions. The sequences
are the 15 WT sequences chosen in section 6.4, which are suitable to this purpose due to their
high number of provided data points. For these sequences the set of tWT measurement points
is provided with L(j) measurements per sequence j, where tWTj,l

2 tWT, j < 15, l < L(j).
Here the GFP signal µS was also modeled according to the thermodynamic approach in section
3.2 after including the slope parameter me↵

µS(�G,me↵) = me↵ · e��G/kBT

e��G/kBT + 1
. (36)
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The temperature was set to 310.15 K [4], while kB is the Boltzmann constant (1.38 · 10�23 J/K
[21]). The free-energy differences for the different WT sequences can be written as
�GWT=(�GWT,1,�GWT,2, ...,�GWT,15). The free-energy differences for the WT sequences
are not calculated by base-pair free-energy differences, but are varied parameters. The resulting
part of the likelihood function for the NWT sequences is:

P(tWT|�GWT,m�,me↵) =
NWTY

j=1

L(j)Y

l=1

1r
2⇡ ·
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A . (37)

(38)

The last NHIV = 8 sequences are HIV sequence variants used to determine me↵ (section 6.1).
For them, the set of tHIV measurement points is provided with L(j) measurements per sequence
j, where tHIVj,l

2 tHIV, j < 8, l < L(j). For these sequences the frameshifting efficiencies
published by different authors [33–35] FSHIV = (FSHIV,1, FSHIV,2, ...FSHIV,8), were included
in the likelihood using their relation to the GFP signal µS:

µS(FS,me↵) = me↵ · FS. (39)

The resulting likelihood function for these NHIV sequences is

P(tHIV,FSHIV|m�,me↵) =
NHIVY
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(41)

Combined, this leads to the overall likelihood P(Tall|Ci)

P(Tall|Ci) = P(tSARS|�Gbp,m�,me↵) · P(tWT|�GWT,m�,me↵) · P(tHIV,FSHIV|m�,me↵)

(42)

�B and µB were replaced by the values computed in section 6.3. For all parameters, Gaussian
proposal distributions with different deviations (table 5) were used. The prior was chosen based
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on the free-energy differences determined by Bock et al. [3] in order to set a reasonable range
for the free-energy differences as

P (�Gbp,�GWT) =

(
0, min(�Gbp,�GWT) < �25 kJ

mol
or max(�Gbp,�GWT) > 25 kJ

mol

1, otherwise
.

(43)

The algorithm ran for 100000 steps and was executed twice to check for convergence. Distri-
butions of the different parameters and 95 % confidence intervals were computed over the last
50000 iteration steps.

6.7. Correlation analysis

The presence of correlated parameters gives rise to convergence issues of the Metropolis-
Hastings algorithm. As a consequence, correlations between the parameters used for the de-
termination of base-pair free-energy differences were identified with a correlation matrix. This
matrix displays the Pearson correlation coefficient r for each pair of varied parameters. r is
defined as [36]

r =

NP
i=1

zx,izy,i

N
. (44)

Here x, y are the possibly correlated parameters, N is the amount of data points and z is the
standard score. Given a mean value µ and a standard deviation �, the standard score of an
observed value x is [36]

z =
x� µ

�
. (45)

A positive r shows a linear positive correlation and a negative r a linear anti-correlation. The
closer |r| is to 1, the stronger the values are correlated/anti-correlated [36]. The correlation
matrix was generated from the last 50000 steps of the algorithm determining base-pair free-
energy differences.
Just as one needs at least as many equations as variables to solve a system of equations, one
needs enough sequences here to determine base-pair free-energy differences. Base-pair free-
energy differences that cannot be determined unambiguously for this reason were varied from
the beginning only as the sum of the correlated differences. As an example, the base-pair
changes P1: AU ! UU and P2: UA ! AA only occur for the slippery sequence (UAUAAAC)
of one of the SARS-CoV variants for which data points are available. To determine the two
individual base-pair free-energy differences based on the frameshifting efficiency where both
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change at the same time is not possible. However, the sum of the two free-energy differences
can be determined and is used as a parameter in the model.

6.8. Prediction of a frameshifting efficiency based on base-pair
free-energy differences

In order to perform cross-validation and test the predictive power of the model introduced in sec-
tion 6.6, the algorithm was run after having excluded one of the GFP expression measurements
from the input data set. The value of the excluded measurement was then predicted from the
free-energy differences estimated based on the remaining data points. The excluded data point
corresponds to the SARS-CoV mRNA variant containing the slippery sequence A_AAU_UUA.
The base-pair changes occurring when the sequence slips from the 0 frame to the -1 frame are
P3: UA ! AA and A3: AU ! UU.
In order to predict the GFP expression for this sequence, the corresponding frameshifting free-
energy difference was first calculated as the sum of the base-pair free-energy differences ob-
tained for P3: UA ! AA and A3: AU ! UU. A distribution of the frameshifting free-energy
difference was obtained by considering the last 50000 iteration steps and summing each free-
energy difference obtained for P3: UA ! AA to each free-energy difference obtained for A3:
AU ! UU . Afterwards, the GFP signal without the background fluorescence was calculated
using equation 32 for every iteration step. The mean of the background fluorescence expression
was added to this signal to compare the resulting GFP expression to the one provided by Mikl.
et al.

7. Results and Discussion

In the beginning of this section the background fluorescence signal is analysed and the depen-
dency between the mean µSj and standard deviation �Sj of the GFP signal is studied. Based on
the results of these analyses, the parameters and relations to include in the likelihood P(Tall|Ci)

are determined. The distributions of the parameters’ values obtained from the Bayesian ap-
proach, described in section 6, are then reported. In particular, section 7.4 focuses on the results
for the base-pair free-energy differences involved in the frameshifting of the SARS-CoV vari-
ants. Next, after having discussed correlation and convergence issues, the computed base-pair
free-energy differences are compared to the ones determined for dnaX variations by Bock et
al. [3]. Finally, for cross-validation, section 7.7 reports on the prediction of one GFP expression
for one of the sequence based on the base-pair free-energy differences obtained from the other
sequences in the data set.
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7.1. Determining mean and standard deviation of the background
noise µB and �B

