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1. Introduction

Production of proteins is essential for life on earth. This process is called protein biosyn-
thesis and occurs inside cells in a biomolecular complex termed ribosome. The ribosome
decodes the genetic information stored in messenger RNA (mRNA), a single-stranded
molecule which contains a sequence of nucleotides. During protein synthesis, the nu-
cleotides are read by the ribosome in groups of three (codons). Each codon in the mRNA
is translated into one amino acid in the synthesized protein. Hence, mRNA works as a
template and encodes the sequence of amino acids for a specific protein. The ribosome
moves along the mRNA one codon at a time and adds the encoded amino acid to the
growing protein. The movement follows the so-called downstream direction, which is
opposite to the upstream direction [1, 2].

In general, the process of the protein synthesis is well understood, but many details
are still not fully known, one of them being a mechanism called frameshifting. During
frameshifting, the ribosome „slips“ on the mRNA, in such a way that the reading frame
of the ribosome is shifted by one, two, or four nucleotides in comparison to the original
frame, termed 0 frame [3]. The region of the mRNA where frameshifting typically takes
place is called slippery sequence [4]. After frameshifting occurred, the codons are read in
the shifted reading frame and are therefore generally different from the ones that are read
when frameshifting does not occur. As a consequence, a different protein with a different
sequence of amino acids is synthesized [2]. This work will focus on −1 frameshifting,
during which the ribosome shifts into the −1 reading frame, such that the codons start
one nucleotide upstream of the original position in the 0 frame. Usually, frameshifting only
occurs rarely [5] and does not result in functional proteins. However, in many organisms
sequences have evolved that lead to a high probability of frameshifting. In this case the
decoding of both reading frames results in functional proteins. This phenomenon is called
programmed ribosomal frameshifting (PRF) and has the advantage that one sequence of
mRNA can decode multiple proteins [1, 6]. For several viruses this process is crucial:
reducing the PRF in HIV causes the virus to be less infectious [7].

PRF is quantified by the frameshifting efficiency, which is the probability for the ribo-
some to shift [6]. In the case of E. coli and for a specific gene dnaX, it was shown that the
frameshifting efficiency can be reproduced and predicted with a thermodynamic model
[8]: the free-energy difference between the 0 frame and −1 frame at a fixed temperature
gives a probability corresponding to the frameshifting efficiency.

PRF takes place when translation is slowed down, because this gives the ribosome
enough time to overcome the free-energy barrier between the 0 frame and −1. The
stalling of translation is often due to the presence of secondary structure elements in the
mRNA (e.g. stem-loops or pseudoknots), which interact with the translating ribosome
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and impede its downstream movement [6]. In addition, the interaction of the structured
elements with the ribosome and their destabilization during the movement of the ribo-
some along the mRNA might also affect the frameshifting efficiency. In this work I want
to test this hypothesis by analyzing high-throughput data from Mikl et al. [9], where mea-
surements related to the frameshifting efficiencies of more than 12,000 mRNA sequences,
based on viral, bacterial, and human PRF events, are provided. I will employ Bayesian
statistics to estimate the free-energy difference between the 0 frame and −1 frame from
the experimentally determined frameshifting efficiency. In particular, I aim at comparing
the effect of the different downstream structures on the free energies.

2. Biological Background

In order to understand the mechanisms occurring during protein synthesis, I explain the
basics of DNA, mRNA, tRNA, and of the ribosome in this section. The knowledge of how
proteins are synthesized in cells is essential to study the process of ribosomal frameshifting.
Since the aim of this work is to compare the effects of different downstream structures on
the frameshifting efficiency, the subsequent section provides information about secondary
structure elements in the mRNA associated with frameshifting. Afterwards, since the
analysis will be based on the frameshifting measurements of mainly viral sequences, I give
an introduction to viruses in general. Finally, I present each virus taken into account to
investigate the thermodynamics of frameshifting.

