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Abstract: 1 

Circular Dichroism (CD) spectroscopy is an analytical technique that measures the wavelength-2 

dependent differential absorbance of circularly polarized light, and is applicable to most biologically 3 

important macromolecules, such as proteins, nucleic acids, and carbohydrates. It serves to 4 

characterize the secondary structure composition of proteins, including intrinsically disordered 5 

proteins, by analyzing their recorded spectra. Several computational tools have been developed to 6 

interpret protein CD spectra. These methods have been calibrated and tested mostly on globular 7 

proteins with well-defined structures, mainly due to the lack of reliable reference structures for 8 

disordered proteins. It is therefore still largely unclear how accurately these computational methods 9 

can determine the secondary structure composition of disordered proteins.  10 

Here, we provide such a required reference data set consisting of model structural ensembles and 11 

matching CD spectra for eight intrinsically disordered proteins. Using this set of data, we have assessed 12 

the accuracy of several published CD prediction and secondary structure estimation tools, including 13 

our own CD analysis package SESCA. Our results show that for most of the tested methods, their 14 

accuracy for disordered proteins is generally lower than for globular proteins. In contrast, SESCA, 15 

which was developed using globular reference proteins, but was designed to be applicable to 16 

disordered proteins as well, performs similarly well for both classes of proteins. The new reference 17 

data set for disordered proteins should allow for further improvement of all published methods. 18 

Introduction 19 

Circular Dichroism (CD) spectroscopy measurements serve to estimate the average secondary 20 

structure (SS) content of proteins, to monitor protein folding under various experimental conditions, 21 

and to determine folding kinetics.1–4 Several CD-based SS estimation methods have been developed 22 

either as web-based applications like DichroCalc5, K2D36, BestSel7, and PDB2CD8 or as stand-alone 23 

bioinformatics tools like SELCON39, CCA10, and SESCA11. Online tools and repositories such as 24 

Dichroweb2 and the Protein Circular Dichroism Databank12 (PCDDB) also allow easy access to these 25 

tools and provide a platform for further development efforts (See Table S1 for available links).  26 

CD spectroscopy is also often used to identify intrinsically disordered proteins (IDPs). IDPs form a 27 

major class of proteins that fulfil their biological function without adopting a well-defined secondary 28 

or tertiary structure under physiological conditions, and thus do not conform to the classical structure-29 

function paradigm13. Instead, IDPs often adopt a large number of partially folded transient structures, 30 

and this conformational flexibility provides them functional advantages over their well-folded globular 31 

counterparts 14,15. Rather than forming two distinct classes, the transition between ordered and 32 

disordered proteins is continuous, and studies estimate that approximately 30% of human proteins 33 

contain flexible or disordered domains.14,15 Because of their abundance and functional importance in 34 

higher organisms, several tools have been developed to identify IDPs and intrinsically disordered 35 

regions (IDRs) in otherwise folded proteins. Most of these methods are based either on protein 36 

sequence, or the measured CD spectra of the respective regions.13,16,17  37 

The SS composition of proteins strongly affects their CD spectra.4,18,19 Structure-based predictions of 38 

CD spectra using quantum-mechanical calculations are challenging and computationally 39 

demanding20,21; therefore, many CD-based analysis tools use reference data sets (RDS) instead to 40 

empirically extract structure-spectrum relationships. For folded proteins, such RDSs are available, 41 

consisting of proteins with known structures derived from X-ray crystallography, and respective CD 42 

spectra 22–24. Information from these data sets is often the basis of current algorithms that predict the 43 

CD spectrum of a putative protein structure, or infer the unknown SS composition of a protein based 44 
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on its measured CD signal. Unfortunately, the conformational flexibility of IDPs and IDRs renders them 1 

hard to characterize in terms of their structure both experimentally and computationally. Most IDPs 2 

do not form regular crystals, and if they do, e.g., in the presence of a binding partner, their crystal 3 

structure usually does not reflect their conformational flexibility in solution. Due to the lack of reliable 4 

IDP structural models, disordered proteins are largely absent from currently available RDSs, despite 5 

the fact that their CD spectra are often published25–29, and are distinctly different from that of folded 6 

proteins.  7 

The conformational flexibility of IDPs can be modelled through structural ensembles30. Structural 8 

ensembles (or ensemble models) consist of protein conformations and associated weights that 9 

collectively describe the average protein structure and its fluctuations over time. Marked 10 

improvements in simulation force fields 31–34 and molecular modelling tools 35–37 now allows one to 11 

construct increasingly realistic ensemble models, which agree with or predict experimental 12 

observables. Additionally, recent developments in prediction tools can now process structural 13 

ensembles to predict observables such as, fluorescence spectra, nuclear magnetic resonance (NMR), 14 

electron paramagnetic resonance (EPR), and small angle X-ray scattering (SAXS). These developments 15 

have recently enabled more rigorous validations and further refinements of IDP ensembles.38,39 16 

Additionally, online repositories such as the protein ensemble database40 (PED), the Biological 17 

Magnetic Resonance Databank41 (BMRB), and the PCDDB12 compile and link available data to facilitate 18 

ensemble model generation. Finally, regarding the prediction of CD spectra, our CD analysis package 19 

SESCA can predict CD spectra not only of individual protein structures, but also of structural 20 

ensembles11, and estimate the SS composition of proteins based on their measured CD spectrum42. 21 

Initially, due to the lack of available IDP RDSs, SESCA was parametrized and validated on folded 22 

proteins only. 23 

These advances, taken together, now enable us to provide a small RDS, namely IDP8, consisting 24 

measured CD spectra and structural ensembles for eight disordered proteins. Further, we will use this 25 

newly constructed RDS to assess the accuracy of several established modelling tools for either CD 26 

prediction or SS estimation of IDPs including the current version of our own SESCA analysis package. 27 

Our analysis indicates that the IDP8 RDS offers the opportunity not only to assess the prediction 28 

accuracy of CD-based analysis tools regarding disordered proteins, but to further improve their 29 

accuracy and precision as well.  30 

Materials and Methods 31 

Reference data set assembly 32 

The IDP8 RDS consists of eight IDP CD spectra and 14 structural ensembles, which were assembled 33 

with the aim of testing the accuracy of CD-based prediction and SS estimation methods. The RDS  34 

includes eight disordered protein models : 1) -synuclein (asyn), 2) the measles virus nucleoprotein 35 

tail domain (mevn), 3) Saccharomyces cerevisiae CDK inhibitor N-terminal targeting domain (sic1), 4) 36 

the human tau protein K18 fragment (tk18), 5) the activator of thyroid hormone and retinoid receptor 37 

protein activation domain 1 (actr), 6) CREB-binding protein nuclear coactivator binding domain (cbpn), 38 

7) the protein 53 N-terminal transactivation domain (p53t), and 8) an RS-repeat peptide (rsp8, 39 

sequence: GAMGPSYGRSRSRSRSRSRSRSRS). Two of these models are full length IDPs (asyn and 40 

rsp8), and the other six models (mevn, sic1, tk18, actr, cbpn, p53t) are IDRs of larger proteins. All eight 41 

disordered models were selected based on the availability of experimental and modelling data. 42 

The CD spectra of the proteins included in the IDP8 RDS are shown in Fig. 1. We measured the CD 43 

spectra of actr, asyn, cbpn, p53t, and rsp8 using a synchrotron radiation source (SR-CD), which allowed 44 
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us to determine additional short wavelength information (down to 178 nm). The remaining three CD 1 

spectra of mevn, sic1, and tk18 depicted in Fig. 1 were measured using conventional CD 2 

spectrophotometers. Due to high absorbance and a weaker UV source in conventional CD 3 

spectrophotometers, measurements at short wavelengths are unreliable for these spectra and 4 

therefore were truncated to the wavelengths provided in Table 1. Further details are provided in the 5 