A portion of the green fluorescence signal measured to quantify GFP expression is caused by
background fluorescence. With the data available from the early stop codon measurements, it
can be observed that the background fluorescence distribution resembles a Gaussian distribution
for % GFP< 2% (figure 7). However, it seems like there are multiple reasons for background
fluorescence, as there are also higher GFP expressions in the distribution, which do match the
Gaussian distribution. For these, there are not enough data points to asses their distribution. If
one uses all data points to calculate a mean and a standard deviation for a Gaussian approx-
imation of the distribution, the resulting distribution is quite different from the measured one
(orange curve in figure 7). This is because one would mix different reasons of background fluo-
rescence into one distribution. For a better approximation, the GFP expressions, which did not
fit the Gaussian, were cut of before calculating the mean and the standard deviation 6.3. This
results in

µB = 0.73%, (46)

�B = 0.29%. (47)

The Gaussian distribution described by µB and �B is shown in figure 7. This distribution over-
laps nicely with the actual distribution of the measured GFP expression for % GFP< 2%. How-
ever, it fails to capture background noise in the measured GFP expressions bigger than 2 %.
95% of the GFP expressions caused by background fluorescence are smaller than 1.3%. This
is in agreement the threshold determined by Mikl at al. [4].
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Figure 7: Normalised distribution of the background signal in the reported GFP expressions.
In blue: the distribution of the measurements. In orange: Gaussian approximation using all data
points. In purple: Gaussian approximation using only data points below a 99 % threshold. The
green vertical line displays the 95% threshold of the measurement points.

7.2. Determining the standard deviation of the GFP signal �Sj

As described in section 6.4, not enough data points were provided for every sequence j to deter-
mine the standard deviation of the GFP signal �Sj directly from the measurements. Therefore
�Sj needed to be estimated. This could be achieved by introducing separate µSj and �Sj param-
eters for each sequence j in the likelihood, by setting �Sj as a constant for all sequences, or by
relating the standard deviation of the GFP signal �Sj to the GFP signal mean µSj . If µSj and �Sj

are highly correlated, the relation can be expressed by a function which can then be included
in the likelihood. Additionally, an advantage of using a relation between �Sj and µSj , is that it
results in a reduction of the number of varied parameters. In order to test if a relation between
�Sj and µSj was present, both parameters were first determined for different virus and human
mRNA WT sequences using a Bayesian Metropolis-Algorithm. For each sequence the proba-
bility densities were calculated independently resulting in 15 µSj and �Sj values. An example
of the resulting parameter chains obtained from the algorithm is provided for the µSj and �Sj

corresponding to the PLRV WT sequence (figure 8).
When comparing the resulting �Sj for different WT sequences, it can be observed that higher
values of �Sj correspond to higher values of µSj . However, after having plotted �Sj vs. µSj

(figure 9), I observed that the exact relation between the two parameters is not clear. In a first
approximation, a linear dependency is the simplest relation to describe the distribution of the
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Figure 8: Results of the Metropolis-Algorithm determining µSj and �Sj for PLRV. The al-
gorithm was executed twice, the first run is visualised in blue and the second in orange. a

µSj (PLRV) convergences for 100000 iteration steps. b The histogram of µSj for PLRV over
the last 50000 iteration steps. c �Sj (PLRV) convergence for 100000 iteration steps. d The his-
togram of �Sj for PLRV over the last 50000 iteration steps. e The logarithm of the product of
likelihood and prior as function of iteration steps.
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data. I thus tested this dependency by introducing into the model a slope parameter m�

�Sj = m� · µSj . (48)

A first estimate for m� was obtained by an orthogonal distance regression (ORD). The line
resulting from the regression is shown in figure 9. The obtained m� value of 0.24 ± 0.07

was only used for the Metropolis-Algorithm analysing the relation between the measured GFP
expression and the frameshifting efficiency in the next section. In the final calculation, the
distribution of m� values that is most likely to generate the experimental data was, however,
determined by including this slope parameter in the likelihood, together with the free-energy
parameters as described in section (6.6). The value of the parameter converged as shown in
figure 10 (section 6.6). The 95 % confidence interval for m� is displayed in figure 9. The
range in which values for �Sj(µSj) should lie based on this 95 % confidence interval (grey area
in figure 9) can be compared to the sampled values of �Sj for the different WTs. One can
observe that the standard deviations of the signal are almost evenly spread below and above this
range. Additionally, the general tendency that greater GFP signal means have greater standard
deviations applies. Based on these observations, I decided, as a first approximation, to use a
linear dependency in our model as a relation between �Sj and µSj .
It is interesting to observe that slope determined by ORD, is not in the 95 % interval of the
slope parameter determined with the Metropolis-Algorithm. A possible reason for this, is that
when m� is optimized in the Metropolis-algorithm, its most likely distribution is affected by the
values assumed by the other parameters at each iteration (sections 6.4,6.6). A further difference
between the two algorithms is that, while the Metropolis-algorithm provides the distribution of
m�, and hence the confidence interval, as an output, the ORD requires to include a priori the
standard deviations for the determined WT µSj and �Sj values.
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Figure 9: �Sj and µSj values for different WT sequences. A different colour is used for each
sequence and error bars are obtained by the standard deviation of the sampled distributions. The
black line shows the result of the linear orthogonal distance regression performed to fit the data
taking into account the standard deviations on both �S and µS . In grey: the 95% confidence
interval for the slope parameter m� resulting from the the Metropolis-Algorithm determining
base-pair free-energies (section 6.6).

a b

Figure 10: The slope parameter m� is one out of 50 varied parameters of the Metropolis-
Algorithm determining base-pair free-energies (section 6.6). The algorithm was executed twice
over 100000 steps for a convergence check. The resulting runs are labeled in orange and blue.
a m� in dependence of the iteration step. b The histogram of m� over the last 50000 iteration
steps.
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7.3. The relation between the measured GFP expression and the
frameshifting efficiency

As previously stated, the GFP expression for a sequence provided by Mikl et al. is the sum
of the background fluorescence and the GFP signal for this sequence. The distribution of the
background fluorescence has already been approximated in section 7.1. The GFP signal is
caused by frameshifting events, but, as introduced in section 6.5, it is not necessarily equal to
the frameshifting efficiencies. However, as the thermodynamic model introduced in section 3.2
relates the base-pair free-energy differences to the frameshifting efficiency, it is necessary to un-
derstand how the provided GFP expressions are related to the frameshifting efficiencies. To bet-
ter understand this relation, previously published frameshifting efficiencies for HIV sequence
variations ([33], [34], [35]) were compared to GFP signals sampled based on the data provided
by Mikl et al. [4]. For this, the GFP signals µSj were sampled with a Metropolis-Algorithm
using the GFP expressions of the HIV sequences as input data and varying µSj (section 6.5).
For each sequence, the GFP signal resulting from the Metropolis-sampling is plotted against
the corresponding frameshifting efficiency obtained in vitro (figure 11). As a linear relationship
between GFP expression and frameshifting efficiency seems to be a reasonable approximation,
it was introduced in the Metropolis-algorithm (see section 6.6) as:

µSj = me↵ · FSj. (49)

The slope-parameter me↵ was varied in the algorithm together with the free-energy parameters
and m�. It was also tested, if the y-axis intercept be↵ should also be included in the model.
For this the final Metropolis-Algorithm, determining the base-pair free-energy differences, was
executed including also be↵ as varied parameter. However, be↵ was heavily correlated to the
slope parameter me↵ , which resulted in convergence problems. Additionally, including the be↵

parameter reduced the value of the likelihood to which the algorithm converged. To further
evaluate the necessity to include be↵ in the model, linear ODRs were performed and resulted in
the following relations with the in vitro efficiencies (figure 11)

Dulude et al. : µSj = (0.34± 0) · FS � (1.08± 0)%, (50)

Leger et al. : µSj = (0.22± 0.04) · FS + (0.2± 0.3)%, (51)

Biswas et al. : µSj = (0.41± 0.11) · FS + (0± 0.2)%, (52)

All papers : µSj = (0.25± 0.05) · FS + (0± 0.3)%. (53)

For the paper by Dulude et al. [33] only 2 sequences were suitable for comparison and, as a re-
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sult, no error on the ODR result could be estimated. The offsets calculated in (50)-(53) support
the choice, not to include be↵ into the model, as they are close to 0 % [33–35].
Figure 12 shows the distribution of the slope-parameter me↵ obtained with the algorithm de-
termining the base-pair free-energy differences (section 6.6). The 95 % confidence interval
resulting for this me↵ is included in figure 11. The ODR calculated when considering all the
data sets together is within the range given by the interval.

Figure 11: Comparison between the GFP signals estimated with a Metropolis-algorithm from
Mikl et al. data (in vivo) and the frameshifting efficiencies obtained in vitro for HIV sequence
variations. Different colours are used for different data sets. The black line displays the linear
relation obtained by a ODR (12). The 95 % confidence interval of me↵ calculated by varying
me↵ in the Metropolis-Algorithm determining base-pair free-energy differences (section 6.6) is
shown in grey.
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Figure 12: The slope parameter me↵ is one out of 50 varied parameters of the Metropolis-
Algorithm determining base-pair free-energies (section 6.6). The algorithm was executed twice
over 100000 steps for a convergence check. The resulting runs are labeled in orange and blue. a

me↵ in dependence of the iteration step. b The histograms of me↵ over the last 50000 iteration
steps.

7.4. Determining base-pair free-energy differences

As a result of the last three sections, base-pair free-energy differences for SARS-CoV can now
be sampled using Bayesian statistics, based on the provided GFP expressions [4].
This was done with the Metropolis-Algorithm introduced in section 6.6, where, in addition to
the 33 base-pair free-energy differences �Gbp, also me↵ , m� and 15 �GWT were varied. The
algorithm was stopped once the product of likelihood and prior was maximised. Based on the
results shown in figure 13, I considered the calculations to be converged after 50000 iteration
steps. The algorithm ran for an additional 50000 steps to sample the parameters.

Figure 13: The logarithm of the product of likelihood and prior calculated with the Metropolis-
Algorithm determining base-pair free-energy differences in dependence of the iteration step.
The two colours represent two independent runs of the algorithm.
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The resulting distributions of the parameters will be presented and discussed in this section.
The convergence of the slope parameters m� and me↵ was presented in the previous sections
7.3 and 7.2.
The 15 free-energy differences between 0 and -1 frame of WT sequences (�GWT,j) were varied
to determine m�. The distributions obtained for 12 of them resembled Gaussian distributions.
For the other three, the distributions only have a lower boundary and their upper boundary is
determined by the boundary of the prior at 25 kJ/mol (figure 20). As this convergence behavior
was observed also in the distributions of some of the base-pair free-energy differences, it will
be further explained later in this section.
For the base-pair free-energy differences (�Gbp,r) three different convergence behaviours can
be observed. Most commonly, the probability densities of some base-pair free-energy differ-
ences converge to localized densities around a certain value in the range [�25 kJ/mol,25 kJ/mol].
An example for this is the free-energy difference of the base-pair change A3: UA ! CA shown
in figures 14a,14b.
For other base-pair changes the free-energy difference distribution only had a lower boundary.
This can happen if, for the sequences in which the base-pair change occurs, the measured GFP
expressions are very small. Indeed, it can be observed that many of these GFP expressions are
below the background noise threshold assumed by Mikl et al. of 1.3%. As a consequence, the
frameshifting efficiency would be close to 0%. For such small efficiencies the slope of the the
frameshift efficiency with respect to the free-energy difference (10) is also very low. Therefore,
the range of possible free-energy differences resulting in an efficiency close to the measured
one is very large. For better visualisation note figure 5 in section 6.4. Additionally, as the
frameshifting efficiency approaches 0 %, the free-energy difference tends to infinity. This can
explain why the free-energy distribution does not have an upper boundary. An example base-
pair change, where the free-energy difference does not have an upper boundary is A3: GC!
CC. The convergence behavior is shown in figures 14c,14d.
Surprisingly some of the base-pair changes, for example P1:UA! CA (figures 14e,14f), have
only an upper boundary and no lower boundary. For all free-energy differences smaller than
0 kJ/mol the base pair would be more likely in -1 frame than in 0 frame. This is not intuitive as
the affected base-pair changes are Watson-Crick base pairs in 0 frame and non standard pairs
in -1 frame. Noticeably, these distributions still have a Gaussian shaped maxima in the range
�Gbp > 0 kJ/mol. This distribution shape is probably based on the limited amount of data
resulting in a large uncertainty. For example �Gbp(P1:UA! CA) is sampled based only on
one measurement point. This is problematic for a statistical analysis.
An overview over all estimated base-pair free-energy differences is shown in figure 15. If a bar
is labeled with two or three base-pair changes together, it means that the variation of the sum
of their base-pair free energy differences was considered in the algorithm. This was necessary
for the reason explained in section 6.7. In particular, in the sequences of the SARS-C data set
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where one of those base-pair changes took place, this change always occurred together with the
other base-pair changes included in the sum and never in combination with any other base-pair
change.
As expected, most of the probability densities for the �Gbp values have a maximum for a �Gbp