2.1. DNA, mRNA, tRNA, and the Ribosome

Generally, DNA (deoxyribonucleic acid) is a double stranded molecule forming a double
helix, each strand containing a sequence of nucleotides. A nucleotide consists of a base,
a pentose-sugar-ring and one or more phosphates. The nucleotides in DNA exhibit four
different bases: adenine (A), cytosine (C), guanine (G), and thymine (T). The carbon
atoms in the sugar ring of the nucleotide are numbered and labeled using a prime (’).
This convention makes it possible to define an end-to-end orientation of the strands:
each strand lacks, at one end, one nucleotide at the 5’ position and, at the other end, a
nucleotide at the 3’ position. That is why, the ends of a strand are called 5’ end and 3’
end. In DNA the two strands of the double helix are oriented in opposite directions (5’
to 3’ and 3’ to 5’) and hydrogen bonding between their bases stabilizes the double helix
structure of the DNA. Strong hydrogen bonds can only form between the complementary
bases G and C, and between the complementary bases A and T. A stable base pair of G
and C and of A and T is called a Watson-Crick base pair [1, 2, 10].

During the process of transcription, the genetic code of one strand of the DNA is used as
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Figure 1: Schematic of the components involved in the translation process: the ribosome
with its two subunits and three binding sites E, P, and A, the mRNA with three codons,
and aminoacylated tRNAs with anticodons.

a template to produce single stranded mRNA (messenger ribonucleic acid). The mRNA is
complementary to one strand of the DNA, but replaces T with the nucleobase uracil (U),
which can form a Watson-Crick base pair with A. The mRNA carries genetic information
to the ribosome, where protein synthesis takes place. The bases in the mRNA are read
by the ribosome in codons from the 5’ to the 3’ end. Each codon consists of three bases
and codes for one amino acid. This correct decoding is ensured by adapter molecules,
termed transfer RNAs (tRNAs). Each tRNA contains a distinct anticodon consisting
of three nucleotides which can base pair with the complementary codon nucleotides in
the mRNA. The tRNAs entering the ribosome are aminoacylated, meaning that they are
bound to an amino acid. The type of amino acid bound to the aminoacyl-tRNA depends
on the anticodon. In this way, the sequence of codons in the mRNA is translated into the
sequence of amino acids in the synthesized protein [1, 2, 10].

The ribosome catalyzes the translation process, whose components are indicated in
Fig. 1. The ribosome consists of two subunits, which differ in size. The small ribosomal
subunit is responsible for mRNA recruitment and decoding of mRNA codons. The large
ribosomal subunit is in charge of peptide-bond formation and contains an exit tunnel
through which the growing peptide emerges from the ribosome [6, 10, 11]. The ribosome
has three binding sites for mRNA-tRNA base pairs: the aminoacyl (A) site, the peptidyl
(P) site, and the exit (E) site [1].
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2.2. Protein Synthesis

Once the synthesis of mRNA is completed in the transcription step, there are five more
stages until a protein is fully synthesized: activation of amino acids, initiation, elongation,
termination, and enzymatic processing and folding.

During the activation of amino acids (1.) the amino acids are bound to their corre-
sponding tRNA: the tRNA gets aminoacylated.

During initiation (2.) the mRNA and the initial aminoacyl-tRNA Met-tRNAMet bind
to the small subunit of the ribosome. In this complex, the anticodon nucleotides of Met-
tRNAMet are paired with the starting codon nucleotides AUG, which signals the beginning
of the polypeptide, in the P-site. The binding of the large subunit follows to form the
initiation complex.

During elongation (3.) the codons are read and translated one by one along the 5’
to 3’ direction of the mRNA. This cycle is indicated in Fig. 2. The aminoacyl-tRNA
containing the anticodon that is complementary to the next codon, binds to the A site
of the initiation complex. Afterwards, the amino acid attached to the tRNA in the P
site forms a peptide bond with the amino acid bound to the tRNA in the A site, such
that a deacylated tRNAMet remains in the P site and a dipeptidyl-tRNA is formed in the
A site. Next, during a step called translocation, the ribosome moves one codon towards
the 3’ end of the mRNA. As a consequence, the dipeptidyl-tRNA moves from the A site
to the P site and shifts the deacylated tRNA from the P site to the E site. Afterwards,
the deacylated tRNA in the E site dissociates from the ribosome. After translocation is
completed, the A site is ready to be occupied by the next aminoacyl-tRNA, and the next
elongation cycle begins.