Circular Dichroism measurements section. 6 

The 14 structural ensembles of the data set shown in Fig. 2, are organized into three groups A, B, and 7 

C based on the experimental data used in their creation. Group A contains four IDP model ensembles 8 

for asyn, mevn, tk18, sic1 that were previously published on the PED40 under accession codes provided 9 

in Table 2. These ensembles were fitted mainly against results from NMR measurements, partly 10 

complemented by data from electron-spin paramagnetic resonance (EPR), small angle X-ray scattering 11 

(SAXS), and residual dipolar coupling (RDC) experiments. For these ensembles, CD spectra were not 12 

used during the ensemble refinement process. Group B consists of five IDP model ensembles for mevn, 13 

actr, cbpn, p53t, and rsp8. These ensembles were refined from large molecular dynamics (MD) 14 

simulation ensembles using the Bayesian Maximum Entropy (BME) approach to fit against measured 15 

CD spectra, SAXS curves, and NMR C chemical shifts as described below. Finally, Group C contains 16 

five model ensembles of the same five IDP domains as group B, but here, the refinement was carried 17 

out without the CD information. Separating the ensemble models into three groups allowed us to 18 

compare the average accuracy of BME refined ensemble models to established structural ensembles 19 

(group A vs. group-C), and to assess the effects of including CD spectra in the refinement process 20 

(group B vs. group C). 21 

Protein sample preparation 22 

The protein samples for four IDP domains were manufactured by the company Karebay and were 23 

delivered in a lyophilized form. These samples included actr, cbpn, p53t (13-61), and an RS repeat rsp8. 24 

Samples for two other variants of p53t (1-73 and 1-94), as well as asyn were kindly provided by S. 25 

Becker, Max Planck Institute for Multidisciplinary Sciences, Department of NMR-based Structural 26 

Biology, Göttingen, Germany. All seven listed protein samples were dissolved in a 10 mM sodium-27 

phosphate buffer, pH 7.2, including 50 mM NaF for electrostatic screening. A summary of the 28 

sequence details of the IDP8 model proteins is provided in Table 2.  29 

Circular Dichroism measurements 30 

Circular Dichroism (CD) spectra for seven of the protein samples described above were recorded on 31 

the AU-CD beamline of the ASTRID2 synchrotron radiation source, at the Department of Physics & 32 

Astronomy, Aarhus University, Denmark. The spectra were measured at 25 °C using a 0.1 mm quartz 33 

cuvette under a nitrogen atmosphere. The CD intensities were recorded every 1 nm, with an average 34 

of 2 seconds per measurement. The final CD spectrum was calculated as the smoothed average of five 35 

independently measured and baseline corrected spectra recorded between 178-280 nm. Spectra 36 

were smoothed using a 7 pt Savitzky-Golay filter. The protein samples of actr, three variants of p53t, 37 

cbpn, rsp8, and asyn were measured in the buffer solution as described above. Protein concentrations 38 

for CD measurements were between 0.3 – 1.5 g/L, calculated from sample UV absorption at 280 nm 39 

as well as 214 nm. The molar extinction coefficient at 214 nm was estimated based on the protein 40 

sequence using the method proposed by Kupiers et al.43  41 

The CD spectrum for mevn was kindly provided by Longhi et al.44. This spectrum was measured in a 42 

Jasco-810 dichrograph using a 1 mm quartz cuvette, 7 µM protein sample in a 10 mM sodium-43 

phosphate buffer, pH 7.0, at 20 °C, under nitrogen atmosphere. The CD spectrum of sic1 was kindly 44 

measured and provided by Chong et al. (personal communication). It was measured in a Jasco-1500 45 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.19.562942doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.19.562942
http://creativecommons.org/licenses/by/4.0/


5 
 

CD spectrophotometer using a 0.1 mm quartz cuvette under nitrogen atmosphere, at 25 °C. The 1 

measured sample had a 10 µM protein concentration, dissolved in a 50 mM potassium-phosphate 2 

buffer, pH 7, and included 150 mM NaCl and 1 mM EDTA. The CD spectrum of tk18 was extracted from 3 

the work of Braghorn et al.45.  4 

Small Angle X-ray scattering 5 

Small-angle X-ray scattering curves were measured for actr, three p53t variants, cbpn, and asyn at the 6 

European Synchrotron Radiation Facility (ESRF) Grenoble, France, at the BioSAXS beamline BM29 in 7 

2018. All measurements were carried out under sample flow to reduce the effects of radiation damage 8 

during the measurement. SAXS curves were collected over 10 data frames of 0.3 seconds each. The 9 

measured scattering curves were normalized for the protein concentration, corrected for the buffer 10 

signal, and averaged to obtain the final scattering curves. Data processing and automated analysis was 11 

done using the Edna software package46. Samples were measured under similar conditions as 12 

described above, with protein concentrations ranging from 2-8 g/L. 13 

The SAXS curve for mevn was kindly provided by Longhi et al., measured at the European Synchrotron 14 

Radiation Facility (ESRF) using a 10 mM Tris/Cl buffer (pH 8) containing 10% glycerol and 600 µM mevn 15 

at 8 °C. The SAXS curve for rsp8 was kindly provided by Rauscher et al., which was measured at 25 °C 16 

in a 50 mM sodium-phosphate buffer (pH 7), at a concentration of 750 µM rps8 and 100 mM NaCl. 17 

The SAXS curves for tk18 and sic1 were extracted from the studies of Mylonas et al. 47and Mittag et 18 

al. 48, respectively. 19 

Nuclear Magnetic resonance chemical shifts 20 

Backbone chemical shifts for asyn, sic1, tk18, actr, cbpn, p53t were downloaded from the Biomagnetic 21 

Resonance database (BMRB)41: entry numbers 19257, 16657, 19253, 15397, 16363, and 17660, 22 

respectively. Backbone chemical shifts for mevn were measured by Gely et al.49 and kindly provided 23 

by S. Longhi. The chemical shifts were determined for a 500 µM mevn sample in 10 mM sodium-24 

phosphate buffer with 50 mM NaCl, 1 mM EDTA, and 5% D2O, at 25 °C, pH 6.5. The backbone chemical 25 

shifts of rsp8 were measured and kindly provided by Rauscher et al34. These chemical shifts were 26 

measured for a 750 µM peptide sample in a 50 sodium-phosphate buffer, 100 mM NaCl, at 25 °C and 27 

pH 7.  28 

Molecular Dynamics simulations 29 

All-atom molecular dynamics (MD) simulations for mevn, actr, cbpn, p53t, and rsp8 were carried out 30 

using the GROMACS 2019 software package50. All simulations were performed at a constant 31 

temperature of 25 °C, constant pressure of 1 atm in a dodecahedral simulation box filled with explicit 32 

water molecules and periodic boundary conditions. To accommodate extended IDP conformations, 33 

simulation box radii were chosen to be larger than the expected radius of gyration by at least 2.5 nm, 34 

resulting in system sizes of 60 000-300 000 atoms. Sodium and chloride ions were added to all 35 

simulation boxes to obtain neutral systems with NaCl concentrations of 50-150 mM. Details on 36 

simulation conditions, used force fields, and length of simulation trajectories for individual IDPs are 37 

provided in Table 5. 38 

The temperature was kept constant by using the velocity rescaling algorithm51 and a coupling constant 39 

of 0.1 ps. Pressure was maintained by the Parrinello-Rahman barostat52 using a 0.1 ps coupling 40 

constant and the isothermal compressibility of water 4.5x10−5 bar−1. Simulations were propagated 41 

using a leapfrog integrator53 with 4 fs time steps. To enable such large time steps, fast vibrational 42 

degrees of freedom were removed by using the LINCS algorithm54 and applying a sixth order iterative 43 

restraint on the bond angles. Apolar hydrogen positions were described using virtual atom sites50 to 44 
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eliminate hydrogen bond vibrations. Electrostatic and van der Waals interactions were explicitly 1 

calculated within a cutoff distance of 1.0 nm. Electrostatic interactions beyond the cutoff distance 2 

were calculated by particle-mesh Ewald summation 55 with a grid spacing of 0.12 nm. Long-range van 3 

der Waals dispersion corrections56 were applied to the total energy of the system in all simulations.  4 