value larger than 0 kJ/mol, which means that the 0 frame is more probable. This is in agreement
with the fact that the base pairs in the 0 frame are Watson-Crick pairs.
Noticeably, the distributions of the free-energy difference for �Gbp(P3: UA ! AA), �Gbp(A3:
AU ! UU) and �Gbp(P3: AU ! UU) are among those closest to 0 kJ/mol. This labels them,
among all the converged base-pair changes, as the most likely to happen. This is surprising as,
for those changes, the -1 frame base-pairs are purine-purine or pyrimidine-pyrimidine pairs and
thus, even in wobble position, expected to be unlikely pairs. However, as the conformations that
the base pairs assume in the ribosome in these cases was not provided, no further conclusions
can be drawn.
Reasonably �Gbp (P1: UA ! AA) is higher than other free-energy differences, as non-standard
paring is less likely in the P1 position (not Wobble-position).
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Figure 14: Examples of convergence behaviors for base-pair free-energy differences deter-
mined with the Metropolis-Algorithm. The algorithm was executed twice, the first run is la-
beled in blue and the second one in orange a The base-pair free-energy difference �Gbp(A3:
UA ! CA) as a function of the iteration step. b A histogram of �Gbp(A3: UA ! CA) over
the last 50000 iteration steps. c The base-pair free-energy difference �Gbp(A3: GC! CC) as
a function of the iteration step. d A histogram of �Gbp(A3: GC! CC) over the last 50000
iteration steps. e The base-pair free-energy difference �Gbp(P1: UA ! CA) as a function of
the iteration step. f A histogram of �Gbp(P1: UA ! CA) over the last 50000 iteration steps.
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Figure 15: Probability distributions of all base-pair free-energy differences obtained from his-
tograms over the last 50000 iteration steps of the Metropolis-Algorithm. For bars labeled with
multiple base-pair changes, the sum of their base-pair free energy differences was considered
as a parameter in the likelihood.

7.5. Correlation analysis and convergence issues

In the Metropolis-Algorithm, correlation between varied parameters can generate convergence
problems and introduce limitations in the determination of some parameters (section 6.7). For
example, if two parameters are correlated, only their sum or their difference might be deter-
minable. To check for the presence of correlations, a correlation matrix showing the linear
correlation of the parameters was generated (figure 16) (section 6.7). From the matrix, several
groups of correlated parameters can be observed. Possible reasons for the correlations are pre-
sented below. An assessment that can be used in case the presence of correlation is problematic
follows.
Noticeably, the slope parameters m� and me↵ are correlated (Pearson factor |r| = 0.35 ). The
correlation of these two parameters does not markedly affect the determination of the base-pair
free-energy differences as the correlations between the �Gbp parameters and either me↵ or m�

are small (Pearson factor |r| < 0.13).
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The correlation of the WT free-energy differences is a consequence of their correlation to the
slope parameter me↵ . Given a constant GFP signal, a smaller me↵ results in larger frameshifting
efficiencies and, thus, in smaller free-energy differences. The free-energy differences for WT
sequences, which are not correlated with me↵ are the ones, which only have a lower boundary
(see section 7.4). For these WT sequences the GFP signal is very small. Therefore, if me↵

changes, the difference in the resulting frameshifting efficiency is also small FS = µS/me↵ . As
a consequence the frameshifting efficiency is still in the range of curve 10 where the slope is
small (see section 3.2). Hence, the probability density of the free-energy difference can only be
determined with a lower bound and the parameter sampling is unaffected by the slope change.
As the WT parameters are not strongly correlated with the base-pair free-energy differences, the
correlation between the WT free-energy differences is not problematic to determine base-pair
free-energy differences. Surprisingly, the same correlation observed between WT free-energy
differences and me↵ cannot be observed between the base-pair free-energy differences and me↵ .
The range of the base-pair free-energy differences is very similar to that of the WT free-energy
differences and the same reasoning could be applied to explain a correlation.
In theory, enough different combinations of base-pair changes occurred in the considered se-
quences, for all 33 base-pair free-energy differences to be clearly sampled. This means that
every base-pair change occurs either in: (a) at least one sequence where it is the only base-
pair change involved in frameshifting, or (b) at least one sequence where the other base-pair
changes can be sampled also in other sequences (either as the only base-pair changes involved
in frameshifting, or in combination with changes differ from sequence to sequence). Never-
theless, for the base-pair free-energy differences, the matrix in figure 16 clearly shows sets of
correlated parameters are present.
An example of these sets includes the following base-pair changes: P3: AU ! CU, A3: CQ
! AQ, P3: AU ! GU, P3: AU ! UU, A3: GC ! AC and A3: UA ! AA. If one has a
closer look, it stands out that the sequences necessary to determine those base-pair free-energy
differences are rarely used to determine base-pair free-energy differences that do not belong to
the set. This explains the presence of correlation in particular sets of parameters.
Now it will be explained how parameters within one set are correlated. Among the sequences
in the set mentioned above, only the base-pair changes P3: AU ! CU and A3: GC! AC occur
as in case (a). Based on the GFP expressions provided for their corresponding sequence, the
free-energy difference of these two base-pair changes can be clearly sampled. The other base-
pair free-energy differences of the set can, then, be sampled based on the GFP expression of the
sequences where they occur. According to the model in section 3.2, the total frameshifting free-
energy difference is the sum over the base-pair free-energy differences. Therefore, within the
same frameshifting event, if one base-pair free-energy difference gets smaller, the other has to
become bigger. As a result, it is reasonable that the base-pair free-energy differences involved
in the same frameshifting events are anti-correlated. Despite these correlations, the base-pair
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free-energy differences can still be sampled with clear distributions. An additional challenge for
convergence in this specific set is that the base-par changes, relevant for the SARS-CoV WT se-
quence, P3: AU ! UU and A3: CQ ! AQ, are part of this set. The GFP expressions given for
the SARS-CoV WT sequence are distributed over a very large range (11 %), even after exclud-
ing out outlier values. This makes convergence difficult to reach as the base-pair free-energy
differences involved in frameshifting for the WT SARS-CoV cannot fit all the widely-spread
data points.
In general, uncertainties and errors in the measurements contribute to the presence of conver-
gence problems. Indeed, based on the analysis of the measured values for the WT sequences,
it is known that there are outlier values. These values increased the range of measured GFP
expression for one sequence to up to 91%. Outlier values are most likely present also for se-
quences with less data points, but in this case they cannot be systematically filtered out with
interquartile ranges. When outlier values are included in the algorithm, they affect the accu-
racy of the result, or, if they do not agree with the measured values of other sequences, make
convergence more difficult.
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Figure 16: The correlation matrix for all parameters varied in the final Metropolis-algorithm
using Pearson correlation, specification of the parameters can be found in table 6.