Finally, a stop codon in the mRNA signals the termination (4.) of the polypeptide,
which is then released from the ribosome. The ribosome is recycled and, afterwards, it is
ready for the synthesis of the next protein.

The new polypeptide may undergo enzymatic processing and folds (5.) into a three-
dimensional configuration [1].
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Figure 2: The elongation cycle consists of three steps: codon recognition, peptide bond
formation, and translocation.

2.3. Ribosomal Frameshifting

During translocation of the tRNAs in the ribosome, a ribosomal frameshift event can
occur. In this case the ribosome shifts by one, two, or four nucleotides on the mRNA.
As a consequence, the reading frame of the ribosome is shifted by the same number
of nucleotides in comparison to the original frame, termed 0 frame. Starting from the
position in the mRNA where a frameshift took place, the codons that are read in the
new frame typically differ from the codons in the 0 frame. As a result, the synthesized
sequence of amino acids is different from the sequence of amino acids that is synthesized
when frameshifting does not occur. The most common type of ribosomal frameshifting is
−1 frameshifting, where the ribosome shifts by one nucleotide towards the 5’ end of the
mRNA. As a consequence, the codons read by the ribosome in the new −1 frame start
one nucleotide upstream of the original position in the 0 frame [6, 12]. A schematic of −1

frameshifting is displayed in Fig. 3.
Usually, the sequence of amino acids that is synthesized when a frameshift occurs does

not result in a useful protein. On average, this error occurs once in 10−4 to 10−5 codons
[14]. However, certain mRNA sequences have evolved to undergo frameshifting at high
efficiencies, a process called programmed ribosomal frameshifting (PRF). In this case, the
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Figure 3: Schematic of −1 frameshifting in the presence of an mRNA stem loop. (a)
Before frameshifting, the ribosome is in the 0 frame. (b) after frameshifting the ribosome
shifted one nucleotide upstream to the −1 frame. The codons in the slippery sequence
(yellow) in the new −1 frame differ from them in the 0 frame. The secondary structure
(red, stem loop) is introduced in Section 2.4. Queuosine (Q) is a modified base [13].

resulting sequence of amino acids can form into a functional protein. In this way, PRF
increases the information content of the genome and is used to regulate the expression of
proteins [6, 15].

During PRF, the frameshift takes place while a sequence of seven nucleotides called the
slippery sequence resides in the ribosome. While this sequence is translated, a frameshift
occurs with a certain probability, which is called the frameshifting efficiency (FS). From
experimentally measured amounts of the produced peptide, the frameshifting efficiency is
generally calculated as

FS =
x-frame products

x-frame products + 0-frame products
, (2.1)

where x represents the (positive or negative) number of shifted nucleotides [6]. The
amount of products is measured with various techniques, such as western blotting [7, 16],
monitoring of fluorescence [9], chromatography or with radioactive labels [8]. The slippery
sequence is very sensitive to mutations and expected to be optimized for the programmed
frameshifting event, such that mutations in the slippery sequence mostly lead to a reduced
frameshifting efficiency [7]. The slippery sequence typically follows the pattern X XXY
YYZ, where the spaces indicate the 0 frame codons before the frameshift and the X, Y,
and Z denote different bases [17, 18]. The slippery sequences ensure that the codons in
the 0 and −1 frame can form stable interactions with the same tRNAs, since the third
codon position allows a so-called wobble base pair [6]. A wobble base pair is rather loose
and can be formed between the third base of a codon and the corresponding base of its
anticodon. In this case, the bases do not need to be complementary in order to pair
with each other, as in Fig. 3. In general, a wobble base pair is believed to be beneficial,
because it permits a rapid dissociation of tRNA and mRNA, which results in a higher
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rate of protein synthesis [1, 2].

2.4. mRNA Downstream Structure

The region downstream (toward the 3’ end) of the slippery sequence plays an important
role as a frameshifting stimulatory element: secondary structure elements in the mRNA
interact with the ribosome and impede its downstream movement. This results in a slowed
down translocation, which is necessary for PRF (here −1 PRF), since it gives the ribosome
enough time to overcome the free-energy barrier between the 0 frame and the −1 frame.