MD trajectories were generated using six different force fields, for which the accuracy for IDPs has 5 

been assessed previously 34,57,58. These force fields include the Amber03 force field59  with a modified 6 

TIP4P water model60 , an Amber99SB parameter set with a modified TIP4P water model60 , the 7 

Amber99SB-disp force field with a modified TIP4P water model re-parametrized with dispersion 8 

corrections61, the Amber14SB62 force field with an Optimal Point Charge (OPC) water model63 , the 9 

CHARMM22* force field64 with a modified TIP3P water model65, and the CHARMM36M66  force field 10 

with an OPC water model. 11 

To provide initial conformations for the BME refinement, conformations were taken at 1-100 ns 12 

intervals from 5-60 MD simulation trajectories per system amounting to total simulation times of 30-13 

800 µs. Starting conformations for these simulations were either extended disordered structures or 14 

conformations observed in the crystalized complex structures published in the protein data bank67 15 

(PDB) entries 1KB6 , 2L14, and 1ZQO, respectively.  16 

Bayesian Maximum Entropy refinement 17 

Structural ensembles of group B and C for mevn, actr, cbpn, p53t, and rsp8 were obtained using BME 18 

refinement.68 Table 6 summarizes the refinement parameters used for each IDP model. For each IDP 19 

model an initial ensemble was formed from 5,000 to 50,000 conformations obtained from all-atom 20 

MD simulations described above. Uniform prior weights were assigned to each conformation of the 21 

initial ensembles. For each conformation, CD spectra, backbone carbon chemical shifts, and SAXS 22 

curves were computed using the SESCA (V0.96) 11, Sparta+ (V2.6)69, and CRYSOL (ATSAS V2.7.2.5)70 23 

analysis software packages, respectively.  24 

All conformations of the initial ensembles were reweighted using the BME approach such that the re-25 

weighted ensemble fits 𝑂𝑘𝑖, the ith measured observable of type k, as best as possible, while at the 26 

same time minimizing the loss of relative entropy 𝑆rel =  − 𝑤𝑗 ∙ log (𝑤𝑗 𝑤𝑗
0⁄ ) from redistributing the 27 

conformation weights. Here, k and i denote the type and index of the observable, while j is the index 28 

of conformations. The redistributed (posterior) weights 𝑤𝑗 were obtained by minimizing 29 

 30 

𝐿(𝑂𝑘𝑖, 𝑤𝑗, 𝑤𝑗
0, 𝜃) =  

𝑚

2
 ∙ ∑ 

𝑘
2(𝑂𝑘𝑖, 𝑤𝑗)𝑘 −  𝜃 ∙ 𝑆rel(𝑤𝑗, 𝑤𝑗

0), (1) 31 

where 𝑤𝑗
0 are the initial (uniform) weights of each conformation, 𝜃 is the scaling parameter for the 32 

entropy loss, and 𝑀 =  ∑ 𝑀𝑘𝑘  is the total number of fitted observables, and 𝑀𝑘 is the number of fitted 33 

observables of type k. The deviation from the observables was quantified by the 2 deviations 34 

between each observable computed from the reweighted ensemble 𝑂𝑘𝑖𝑗
calc =  ∑ 𝑤𝑗 ∙ 𝑂𝑘𝑖𝑗

calc
𝑗  and the 35 

measured observable 𝑂𝑘𝑖 36 

 37 


𝑘

2 =  
1

𝑀𝑘
 ∑ (

𝑂𝑘𝑖−𝑘∙𝑂𝑘𝑖
calc

𝜎𝑘𝑖
)

2

𝑖 ,     (2) 38 

 39 
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where 𝑘 is the uniform scaling factor to match the measured and calculated observables of type k, 1 

and 𝜎𝑘𝑖 is the uncertainty of the observable 𝑂𝑘𝑖. For group B ensembles, three types of measured 2 

observables were used for BME refinement: 1) the intensities of the measured CD spectra, 2) the SAXS 3 

intensities, and 3) the resolved C backbone chemical shifts of each residue. For group C ensembles, 4 

only SAXS intensities and C chemical shifts were used. We note that the scaling factor 𝑘 was used 5 

to compensate for the machine-dependent beam intensity for SAXS measurements ( ∈ 𝑅+). For the 6 

CD spectrum intensities and NMR chemical shifts, no such compensation was required, hence α was 7 

set to 1.  8 

The uncertainty 𝜎𝑘𝑖 for SAXS measurements was defined as the SD of obtained SAXS intensities at 9 

scattering vector 𝑞𝑖. The uncertainty of the backbone carbon chemical shift i was set to 0.95, 1.03, and 10 

1.13 ppm for C, Cβ, and carboxylate C shifts, respectively, to reflect the uncertainty of SPARTA+ 11 

chemical shift predictions69 Theses are conservative estimates that are considerably larger than the 12 

0.1-0.4 ppm errors indicated in available BMRB entries of actr, p53t, and sic1. The uncertainty of CD 13 

intensities was computed as 𝜎𝑘𝑖 =  𝛿𝑘 ∙ 𝑂𝑘𝑖 + 𝜎𝑘
0 , where 𝛿𝑘 = 0.2 represents the typical uncertainty 14 

of concentration determination71, and 𝜎𝑘
0 = 0.75 kMRE is the machine error of CD measurements, 15 

determined from the average SD of obtained CD intensities upon repeated measurements. 16 

The refinement parameter 𝜃 controls the balance between close agreement with measured 17 

observables and reducing the effective ensemble size. To find the optimal 𝜃 parameter for each model 18 

ensemble, several refinements with 𝜃 = {0.1, 1, 2, 5, 10, 20, 50, 100, 200} were carried out while 19 

monitoring the computed 
𝑘

2 values. The refinement with the largest 𝜃 and significant improvements 20 

to 
𝑘

2 values was selected and was used to draw sub-ensembles that constitute the final ensemble 21 

models. 22 

To obtain the final ensemble models, smaller sub-ensembles of 5, 10, 20, 50, 100, and 200 23 

conformations were drawn at random by rejection sampling based on the redistributed weights of the 24 

conformations after refinement. Conformations with high redistributed weights in the initial ensemble 25 

may be included multiple times in the final ensemble to represent their importance. To assess the 26 

effect of the sub-ensemble size on the model accuracy, five sub-ensembles were drawn and the 27 

deviation from experimental observables was computed and averaged for each size. The sub-28 

ensembles of each size were concatenated to form a combined ensemble model for each IDP. 29 

Deviations from the measured observables were calculated for the concatenated ensemble as well. 30 

Finally, the ensemble with the smallest size was selected for each IDP that met the two following 31 

criteria: 1) increasing the ensemble size further does not improve the average 
𝑘
2  deviations 32 

considerably, and 2) the average 
𝑘
2  deviations of sub-ensembles are similar to 

𝑘
2  deviations of the 33 

concatenated ensemble within uncertainty. The selected ensemble sizes and 𝜃 parameters and for all 34 

derived IDP models are summarized in Table 6. This procedure yielded small ensemble models of 100-35 