7.6. Comparison of base-pair free-energies

The basic assumption of the model used to explain frameshifting efficiencies is that the ribo-
some is slowed down by the mRNA secondary structure, resulting in the two frames being in
equilibrium. Thus, the frameshifting efficiency depends only on the free-energy differences of
the base-pair changes within the slippery sequence between 0 and -1 frame. Based on these
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assumptions, the base-pair free-energy differences should be wild-type independent, as long as
a suitable secondary structure is present.
To test if the model is applicable for SARS-CoV, the base-pair free-energy difference distribu-
tions determined here based on Mikl et al. [4] are compared to those determined by Bock et al.
for dnaX [3]. The base-pair changes that can be used for this purpose, since they are included
both here and in the work published by Bock et al. [3], are P1: UA ! CA, P1: UA ! AA and
A1: AU ! UU. The results from this thesis and from [3] are compared in figure 17, where the
normalized distributions of the free-energy differences associated to these base-pair changes are
shown.
First, it is noticeable that the distributions determined for the SARS-CoV base-pair free-energy
differences are, by far, wider than the ones obtained for dnaX. This probably stems from the
FACS measurement technique, as the range of GFP expression values obtained by repeating the
measurements on the same sequence are also very wide, even after eliminating outlier values
(SARS WT 11%). Additionally, large standard deviations might result from the way Mikl et al.
calculated the GFP expressions based on the measured green fluorescence described in section
5.
The maximum height of the free-energy difference distribution of the base-pair change P1: UA
! CA determined for SARS-CoV is at approximately 2 kJ/mol. This lies within the 5�-interval
of the free-energy difference determined for dnaX (3.4 kJ/mol ± 0.3 kJ/mol). Additionally,
both distributions largely overlap as can be observed in figure 17a. This result does not disagree
with the assumption that the SARS-CoV sequence is in fact stalled long enough, so that the
frameshifting efficiency depends solely on the base-pair free-energy differences.
The 95 % confidence interval of free-energy difference distribution resulting from the base-pair
change P1: UA ! AA determined for dnaX, however, does not overlap with the 95 % confi-
dence interval of the distribution determined for the SARS-CoV. This suggests that either the
different environments, in vivo vs. in vitro and a different type of ribosome, result in this dif-
ference. Or the assumptions necessary to apply the model cannot be made. Therefore, for
SARS-CoV frameshifting efficiencies might not depend only on the base-pair free-energy dif-
ferences. The model needs to be adapted to further analyse the origin of the offset.
For the last base-pair change, where data is provided for both SARS-CoV and dnaX, A1: UA
! AA, the free-energy difference determined from SARS-CoV only converged with a lower
bound. The absence of an upper bound makes a comparison unfeasible. However, it is notice-
able that the lower bound is within the range of the free-energy difference distribution based on
dnaX.
Overall, not enough base-pair changes are available for a thorough comparison and it is unclear
how measurement problems and possible stray values may effect the comparison. Neverthe-
less, as the free-energy difference distributions do not overlap for all comparable base-pair
changes, the base-pair free-energy differences might not be the only relevant factors determin-
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ing frameshifting efficiencies for SARS-CoV.
A possible systematic difference in the base-pair free energy differences for dnaX and SARS-
CoV caused by the different environments (in vivo versus in vitro) was counteracted by in-
cluding me↵ in the Metropolis-Algorithm. Nonetheless the linear approximation might lack in
complexity to convert the values measured in vivo into values measured in vitro.

a b

c

Figure 17: Comparison of base-pair free-energy differences for SARS-CoV (in blue) and dnaX
(in orange). a Probability density distribution of the base-pair free-energy difference of P1: UA
! CA for SARS-CoV and dnaX. b Probability density distribution of the base-pair free-energy
difference of P1: UA ! AA for SARS-CoV and dnaX. c Probability density distribution of the
base-pair free-energy difference of A1: AU ! UU for SARS-CoV and dnaX.

7.7. Prediction of a frameshifting efficiency based on base-pair
free-energy differences

In this section, the results for two of the the determined base-pair free-energy difference distri-
butions were cross-validated. For this purpose it was tested, if base-pair free-energy differences
can predict a GFP expression for SARS-CoV with the slippery sequence A_AAU_UUA. In
order to do so, the relevant base-pair changes in this sequence, P3: UA ! AA and A3: AU
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! UU, were determined using the Metropolis-Algorithm (section 6.8) without using any data
points for the SARS-CoV sequence with the slippery site A_AAU_UUA.
The results for the free-energy differences determined with and without passing the GFP ex-
pression for the tested sequence are in similar ranges (figures 21, 15). The probability density
of the free-energy differences of the changes P3: UA ! AA and A3: AU ! UU, however, has
a smaller deviation when including GFP expressions for the slippery sequence A_AAU_UUA.
Based on the base-pair free-energy differences the GFP expression for the SARS-CoV sequence
with slippery side A_AAU_UUA is predicted (section 6.8) (figure 18).

a b

Figure 18: The predicted GFP expression for SARS-CoV with slippery site A_AAU_UUA a

The predicted GFP expression for the slippery sequence A_AAU_UUA in dependence of the
iteration step. b In blue: the probability density distribution of the predicted GFP expression
for the slippery sequence A_AAU_UUA over the last 50000 iteration steps. In orange: GFP
expression measured by Mikl et al. [4] for the same sequence.

The resulting distribution over the predicted GFP expression (figure 18b) has two peaks. The
actual measured GFP expression by Mikl et al. of 7.83 % is in the range of the peak on the left
hand side. However, this peak has a wide range of about 15 %.
To understand the second peak, the parameters used for the calculation of the GFP expression
are plotted against the number of iteration steps (figure 19). All parameters, which result in
a GFP expression greater than 20%, and therefore are part of the second peak, are marked in
orange. The second peak is, consequentially, a result of the base-pair free-energy values, which
are not in a reasonable range around the peak of the distribution of the free-energy differences.
For the slippery sequence A_AAU_UUA a GFP expression range was predictable based on
the determined base-pair free-energy differences. However, this range is wide (15 %) and does
not give information about an exact percentage. In addition, a convergence of the base-pair
free-energy differences to a Gaussian distribution is important for a prediction.
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Figure 19: a The parameter me↵ in dependence of the iteration step. b The parameter
�Gbp(P3: UA ! AA) in dependence of the iteration step. c The parameter �Gbp(A3: AU
! UU) in dependence of the iteration step. The values generating the second peak in the GFP
expression distribution for SARS-CoV with slippery sequence A_AAU_UUA are highlighted
in orange.

8. Conclusion

The goal of this bachelor thesis was to determine base-pair free-energy differences for SARS-
CoV based on frameshifting efficiencies and to check if the simple free-energy model is appli-
cable to SARS-CoV frameshifting in the human ribosome and under in-vivo conditions. To that
aim, parameters of the free-energy model and parameters to describe the experiment were ob-
tained using a Bayesian statistics approach. Based on the results, I assessed if the frameshifting
efficiencies measured for SARS-CoV in vivo can be explained only by base-pair free-energy
differences.
The free-energy model applied to the data set of frameshifting efficiencies for 53 different
SARS-CoV sequences variations resulted in localized probability distributions of the free-
energy differences for 16 out of the total 40 base-pair changes. Additionally, it was possible
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to cross-validate two of the base-pair free-energy differences. For this purpose the GFP expres-
sion of a SARS sequence variation was predicted with an accuracy of 15% based on the two
base-pair free-energy differences. The measured GFP expression of the variant lies within this
15% range. The model relies on the assumption that frameshifting in SARS-CoV occurs in
equilibrium and the frameshifting efficiencies for a sequence only depends on base-pair free-
energy differences.
Due to large uncertainties in the measured frameshifting efficiencies arising from large mea-
surement errors and few data points, it was not possible to estimate more frameshifting efficien-
cies based on the determined base-pair free-energy differences in a cross-validation manner. In
addition, for many base-pair free-energy differences only either a lower or an upper boundary
could be provided. Furthermore, the determined base-pair free-energy differences do not always
match the free-energy differences determined for the same base-pair change in dnaX sequences
by Bock et al. [3]. Reasons for not obtaining the same free-energy differences could be that as-
sumptions underlying the model are not valid, i.e. the equilibrium condition or the additivity of
base-pair free-energy differences. Further, the free energies could be affected differently by the
different chemical environments of the base pairs in the decoding centers of bacterial ribosome
(work by Bock et al. [3]) and human ribosomes (this work). The data set by Mikl et al. causes
multiple problems in the determination of the resulting base-pair free-energy differences. First
of all, the spread of GFP expressions provided for some sequences is large (SARS WT 11 %).
This explains why a GFP expression cannot be predicted more precisely. Additionally, many
of the GFP expressions lie within the range of background noise. Moreover, for the major-
ity of SARS-CoV sequences there is only one data point of GFP expression resulting in large
uncertainties. Therefore, for many base-pair changes the determined free-energy difference is
based on a very small amount of data. More data would enable to sort out outlier values as
well as limit the amount of base-pair free-energy distributions, where only one boundary can
be estimated. This can be assumed based on the difference it makes in section 7.7 to leave one
sequence out of the algorithm.
Including the slope parameters m� and me↵ in the model might have also been a problematic
choice. Both of the corresponding relations are simple models, which might lack necessary
detail. For example it is known from previous research that in vivo frameshifting efficiencies
are smaller than those measured in vitro [5]. A simple slope parameter me↵ might not capture
the real relation. Additionally, choosing a linear relation between the frameshifting efficiency
and the GFP signal requires the log2(green fluorescence) to be proportional to the frameshifting
efficiency. This is not a trivial assumption.
Another way to improve the evaluation would be, to test a more accurate approximated distri-
bution for the background noise. This approximation should than include the GFP expressions
measured, which are larger than 2 %.
Most important is to question if the model can be applied for SARS-CoV assuming frameshift-
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ing occurs in equilibrium and no other factors but the base-pair free-energy differences deter-
mine the frameshifting efficiency. Thus, it should be further analysed, if translation is suffi-
ciently stalled during the frameshifting event by the SARS-CoV pseudoknot. This can be done
by including a kinetic contribution into the model. A model like this has been published by
Bock et al. to analyse the effects of the stem-loop on the kinetics of frameshifting for dnaX [3].
If kinetics play a role, the base-pair free-energy differences determined in this work would not
be the actual free-energy differences but would include other factors.
Additionally, other research has shown that the position of the stop codon is relevant for the
frameshifting efficiency of the SARS-CoV [9] and variations of the upstream sequence also
influence the frameshifting efficiency [37]. Both qualities do not match the assumption that
the frameshifting efficiency for the SARS-CoV can be predicted purely based on the base-pair
free-energy differences.
All in all, with a limit in accuracy, a frameshifting efficiency for a variation of SARS-CoV
can be predicted based on provided efficiencies for other SARS-CoV sequence variations. For
further analysis on the role of base-pair free-energies for PRF in SARS-CoV, a more precise
and extensive data set of SARS-CoV frameshifting efficiencies is needed. It would be of great
interest to extend the model to take the role kinetics into account as well as other factors that
might contribute to frameshifting of the SARS-CoV RNA.
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A. Derivation of free energy Ga,l

Ga,l = hEail � TSa,l (54)
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B. Additional tables and figures

Table 1: Codon - anticodon pairings of the codons in 0 frame of the analysed SARS-CoV
variants read from 5’ to 3’ of the mRNA.

Codon Anticodon
AAA UUt
AAG UUC
AAU UUA
AAC UUQ
CCA GGU
CCG GGC
CCU GGA
GGA CCU
GGC CCG
GGU CCA
UUA AAU
UUC AA#
UUG AAC
CCC GGG
GGG CCC
UUU AAA
AUA UAU
UCA AGU
CAC GUG
UAC AP9
GAC CUG
AUC UAG

Table 2: Slippery sequences in SARS-CoV variants and the base-pair changes in case of a
frameshifting event.