250 conformations with integer weights for each refined ensemble. 36 

Accuracy of the predicted CD spectra  37 

To assess the accuracy of the CD spectrum predicted for protein j, the predicted CD spectrum was 38 

compared to the measured spectrum by computing the root mean squared deviation (RMSD) of CD 39 

intensities,  40 

 41 

RMSD𝑗
CD =  √1

𝑁
∙ ∑ (𝑗 ∙ 𝐼𝑗

exp
− 𝐼𝑗

calc)
2

𝑁
 ,    (3) 42 
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 1 

expressed in 1000 mean residue ellipticity units (kMRE, 1000 deg cm2/dmol) for each wavelength  2 

for which both the measured and the predicted spectrum were available. Here, N is the number of 3 

available wavelengths, 𝐼
exp

 and 𝐼
calc are the measured and predicted CD intensities, respectively. The 4 

scaling factor 𝑗 minimizes the RMSD described above and accounts for experimental spectrum 5 

normalization errors.  6 

To assess the accuracy of CD spectrum prediction methods for disordered proteins, the CD spectra of 7 

all model IDPs in the IDP8 RDS were predicted from their structural ensembles, the deviation from 8 

their measured reference CD spectra were computed, and the resulting RMSD𝑗
CD values were 9 

averaged to determine the mean accuracy of the respective method. A similar approach was followed 10 

to assess the mean accuracy of each studied CD prediction method for globular proteins, using the 11 

reference structures and CD spectra of the SP175 RDS22. 12 

Accuracy of estimated SS fractions 13 

To determine the accuracy of SS estimation methods, the RMSD of SS fractions was computed for each 14 

protein j in globular and disordered protein RDSs as follows. For globular proteins of the SP175 RDS22 15 

the SS fractions estimated from their CD spectra were compared to the respective reference 16 

structures derived from X-ray diffraction measurements. For the disordered proteins of the IDP8 RDS, 17 

estimated SS fractions were compared to those computed from the reference ensemble models. The 18 

RMSD between the estimated and reference SS was computed as  19 

 20 

RMSD𝑗
SS =  √

1

𝑀
∙ ∑ (𝐹𝑗𝑘

est − 𝐹𝑗𝑘
calc)

2𝑀
𝑘 ,    (4) 21 

 22 

where M is the number of SS classes within the classification method, and 𝐹𝑗𝑘
est and 𝐹𝑗𝑘

calc are the 23 

estimated and computed fractions of SS class k, respectively. 24 

To be able to apply the RMSD determination according to eq. 4, the SS fractions computed from the 25 

reference structures/ensembles by an SS classification method have to be grouped and identified with 26 

the classes of the SS estimation method. For SESCA, the documented calculation of SS fractions from 27 

the protein structure was used11. For basis sets DS-dTSC3 and DS5-4SC1, the SS composition was 28 

computed using the DISICL algorithm72, and the SS elements were grouped into three and six SS 29 

classes, respectively. For the DSSP-1SC3 basis set, the SS composition was determined using the DSSP73 30 

algorithm and the obtained SS fractions were grouped into four SS classes. For the HBSS-3SC1 basis 31 

set, the HBSS11 algorithm was used, and the obtained SS composition was grouped into five SS classes. 32 

To assess the accuracy of the K2D3 algorithm, SS classification was performed the same way as for the 33 

DS-dTSC3 SESCA basis set, and the Alpha(-helix) and Beta(-sheet) sheet fractions were compared to 34 

the corresponding estimated SS contents. The third SS fraction (Coil) for the K2D3 composition was 35 

computed as 𝐹𝑗,𝐶𝑜𝑖𝑙 = 1 − (𝐹𝑗,𝐵𝑒𝑡𝑎 + 𝐹𝑗,𝐴𝑙𝑝ℎ𝑎).  36 

Finally, to assess the accuracy of the BESTSEL SS estimates, the SS fractions of the reference models 37 

was determined by the HBSS algorithm, which uses similar helix and advanced β-sheet classifications. 38 

The obtained fractions were grouped into six SS classes as follows: The Helix-1 and Helix-2 classes of 39 

BESTSEL were grouped into a common Helix class, which was identified with the 4-Helix class in HBSS. 40 

The three anti-parallel β-sheet classes (Anti1-3) were kept separate and were identified with the 41 
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corresponding HBSS classes (left-handed, non-twisted, and right-handed β-strands). All parallel β-1 

strand classes in HBSS were merged and identified with the parallel β-sheet class of BESTSEL. The SS 2 

fractions of all other classes in BESTSEL and HBSS were merged and identified with an “Other” SS class, 3 

resulting in six SS classes for both algorithms. 4 

Results and discussion 5 

Model quality assessment 6 

First, we assessed how well the models of the IDP8 RDS agree with SAXS and NMR chemical shift 7 

measurements (agreement with CD spectra will be discussed below). Table 3 shows how well the 8 

observables predicted from the model ensembles of the RDS agree with the measured SAXS data as 9 

well as with C, Cβ and carbonyl-carbon (CO) chemical shifts. These two groups of observables were 10 

chosen due to their complementarity; whereas SAXS curves report overall IDP compactness, carbon 11 

chemical shifts are sensitive to the local secondary structure. 12 

The  values for SAXS curves shown in the second column of Table 3 are square roots of the 2 metric 13 

defined by Sevrgun et al 70. This metric is insensitive to any scaling differences between the measured 14 

and predicted SAXS intensities, and reports the deviation in units of the experimental uncertainty 15 

determined by 𝜎𝑖, the standard deviation of the scattering intensities. For seven of the 14 ensemble 16 

models, the  values are below one, meaning that predicted SAXS intensities are on average well 17 

within the experimental uncertainty. The remaining seven models achieved  values between one and 18 

two, resulting in an overall average  of 1.14 for the whole RDS. This result suggests that the size 19 

distributions of the model ensembles agree with the available experimental data, except for the actr 20 

and cbpn ensembles for which the predicted SAXS curves deviate from the experiment with  values 21 

between 1.8 and 2.1. 22 

Columns three to five in Table 3 report the root-mean-squared deviation (RMSD) of carbon chemical 23 

shifts for each model ensemble. The average RMSDs of the data set are 0.46 ppm, 0.49 ppm, and 0.46 24 

ppm for C, Cβ, and CO chemical shifts, respectively. These RMSD values are slightly larger than the 25 

0.1 - 0.4 ppm estimated experimental uncertainty reported in BMRB entries, but are considerably 26 

smaller than the average 1.14 ppm, 0.94 ppm, and 1.09 ppm backbone chemical shift deviations 27 

reported by Shen and Bax obtained in the context of Sparta+ prediction assessments from high-quality 28 

crystallographic structures of globular proteins.69  29 

To assess the effects of using CD spectrum information in ensemble refinement, we compared the 30 

average deviations between predicted and measured SAXS and NMR data for ensembles of group A, 31 

B, and C separately. In addition, we also computed the SAXS and NMR deviations of the initial MD 32 

ensembles (henceforth group 0) group B and C ensembles were refined from. SAXS intensities and C 33 

chemical shifts were used as fit variables during both group B and group C ensemble refinements.  34 