Slippery site Base-pair changes

AAAAAAG A3: GC ! AC
AAAAAAU A3: UA ! AA
AAACCCA P3: CQ ! AQ, A3: AU ! CU
AAACCCG P3: CQ ! AQ, A3: GC ! CC
AAACCCU P3: CQ ! AQ, A3: UA ! CA
AAAGGGA P3: GC ! AC, A3: AU ! GU
AAAGGGC P3: GC ! AC, A3: CG ! GG
AAAGGGU P3: GC ! AC, A3: UA ! GA

Continued on next page
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Table 2 – continued from previous page
Slippery site Base-pair changes

AAAUUUA P3: UA ! AA, A3: AU ! UU
AAAUUUC P3: UA ! AA, A3: C# ! U#
AAAUUUG P3: UA ! AA, A3: GC ! UC
CCCAAAA P3: AU ! CU
CCCAAAC P3: AU ! CU, A3: CQ ! AQ
CCCAAAG P3: AU ! CU, A3: GC ! AC
CCCCCCA A3: AU ! CU
CCCCCCG A3: GC ! CC
CCCCCCU A3: UA ! CA
CCCGGGA P3: GC ! CC, A3: AU ! GU
CCCGGGG P3: GC ! CC
CCCGGGU P3: GC ! CC, A3: UA ! GA
CCCUUUA P3: UA ! CA, A3: AU ! UU
CCCUUUC P3: UA ! CA, A3: C# ! U#
CCCUUUG P3: UA ! CA, A3: GC ! UC
GGGAAAC P3: AU ! GU, A3: CQ ! AQ
GGGAAAG P3: AU ! GU, A3: GC ! AC
GGGCCCA P3: CG ! GG, A3: AU ! CU
GGGCCCG P3: CG ! GG, A3: GC ! CC
GGGCCCU P3: CG ! GG, A3: UA ! CA
GGGGGGA A3: AU ! GU
GGGGGGC A3: CG ! GG
GGGGGGU A3: UA ! GA
GGGUUUG P3: UA ! GA, A3: GC ! UC
GGGUUUU P3: UA ! GA
UUUAAAG P3: AU ! UU, A3: GC ! AC
UUUAAAU P3: AU ! UU, A3: UA ! AA
UUUCCCA P3: C# ! U#, A3: AU ! CU
UUUCCCC P3: C# ! U#
UUUCCCU P3: C# ! U#, A3: UA ! CA
UUUGGGC P3: GC ! UC, A3: CG ! GG
UUUGGGG P3: GC ! UC
UUUGGGU P3: GC ! UC, A3: UA ! GA
UUUUUUA A3: AU ! UU

Continued on next page
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Table 2 – continued from previous page
Slippery site Base-pair changes

UUUUUUG A3: GC ! UC
AUUAAAC P1: UA ! AA, P3: AU ! UU, A3: CQ ! AQ
UAUAAAC P1: AU ! UU, P2: UA ! AA, P3: AU ! UU, A3: CQ ! AQ
UUCAAAC P2: CG ! UG, P3: AU ! CU, A3: CQ ! AQ
UUUAAAC P3: AU ! UU, A3: CQ ! AQ
UUUUAAC A1: AU ! UU, A3: CQ ! AQ
UUUACAC P3: AU ! UU, A1: CG ! AG, A2: AU ! CU, A3: CG ! AG
UUUAUAC P3: AU ! UU, A1: UA ! AA, A2: AP ! UP, A3: C9 ! A9
UUUAGAC P3: AU ! UU, A1: GC ! AC, A2: AU ! GU, A3: CG ! AG
UUUAAUC P3: AU ! UU, A2: UA ! AA, A3: CG ! UG
CUUAAAC P1: UA ! CA, P3: AU ! UU, A3: CQ ! AQ

Table 3: Parameter-set for the Metropolis-Algorithm for analysis of the GFP signal standard
deviation.

Parameter Meaning Startvalue C0 Proposal distribution - standard deviation
C0 �Sj 3 % 0.3 %
C1 µSj 1 % 0.3 %

Table 4: Sequences of HIV HXB2 variants used for comparison of GFP signal and frameshift-
ing efficiency.

Paper HIV HXB2 sequence 3 nt prior of
slipperey-site and slippery site

Dulude et al. [33] UAAUUUUUUA
UAAUUUUUUU

Leger et al. [34] UAAUUUUUUA
UAAAUUUUUA
UAUUUUUUUA
UAACCCUUUA
UAAUUUAAAC

Biswas et al. [35] UAAUUUUUUA
UAAUUUAAAC
UAAGGGUUUA
UAAAAAUUUA
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Table 5: Parameter-set for the Metropolis-Algorithm determining the base-pair free-energy
differences.

Parameter Meaning Startvalue C0 Proposal distribution -
standard deviation

C0 �Gbp(A3: GC ! AC) 1 kJ/mol 3 kJ/mol
C1 �Gbp(A3: UA ! AA) 1 kJ/mol 3 kJ/mol
C2 �Gbp(P3: CQ ! AQ) 1 kJ/mol 3 kJ/mol
C3 �Gbp(A3: AU ! CU) 1 kJ/mol 3 kJ/mol
C4 �Gbp(A3: GC ! CC) 1 kJ/mol 3 kJ/mol
C5 �Gbp(A3: UA ! CA) 1 kJ/mol 3 kJ/mol
C6 �Gbp(P3: GC ! AC) 1 kJ/mol 3 kJ/mol
C7 �Gbp(A3: AU ! GU) 1 kJ/mol 3 kJ/mol
C8 �Gbp(A3: CG ! GG) 1 kJ/mol 3 kJ/mol
C9 �Gbp(A3: UA ! GA) 1 kJ/mol 3 kJ/mol
C10 �Gbp(P3: UA ! AA) 1 kJ/mol 3 kJ/mol
C11 �Gbp(A3: AU ! UU) 1 kJ/mol 3 kJ/mol
C12 �Gbp(A3: C# ! U#) 1 kJ/mol 3 kJ/mol
C13 �Gbp(A3: GC ! UC) 1 kJ/mol 3 kJ/mol
C14 �Gbp(P3: AU ! CU) 1 kJ/mol 3 kJ/mol
C15 �Gbp(A3: CQ ! AQ) 1 kJ/mol 3 kJ/mol
C16 �Gbp(P3: GC ! CC) 1 kJ/mol 3 kJ/mol
C17 �Gbp(P3: UA ! CA) 1 kJ/mol 3 kJ/mol
C18 �Gbp(P3: AU ! GU) 1 kJ/mol 3 kJ/mol
C19 �Gbp(P3: CG ! GG) 1 kJ/mol 3 kJ/mol
C20 �Gbp(P3: UA ! GA) 1 kJ/mol 3 kJ/mol
C21 �Gbp(P3: AU ! UU) 1 kJ/mol 3 kJ/mol
C22 �Gbp(P3: C# ! U#) 1 kJ/mol 3 kJ/mol
C23 �Gbp(P3: GC ! UC) 1 kJ/mol 3 kJ/mol
C24 �Gbp(P1: UA ! AA) 1 kJ/mol 3 kJ/mol
C25 �Gbp(P1: AU ! UU, P2: UA !