The average deviation from measured SAXS curves is within the average uncertainty for group A, as 35 

shown by a mean  value of 0.87  0.17. Refinement reduced the deviation from measured SAXS 36 

curves from an initial  of 1.59  0.39 to 1.19  0.27 for group B and 1.17  0.26 for group C, showing 37 

no significant difference between the two groups. The average deviation of C chemical shifts for 38 

group A is 0.62 0.2 ppm, which is very similar to the deviation of 0.63  0.1 ppm for initial group 0 39 

ensembles. Ensemble refinement improved the average deviation from measured C chemical shifts 40 

to 0.43  0.1 ppm for both group B and group C ensembles. 41 

The deviations from measured Cβ and CO chemical shifts were not used in ensemble refinements, and 42 

thus are used for cross-validation. The average deviation of Cβ chemical shifts in group A is 0.63 ppm. 43 
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In comparison, the Cβ chemical shifts are accurately reproduced by the initial MD ensembles with an 1 

average Cβ shift deviation of 0.37  0.04 ppm. Apparently, the refinement process did not cause 2 

significant changes in the Cβ chemical shift deviations for group B or C within the uncertainty. In 3 

contrast, average deviations from measured CO chemical shifts improved from an initial value of 0.64 4 

 0.03 ppm in group 0 to 0.550.03 ppm for group B ensembles, and to 0.500.06 ppm for group C 5 

ensembles. The ensembles in group A are similarly accurate in predicting CO chemical shifts with an 6 

average deviation of 0.530.06 ppm. 7 

In summary, our structural ensembles reproduced both the measured SAXS curves and NMR chemical 8 

shifts for all model IDPs with deviations from the measurements close to the experimental 9 

uncertainty. The average agreement with SAXS curves and NMR chemical shifts indicates that there 10 

are only minor differences between the quality of published PED models in group A and the newly 11 

refined ensemble models of groups B and C. The ensembles of groups B and C also showed no 12 

significant accuracy difference regarding the predicted SAXS curves and NMR chemical shifts, 13 

suggesting that they are of similar quality. Based on the presented quality assessment, we consider 14 

the model ensembles sufficiently accurate that they can now be used to assess the accuracy of both 15 

structure-based CD prediction methods as well as CD-based SS estimation methods regarding IDPs. 16 

Testing CD prediction methods 17 

Utilizing the new IDP8 RDS, we proceed to determine the accuracy of the three structure-based CD-18 

spectrum prediction methods SESCA11, PDB2CD8, and DichroCalc5, and compare their mean accuracy 19 

separately for IDPs and globular proteins. The predicted CD spectra of all methods for the IDP8 RDS 20 

are compared with the measured CD spectra in Figures S1-S6. The accuracy of these algorithms on 21 

globular proteins was previously assessed11 using the SP175 RDS, which contains 71 water soluble 22 

globular proteins. The same SP175 data set was used as a training set for the two empirical methods 23 

SESCA and PDB2CD, with no IDPs involved. The individual RMSDs computed between the measured 24 

CD spectra of IDP8 RDS and the CD spectra predicted from the 14 ensemble models of the RDS are 25 

shown in Table 4. 26 

Figure 3 shows the average RMSD values between measured and predicted CD spectra (RMSDCD, see 27 

eq 3.) for both disordered (IDP8, blue) and globular (SP175, orange) proteins. For SESCA predictions, 28 

four different basis sets were used: DS-dTSC3, DSSP-1SC3, HBSS-3SC1, DS5-SC1. These basis sets 29 

represent ‘pure’ CD spectra for given SS elements (α-helix, β-sheet etc., see Nagy et al. 11 for precise 30 

definitions), and therefore differ depending on which and how many SS elements have been used, as 31 

well as on which SS classification method (e.g., DISICL72, DSSP73, or HBSS11) has been applied. All four 32 

chosen basis sets contain correction terms for side chain signals for improved accuracy.  33 

The average prediction accuracy of SESCA is 2.0  0.1 kMRE for disordered proteins. As shown in Fig. 34 

3, the average accuracy is similar for all four chosen basis sets, ranging between 1.9 and 2.2 kMRE 35 

with a mean standard deviation (SD) of 1.0 kMRE for RMSDCD values within the IDP8 RDS using the 36 

same basis set. The average scatter of RMSDCD values is 0.67 kMRE, when the measured CD spectra 37 

are compared to CD predictions from the same ensemble model using different basis sets. In 38 

comparison, the average prediction accuracy of SESCA for globular proteins is 2.1  0.05 kMRE units 39 

(as determined from the SP175 RDS). The scatter of RMSDCD values for globular proteins is 1.0 kMRE 40 

within the RDS using the same basis set and 0.7 kMRE between predictions from the same crystal 41 

structure using different basis sets. The obtained RMSD values do not show a significant difference in 42 

prediction accuracy between the chosen basis sets. Most importantly, the RMSDCD values support our 43 

previous expectations that, by construction, SESCA should yield a similar accuracy for disordered 44 

proteins as for globular proteins. 45 
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Next, we tested the accuracy of the PDB2CD8 algorithm and its recent update PDBMD2CD74 that allows 1 

CD predictions from small structural ensembles. PDB2CD is based on determining the SS composition 2 

from the model structure (or ensemble) by the DSSP algorithm and produces predicted spectra by 3 

taking a weighted sum of spectra from structurally similar reference proteins. At the time of writing, 4 

PDB2CD can utilize two globular RDS: SP175 and SMP180 to predict the CD spectra of protein models. 5 

SMP180 includes all SP175 proteins and 11 additional membrane proteins, but neither RDS includes 6 

any disordered proteins, which suggests limited accuracy for this class of proteins. PDBMD2CD is 7 

based solely on the SMP180. Therefore, we used this RDS for computing CD predictions of both 8 

globular and disordered protein spectra in our evaluation (the average accuracy for globular proteins 9 

was still determined from the RMSDCD values of SP175 proteins). As can be seen in Fig. 3, the accuracy 10 

of PDBMD2CD for globular proteins is slightly better than that of SESCA, with an RMSDCD of 1.6  0.1 11 

kMRE (SD 1.0 kMRE). For disordered proteins, however, the prediction accuracy of PDB2CD is 12 

markedly reduced, with an average RMSDCD 5.2  0.5 kMRE (SD 1.7 kMRE). 13 

In contrast to the other two empirical algorithms, DichroCalc predictions are calculated directly from 14 

the three-dimensional protein structure through parameters derived from time-dependent quantum 15 

mechanics (QM) calculations.5 The obtained average prediction RMSDCD values for DichroCalc are 16 

4.8  0.3 kMRE (SD 2.4 kMRE) for globular proteins, and are even larger (8.7  1.0 kMRE, SD 3.4 kMRE) 17 

for disordered proteins. The obtained deviations from measured CD spectra indicate that the 18 

approximations that allow CD calculations for entire proteins are rather harsh and limit the accuracy 19 

of Dichrocalc in reproducing the fine spectral features. These limitations are particularly severe for 20 

disordered proteins, because the negative peak that defines the shape of their spectra is not 21 

reproduced well by the underlying matrix method75. 22 

Further, to assess the effect of using CD information during ensemble refinement we also compared 23 

the average accuracy of CD predictions of group B ensembles with those of group C ensembles shown 24 

in Table 4. Here, we will focus on the prediction accuracies of SESCA, because the large mean and 25 

scatter of RMSDCD values for PDBMD2CD and DichroCalc renders it difficult to infer statistically 26 

relevant statements about model quality using these methods. During the refinement of group B 27 

ensembles, the SESCA basis set DS-dTSC3 was used to compute the CD signal of individual 28 

conformations for mevn-B and p53t-B, whereas the DS5-4SC1 basis set was used for actr-B, cbpn-B, 29 

and rsp8-B. The individual RMSDCD values (underlined in Table 4) for CD predictions using these 30 

ensembles and the corresponding basis sets average to 1.1  0.2 kMRE, which can be considered the 31 

best accuracy achievable by directly fitting the ensemble to match the measured CD spectrum. It is 32 

also a considerable improvement over the 2.6  0.3 kMRE average CD deviation of the initial MD 33 

ensembles (see Table 3). The average deviation of group B ensemble CD predictions using all four 34 

chosen SESCA basis sets (lines 5-9 in Table 4) amounted to 1.8  0.2 kMRE. In comparison, the average 35 

CD deviation for group C (lines 10-14) is 2.4  0.4 kMRE, which suggests that including CD data in the 36 

ensemble refinement process reduces both the mean and the scatter of RMSDCD values to a small but 37 

statistically significant extent.  38 

In summary, based on the CD predictions for our IDP8 RDS, SESCA consistently predicts the CD spectra 39 

of IDPs with an accuracy similar to that of globular proteins. Additionally, SESCA predictions are robust 40 

with respect to the choice of basis set both for folded proteins and IDPs. In contrast, PDBMD2CD and 41 

DichroCalc predictions are markedly less accurate regarding IDPs than for the folded proteins. Based 42 

on our model quality assessments, including CD information during the ensemble refinement process 43 

significantly improves CD predictions from the ensemble models, while maintaining the accuracy of 44 

predicted SAXS curves and carbon chemical shifts.  45 
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Testing IDP SS estimation methods 1 

Next, we focused on SS estimation, the second main branch of CD-based methods, which infers the 2 

average SS composition of proteins from their measured CD spectra. Here, we assessed the SS 3 

estimation accuracy of the Bayesian SS estimator SESCA_bayes42, using the same four basis sets as 4 

above, as well as two other widely used methods, namely BeStSel7 and K2D36. The estimated SS 5 

fractions of all methods for the IDP8 RDS are shown in Tables S2-S7. To assess the accuracy of 6 

estimated SS compositions, we compared them to reference SS compositions (see Methods Section 7 

for details). For globular proteins, SS compositions of the NMR/crystallographic structures of the 8 

SP175 RDS were used as reference. For disordered proteins, we selected the SS composition of those 9 

ensemble models from IDP8 as reference that had the lowest average RMSDCD for SESCA predictions, 10 

namely asyn-A, mevn-B, sic1-A, tk18-A, actr-B, cbpn-B, p53t-B, and rsp8-B. The accuracy of the 11 

estimated SS content was quantified by the RMSD to the reference SS fractions (RMSDSS, see eq. 4). 12 

The summary of all RMSDSS values shown in Table S8 indicates, that the choice of reference ensemble 13 

(except for mevn) doesn’t have a large impact on the average accuracy of SS estimation methods and 14 

wouldn’t change our conclusions outlined below. For mevn all three tested methods estimated SS 15 

fractions in better agreement with the mevn-B ensemble than mevn-A or mevn-C. 16 

Figure 4 compares the average SS estimation accuracies of these methods for the IDP8 RDS (in blue) 17 

of disordered proteins with those obtained for globular proteins of the SP175 RDS (orange). Overall, 18 

the tested methods performed more similarly to one another than the CD prediction methods, albeit 19 

larger differences are seen between the four SESCA basis set variants. All methods achieved average 20 

RMSDSS values between 0.07 and 0.12 for globular proteins and slightly larger average RMSDSS values 21 

(between 0.07 and 0.14) for disordered proteins. No clear correlation is observed between the SS 22 

estimation accuracy and the number of SS classes used for the estimation method, although the 23 

precision of SESCA_bayes estimates increased monotonically with the number of SS classes in the basis 24 

set.  25 

For the four SESCA_bayes variants using different basis sets, the smallest average RMSDSS is obtained 26 

for the DS5-4SC1 basis set (6 SS classes), with 0.07 RMSDSS for both globular and disordered proteins 27 

(SD of 0.04 and 0.06, respectively). The largest average RMSDSS for SESCA_bayes are seen for the basis 28 

set DSSP-1SC3 (four classes), amounting to an average RMSDSS of 0.12 (SD 0.06) and 0.14 (SD 0.04) for 29 

globular and disordered RDSs, respectively. 30 

The program K2D3 estimates a three-class SS composition using a neural network that was trained on 31 

DichroCalc predictions of globular CD spectra based on their structures. K2D3 estimates globular 32 

protein SS fractions with an average RMSDSS of 0.09 (SD 0.05), similar to the RMSDSS SESCA_bayes 33 

achieved using the DS-dTSC3 basis set with a similar 3-class SS composition. The RMSDSS of K2D3 for 34 

IDPs is 0.12 (SD 0.05), somewhat larger than that for the globular RDS. We note that the obtained SS 35 

estimation errors of K2D3 are typically small for IDPs, despite the fact that the program provides very 36 

poor back-calculated CD spectra and warns the user about the potential unreliability of those SS 37 

estimates. 38 

The BeStSel web application provides a detailed SS estimation based on eight SS classes, four of which 39 

are associated with different types of β-sheets7. An average RMSDSS of 0.08 (SD 0.03) is obtained for 40 

globular proteins, and 0.14 (SD 0.05) for IDPs, which is the largest difference amongst the tested SS 41 

estimators. We attribute this difference mainly to an observed systematic overestimation of the right-42 

handed antiparallel β-sheet (Anti3) fractions in our model IDPs (Table S7). Indeed, for the globular 43 

RDS, the SS fractions are fairly similar for BeStSel estimates and the fractions of the reference (crystal) 44 

structures. In contrast, almost none of the IDP ensemble models contains residues classified as the 45 
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Anti3 class, for which BeStSel estimates fractions between 0.2 and 0.3. The only protein in the IDP8 1 

RDS for which the Anti3 fraction was not over-estimated was cbpn. However, cbpn is a molten-globule 2 

type IDP with a stable -helical structure, and thus its CD spectrum is more similar to those of helical 3 

proteins. 4 

It is worth noting that BeStSel also provides a simple ordered/disordered classification of proteins 5 

based on their CD spectrum17, which our IDP8 RDS also enabled us to assess. Indeed, seven of the 6 

eight proteins are correctly classified as disordered, with cbpn being classified as ordered. The latter 7 

result is not a true misclassification because cbpn is a helical molten globule and its disorder is 8 

apparent mostly on the tertiary structure level. 9 

In contrast to the other available SS estimators, the Bayesian SS estimation method of SESCA 10 

additionally provides uncertainties for the estimated SS fractions. To test if these Bayesian 11 

uncertainties are realistic, we expressed the observed deviations to the reference SS fractions in units 12 

of 2 analogously to eq. 2, but without a scaling factor. Similar to the RMSDSS values above, the 13 

computed 2 deviations also vary with the choice of the basis set. For the four basis sets, SESCA_bayes 14 

achieves average 2 deviations for the IDP8 set of 0.87 (HBSS-3SC1), 1.03 (DS5-4SC1), 2.15 (DS-dTSC3), 15 

and 2.51 (DSSP-1SC3). Obviously, these deviations are largely within one or two Bayes standard 16 

deviations, such that the estimated uncertainty can be considered rather accurate. In contrast, the 17 

average 2 values for the globular SP175 RDS are 1.32 (DS5-4SC3), 2.62 (HBSS-3SC1), 3.04 (DSSP-18 

1SC3), and 5.59 (DS-dTSC3), significantly larger than for the IDP set. As the RMSDSS values for the SP175 19 

are not considerably larger than those of our IDP8 RDS, the significantly larger 2 deviations indicate 20 

that uncertainties of the SS fractions are underestimated for the DS-DTSC3 basis set, and to a lesser 21 

extent for the DSSP-1SC3 basis set as well. 22 

Overall, the observed RMSDSS values indicate that SESCA basis sets estimate the SS composition of 23 

IDPs with a similar accuracy as globular ones, whereas the average deviation of K2D3 and BeStSel SS 24 

estimates are somewhat smaller for globular proteins and larger for IDPs. Our results also suggest that 25 