AA)
1 kJ/mol 3 kJ/mol

C26 �Gbp(P2: CG ! UG) 1 kJ/mol 3 kJ/mol
C27 �Gbp(A1: AU ! UU) 1 kJ/mol 3 kJ/mol
C28 �Gbp(A1: CG ! AG, A2: AU !

CU, A3: CG ! AG)
1 kJ/mol 3 kJ/mol

Continued on next page
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Table 5 – continued from previous page
Parameter Meaning Startvalue C0 Proposal distribution -

standard deviation
C29 �Gbp(A1: UA ! AA, A2: AP !

UP, A3: C9 ! A9)
1 kJ/mol 3 kJ/mol

C30 �Gbp(A1: GC ! AC, A2: AU !
GU, A3: CG ! AG)

1 kJ/mol 3 kJ/mol

C31 �Gbp(A2: UA ! AA, A3: CG !
UG)

1 kJ/mol 3 kJ/mol

C32 �Gbp(P1: UA ! CA) 1 kJ/mol 3 kJ/mol
C33 �GWT(PRRSV) (virus) 0.5 kJ/mol 1 kJ/mol
C34 �GWT(CCR5) (human protein) 2 kJ/mol 1 kJ/mol
C35 �GWT(SARS-CoV) (virus) 0.5 kJ/mol 1 kJ/mol
C36 �GWT(SIV) (virus) 0.5 kJ/mol 1 kJ/mol
C37 �GWT(SRV1) (virus) 0.5 kJ/mol 1 kJ/mol
C38 �GWT(PLRV) (virus) 0.5 kJ/mol 1 kJ/mol
C39 �GWT(OAZ1) (human protein) 0.5 kJ/mol 1 kJ/mol
C40 �GWT(HSV) (virus) 2 kJ/mol 1 kJ/mol
C41 �GWT(PEG10) (human protein) 0.5 kJ/mol 1 kJ/mol
C42 �GWT(RSV) (virus) 2 kJ/mol 1 kJ/mol
C43 �GWT(HERV K10) (virus) 0.5 kJ/mol 1 kJ/mol
C44 �GWT(influenza) (virus) 0.5 kJ/mol 1 kJ/mol
C45 �GWT(HTLV) (virus) 0.5 kJ/mol 1 kJ/mol
C46 �GWT(HIV HXB2) (virus) 0.5 kJ/mol 1 kJ/mol
C47 �GWT(WNV) (virus) 0.5 kJ/mol 1 kJ/mol
C48 me↵ -0.6 0.08
C49 m� 4.5 0.007
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Figure 20: Probability distributions of all WT free-energy differences obtained from his-
tograms over the last 50000 iteration steps of the Metropolis-Algorithm.

Table 6: Legend of the abbreviations for the correlation matrix.
Label Meaning

�Gbp1 �Gbp(A3: GC ! AC)
�Gbp2 �Gbp(A3: UA ! AA)
�Gbp3 �Gbp(P3: CQ ! AQ)
�Gbp4 �Gbp(A3: AU ! CU)
�Gbp5 �Gbp(A3: GC ! CC)
�Gbp6 �Gbp(A3: UA ! CA)
�Gbp7 �Gbp(P3: GC ! AC)
�Gbp8 �Gbp(A3: AU ! GU)
�Gbp9 �Gbp(A3: CG ! GG)
�Gbp10 �Gbp(A3: UA ! GA)
�Gbp11 �Gbp(P3: UA ! AA)

Continued on next page
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Table 6 – continued from previous page
Label Meaning

�Gbp12 �Gbp(A3: AU ! UU)
�Gbp13 �Gbp(A3: C# ! U#)
�Gbp14 �Gbp(A3: GC ! UC)
�Gbp15 �Gbp(P3: AU ! CU)
�Gbp16 �Gbp(A3: CQ ! AQ)
�Gbp17 �Gbp(P3: GC ! CC)
�Gbp18 �Gbp(P3: UA ! CA)
�Gbp19 �Gbp(P3: AU ! GU)
�Gbp20 �Gbp(P3: CG ! GG)
�Gbp21 �Gbp(P3: UA ! GA)
�Gbp22 �Gbp(P3: AU ! UU)
�Gbp23 �Gbp(P3: C# ! U#)
�Gbp24 �Gbp(P3: GC ! UC)
�Gbp25 �Gbp(P1: UA ! AA)
�Gbp26 �Gbp(P1: AU ! UU, P2: UA ! AA)
�Gbp27 �Gbp(P2: CG ! UG)
�Gbp28 �Gbp(A1: AU ! UU)
�Gbp29 �Gbp(A1: CG ! AG, A2: AU ! CU, A3: CG ! AG)
�Gbp30 �Gbp(A1: UA ! AA, A2: AP ! UP, A3: C9 ! A9)
�Gbp31 �Gbp(A1: GC ! AC, A2: AU ! GU, A3: CG ! AG)
�Gbp32 �Gbp(A2: UA ! AA, A3: CG ! UG)
�Gbp33 �Gbp(P1: UA ! CA)
�GWT1 �GWT(PRRSV) (virus)
�GWT2 �GWT(CCR5) (human protein)
�GWT3 �GWT(SARS-CoV) (virus)
�GWT4 �GWT(SIV) (virus)
�GWT5 �GWT(SRV1) (virus)
�GWT6 �GWT(PLRV) (virus)
�GWT7 �GWT(OAZ1) (human protein)
�GWT8 �GWT(HSV) (virus)
�GWT9 �GWT(PEG10) (human protein)
�GWT10 �GWT(RSV) (virus)
�GWT11 �GWT(HERV K10) (virus)
�GWT12 �GWT(influenza) (virus)

Continued on next page
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Table 6 – continued from previous page
Label Meaning

�GWT13 �GWT(HTLV) (virus)
�GWT14 �GWT(HIV HXB2) (virus)
�GWT15 �GWT(WNV) (virus)

Figure 21: Probability distributions of all base-pair free-energy differences obtained from
histograms over the last 50000 iteration steps of the Metropolis-Algorithm (without slippery
sequence A_AAU_UUA). For bars labeled with multiple base-pair changes, the sum of their
base-pair free energy differences was considered as a parameter in the likelihood.
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