SESCA basis sets DS5-4SC1 and Ds-dTSC3 are slightly more accurate for SS estimations than HBSS-3SC1 26 

and DSSP-1SC3, but the uncertainties of DS-dTSC3 may be underestimated.  27 

Conclusions 28 

Current method accuracy 29 

We introduced a new reference data set (RDS) for disordered proteins comprising CD spectra of eight 30 

proteins and 14 ensemble models. This RDS, referred to as IDP8, served here to assess existing CD-31 

based biophysical analysis methods and can also support their further development. We first 32 

determined the accuracy of the CD prediction methods SESCA, Dichrocalc, and PDB2CD and compared 33 

it to their accuracy for folded globular proteins using the curated RDS SP175. Overall, the accuracy of 34 

these methods was lower (between 2.0 and 9.0 kMRE) for IDPs than for globular proteins (between 35 

1.6 to 4.8 kMRE). SESCA predicted the CD spectra of globular and disordered proteins with a similar 36 

high accuracy; PDB2CD performed well on globular proteins but was less accurate for IDPs, whereas 37 

larger errors were seen for DichroCalc for both folded as well as disordered proteins.  38 

Second, we used the IDP8 data set to assess the accuracy of the CD-based secondary structure 39 

estimators SESCA_bayes, K2D3, and BESTSEL. Here, the (absolute) error of SS fraction estimates was 40 

found between 0.07 and 0.14 for disordered proteins and between 0.07 and 0.12 for globular proteins. 41 

Again, the accuracy of SESCA SS estimates was similar for folded and disordered proteins. However, 42 

and in contrast to the above-mentioned CD spectrum predictions, it varied depending on the used 43 
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basis set. Both K2D3 and BESTSEL provided more accurate SS estimates for globular than for 1 

disordered proteins.  2 

Importantly, the IDP8 data set also enabled us to test if SESCA_bayes provides realistic uncertainty 3 

estimates. For the disordered proteins, the uncertainty estimates largely agreed with the actual 4 

deviations from the SS of the reference ensembles, whereas for the folded proteins, the uncertainty 5 

estimates, particularly for the smaller basis sets, tended to be smaller than the actual errors. None of 6 

the other SS estimators provides uncertainty estimates. 7 

Over the past years, several methods for the structural characterization of folded proteins by CD 8 

spectroscopy − such as CD spectrum predictors or SS estimators – have been established and are now 9 

widely used. Their development and optimization has been enabled and driven by high quality RDSs 10 

such as SP17522. Similar developments for IDPs, though pressing, have been hampered by the lack of 11 

a suitable reference data set. We addressed this obstacle by compiling IDP8, an intrinsically disordered 12 

protein RDS. Our subsequent assessments showed that the structural ensembles of IDP8 agree well 13 

with SAXS and NMR chemical shift measurements, thus establishing that their quality is sufficient for 14 

CD assessment. Using this new RDS, our assessments showed that SESCA CD predictions and SS 15 

estimations achieved similarly high accuracy for disordered proteins as we previously determined for 16 

globular proteins, which suggests that SESCA should be equally applicable to both protein classes. 17 

Further, the assessment of several other CD prediction and SS estimation methods revealed generally 18 

lower accuracy for IDPs than for globular proteins. Further, our data indicated that most of the tested 19 

methods (including SESCA) would likely benefit from re-parametrization using the IDP8 RDS. We 20 

therefore believe that our IDP8 RDS will also drive further methodological improvements in this rapidly 21 

growing field. 22 

Data set availability 23 

All ensemble models and CD spectra will be made publicly available through the protein ensemble 24 

database (PED) and the protein circular dichroism database (PCDDB), respectively. Until then, the CD 25 

spectra and ensemble models of the IDP8 RDS are available on request. Supplementary information 26 

about computational tool availability, precited CD spectra and estimated SS fractions are available 27 

online free of charge.  28 
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 1 

Figures 2 

 3 

 4 

 5 

Figure 1: Measured IDP8 CD spectra. The spectra of eight different IDP domains are shown in different 6 

colors. Abbreviations for the name of each domain are shown in the upper right corner (color coded) 7 

and are listed in Table 1. The full name of each IDP domain is listed in the Reference data set assembly 8 

section of this manuscript. Intensities of the CD spectra are expressed in 1000 mean residue ellipticity 9 

units (kMRE or 1000 deg* cm2 / dmol). The dotted gray line indicates the CD intensity of 0 kMRE. 10 
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 1 

 2 

 3 

Figure 2: IDP8 protein ensemble models. Each ensemble model is an overlay of 20-50 backbone 4 

conformations, shown in cartoon representation, and fitted to the first model of the respective 5 

ensemble. The name of each ensemble model is displayed above the model. Group A models were 6 

previously published and were obtained from the PED, group B models were derived by the authors 7 

using NMR chemical shifts, SAXS, and CD measurements. Group C models were derived similarly as the 8 

models of group B but without using CD information.  9 
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Figure 3 : Accuracy of CD spectrum predictions. Summary of RMSDs of CD spectra predicted from 4 

reference model structures relative to measured spectra of the same protein. Shown are RMSD values 5 

averaged over all proteins, for the different methods described in the text. Two reference data sets 6 

have been used: IDP8 for disordered proteins (blue) and SP175 for folded globular proteins (orange). 7 

Tested CD prediction methods are: DichroCalc, PDBMD2CD, and SESCA with four different basis sets 8 

(DS-dTSC3, DSSP-1SC3, HBSS-3SC1 and DS5-4SC1). 9 
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Figure 4: Accuracy of SS fraction estimates. Summary of averaged RMSDs of SS fractions estimated from 4 

the reference CD spectra by different methods relative to SS fractions computed from the respective 5 

reference structure. As in Fig. 3, two RDSs have been used: IDP8 for disordered proteins (blue), and 6 

SP175 for folded globular proteins (orange). The tested SS fraction estimators are: K2D3, BESTSEL, and 7 

SESCA_Bayes with four different basis sets (DS-dTSC3, DSSP-1SC3, HBSS-3SC1 and DS5-4SC1). 8 
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Tables 1 

 2 

Table 1: Measured IDP8 CD spectra. Properties of the eight CD spectra included within the IDP8 RDS. 3 

Columns list the ID and the short code of the protein, their minimum (min) and maximum (max) 4 

wavelengths (in nm) of the spectra, whether it was recorded on a conventional spectrophotometer 5 

(CD) or a synchrotron radiation CD (SR-CD) facility, and the estimated protein concentration (Cprot, in 6 

µM) of the measured sample. 7 

spectrum-ID short code facility min max Cprot  

1 asyn SR-CD 178 280 75 

2 mevn CD 185 260 24 

3 sic1 CD 200 250 10 

4 tk18 CD 195 260 120 

5 actr SR-CD 178 300 75 

6 cbpn SR-CD 178 280 120 

7 p53t SR-CD 178 260 60 

8 rsp8 SR-CD 178 300 270 

 8 
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 1 

Table 2: IDP8 structural ensembles. Summary of the 14 model ensembles included within the IDP8 RDS. 2 

The columns list the ID and the short code of the models, the PED accession code of the model, residue 3 

numbers of the IDP domain in the full protein, the length of peptide sequence (in amino acids), the 4 

number of conformations in the model ensemble (ens. size), and experimental data used to construct 5 

or refine the model ensemble. Abbreviations of experimental data denote NMR chemical shifts (CS), 6 

NMR paramagnetic relaxation enhancement (PRE), NMR residual dipolar coupling (RDC), small angle X-7 

ray scattering (SAXS), and Circular Dichroism (CD).  8 

Group model ID short code PED code residues length (aa) ens. size exp. Data 

A 1 asyn-A PED:00024-1 1-140 140 567 PRE, SAXS 
 2 mevn-A PED:00020 400-525 132 995 CS, RDC 
 3 sic1-A PED:00160-2 1-90 92 500 CS, RDC, PRE, SAXS 
 4 tk18-A PED:0192 1-130 130 75 CS, RDC, SAXS 

B 5 mevn-B PED:00233 400-525 132 100 CS, SAXS, CD 
 6 actr-B PED:00230 1018-1088 71 100 CS, SAXS, CD 
 7 cbpn-B PED:00228 2059-2117 59 100 CS, SAXS, CD 
 8 p53t-B PED:00229 1-73 73 250 CS, SAXS, CD 
 9 rsp8-B PED:00231 1-24 24 250 CS, SAXS, CD 

C 10 mevn-C PED:00234 400-525 132 100 CS, SAXS  
 11 actr-C PED:00237 1018-1088 71 100 CS, SAXS  
 12 cbpn-C PED:00235 2059-2117 59 100 CS, SAXS  
 13 p53t-C PED:00236 1-73 73 250 CS, SAXS  
 14 rsp8-C PED:00238 1-24 24 250 CS, SAXS  
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 2 

Table 3: IDP8 ensemble model assessment. Summary of IDP8 ensemble model prediction vs. measured 3 

SAXS curves, NMR chemical shifts, and CD spectra. The table lists the ensemble ID, the square root of 4 

the 2 deviation of the predicted and measured SAXS curves, the average RMSDs between backbone 5 

NMR chemical shifts (CS) for C, Cβ, and carbonyl carbon (CO) atoms, as well as the RMSD of CD 6 

intensities (CD) as predicted using the SESCA basis set DS-dTSC3.  7 

Group model  SAXS CS-C CS-Cβ CS-CO CD 
 ID  ppm  ppm ppm kMRE 

A asyn-A 1.34 0.36 0.66 0.66 1.9 
 mevn-A 0.61 0.28 0.37 0.40 2.0 
 sic1-A 0.66 1.30 0.49 NA 3.1 
 tk18-A 0.96 0.56 1.01 0.52 1.4 

B mevn-B 0.39 0.34 0.38 0.52 1.2 
 actr-B 1.94 0.35 0.35 0.46 0.5 
 cbpn-B 1.65 0.69 0.38 0.62 1.6 
 p53t-B 0.92 0.36 0.34 0.53 1.3 
 rsp8-B 1.03 0.41 NA 0.60 1.0 

C mevn-C 0.37 0.34 0.32 0.37 1.4 
 actr-C 1.83 0.28 0.32 0.39 3.6 
 cbpn-C 1.64 0.67 0.40 0.62 2.0 
 p53t-C 0.91 0.28 0.32 0.47 2.7 
 rsp8-C 1.07 0.57 NA 0.64 2.5 

0 mevn-0 0.71 0.53 0.35 0.64 2.0 
 actr-0 1.72 0.50 0.36 0.53 3.4 
 cbpn-0 2.94 0.93 0.49 0.70 2.5 
 p53t-0 0.92 0.39 0.29 0.72 2.1 
 rsp8-0 1.67 0.83 NA 0.59 2.9 

 8 
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 1 

Table 4: Accuracy of CD spectrum predictions. Summary of RMSDs between measured CD spectra, and 2 

CD spectra predicted by SESCA from IDP8 reference ensemble models. RMSD values are shown for the 3 

four basis sets used for the predictions and described in the text, expressed in 1000 Mean Residue 4 

Ellipticity (kMRE) units. The most accurate predictions are indicated in bold, and RMSD values for the 5 

basis set used in the ensemble refinement of group B are underlined. The average (avg) and standard 6 

deviations (SD) of the RMSD values for each basis set are shown at the bottom of the table. 7 

Group entry DS-dTSC3 DSSP-1SC3 HBSS-3SC1 DS5-4SC1 PDBMD2CD Dichro 

A 1 1.92 1.91 1.55 1.92 6.31 8.48 
 2 1.95 1.87 1.91 2.88 3.63 5.50 
 3 2.67 2.39 0.57 2.69 3.60 3.09 
 4 1.36 1.40 1.55 3.18 2.74 11.59 

B 5 1.22 1.17 1.60 1.61 4.74 8.76 
 6 2.79 2.60 2.66 0.45 6.26 8.33 
 7 1.07 1.60 1.06 1.47 2.87 5.42 
 8 1.33 1.43 1.66 1.89 6.41 15.61 
 9 2.74 2.07 4.29 0.96 6.91 10.49 

C 10 1.41 1.20 1.66 2.73 4.61 9.86 
 11 4.89 3.95 3.97 3.59 7.02 6.97 
 12 1.09 1.85 1.06 1.21 3.23 5.08 
 13 2.66 1.35 2.25 0.64 6.98 13.41 
 14 3.07 1.83 4.34 2.48 7.08 9.33 

        
 avg 2.2 1.9 2.2 2.0 5.2 8.7 
 sd 1.1 0.7 1.2 1.0 1.7 3.4 
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Table 5: MD simulations and parameters. Summary of all MD simulations used for ensemble refinement 1 

of the newly derived IDP8 models. Different columns indicate simulation parameters for different IDP 2 

domains (abbreviations shown in the first row). The subsequent rows indicate simulation parameters 3 

used for all trajectories, temperature (T) in degrees Celsius, pressure (P) in atmospheres, and ion 4 

concentration in mol/dm3 (Cion). The rows further below describe MD trajectories, separated by 5 

horizontal lines, indicating the used force field (FF), the number of calculated trajectories (Ntraj), total 6 

simulation time (tsim), and the number of frames used for ensemble refinement (Nfr). Force fields are 7 

abbreviated as A99SB-disp (Amber99SB with dispersion corrections)61, A99SB-ws (Amber99SB with 8 

rescaled TIP4P water)60, A03-ws (Amber03 with rescaled water interactions)59, A14SB-OPC 9 

(Amber14SB62 with an OPC water mode63l), C22S-TIPS3P (CHARMM22 star with modified TIP3P water) 10 
64, and C36M-OPC (CHARMM36M with OPC water model) 66.   11 

 12 

System mevn actr cbpn p53t rsp8 

T (C°) 25 25 25 25 25 

P (atm) 1 1 1 1 1 

Cion (M) 150 50 50 150 50 

FF A99SB-disp A03-ws A03-ws A99SB-ws A03-ws 

Ntraj 3 2 2 30 1 

tsim (us) 30 9 20 600 10 

Nfr 12 000 2400 5000 12000 2000 

FF C36M-OPC C22S-TIPS3P A99SB-disp  C36M-OPC C36M-OPC 

Ntraj 6 3 20 20 5 

tsim (us) 42 30 100 200 25 

Nfr 33000 7500 20000 20000 2500 

FF     C36M-OPC   C22S-TIPS3P 

Ntraj   20  1 

tsim (us)   100  1 

Nfr     10000   1000 

FF     A14SB-OPC     

Ntraj   20   

tsim (us)   100   

Nfr     10000     

 13 
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 1 

Table 6: Bayesian Maximum Entropy refinement parameters. The table summarizes details of Bayesian 2 

maximum entropy (BME) refinement of IDP8 ensemble models. Columns denote different disordered 3 

models (abbreviations of the model shown in the first row). The subsequent rows show initial ensemble 4 

size (N0), Theta scaling parameter () and final ensemble size (Nf) for group B and group C refinements. 5 

Both sets of refinements started from the same respective initial ensemble (described in Methods) 6 

using different experimental data. 7 

system mevn actr cbpn p53t rsp8 

N0 45 000 10000 45000 32000 5500 

-B 10 5 5 5 20 

Nf-B 5x20 5x20 5x20 1X50 5x50 

-C 20 10 10 5 10 

Nf-C 5X20 5X20 5x20 5x50 5x50 
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