Two of the most common types of structures into which mRNA folds downstream of the
slippery sequence are the stem loop and the pseudoknot. Folding into a stem loop occurs
typically when two regions of the strand have complementary bases when reading them
in opposite directions. As in Fig. 4a, b, the strand then folds into a structure looking like
a hairpin. A pseudoknot as in Fig. 4c, d contains at least two loops and nucleotides in a
loop pair with complementary bases outside the loop [12].

Both stem loop and pseudoknot can stimulate frameshifting by slowing down translo-
cation and, thus, giving time to overcome the free-energy barrier between the reading
frames. In the presence of a stem loop, experimental evidence from Bao et al. suggests
that −1 PRF can occur through two pathways. Firstly, as illustrated in Fig. 5a, the
stem loop is expected to be able to interact with the mRNA entry channel and act as a
"roadblock", inhibiting the downstream movement of the ribosome, and, therefore, tRNA-
mRNA translocation. Secondly, the stem loop is assumed to be able to dock into the A
site of the ribosome. As a consequence, the binding of the next tRNA would be inhibited,
such that translocation is stalled [21]. In this work I consider only the first mechanism of
the "roadblock" effect, because firstly, there is no experimental evidence, that the stem
loop stalls the ribosome by docking into the A site specifically for HIV-1 and SIVmac239
(included viruses with a stem loop in this work, see Section 2.5). Secondly, there is cur-
rently no evidence that frameshifting would occur when the A site is occupied by a stem
loop.

As regards the pseudoknot, on the other hand, there is structural evidence [22] that,
in the 0 frame, unfolding occurs as the pseudoknot approaches the entry channel. This is
probably due to the higher complexity and larger size of the pseudoknot compared to the
stem-loop. The unfolding is done by the ribosome itself, which acts as a helicase [23]. My
hypothesis is that, since for the pseudoknot it is energetically favorable to stay folded, it
resists the unfolding and, thus, generates a back-pull of the mRNA towards the −1 frame,
as visualized in Fig. 5b. As both the "roadblock" effect and this mechanism inhibit
translocation, I assume that, also in the case of the pseudoknot, equilibrium between 0

frame and −1 frame is reached. In addition, I hypothesize that the back-pull reduces the
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Figure 4: (a) Schematic of the translating ribosome and the mRNA with a stem loop
(red). (b) Sequence of the stem loop of HIV-1 mRNA [7, 19]. The spacer region (grey)
between slippery sequence (yellow) and stem loop (red) consists of one nucleotide. (c)
Schematic of the translating ribosome and the mRNA with a pseudoknot (blue). (d)
Sequence of the stem loop of SARS-CoV-1 mRNA [20]. The spacer region (grey) between
slippery sequence (yellow) and pseudoknot (blue) consists of six nucleotides.
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F

0 frame -1 frame

a

b

Figure 5: (a) A stem loop stalls the ribosome during frameshifting by interacting with
the mRNA entry channel and inhibiting translocation [21]. (b) On the left: schematic
view of a pseudoknot which is partially unfolded in the 0 frame [22]. The pseudoknot
might resist the unfolding and generate a back-pull towards the −1 frame (on the right).

free-energy difference between the 0 and the −1 frame. The free energy is introduced in
Section 3.1.

I only consider a thermodynamic effect on the frameshifting efficiency and not a kinetic
one for the following reasons: Bock et al. support the notion that (with a stem loop)
translocation is sufficiently slower than a tRNA slippage, such that there is enough time
to overcome the free-energy barrier [8]. However, if translocation was not stalled enough
by a pseudoknot, it would result in a lower frameshifting efficiency. Since my results
show mostly an increased frameshifting efficiency for sequences with a pseudoknot (see
Section 7.5), this effect would be negligible.

2.5. Viruses

A virus is an intracellular pathogen, whose size ranges from five to a few hundred nanome-
ters. As viruses do not have a metabolism, they can only multiply via host cells. Outside
of an infected cell, viruses exist as particles called virions. A virion in its simplest case
consists of DNA or RNA (never both) and a capsid (coat built of proteins). During an
infection, the virion attaches to the host cell and the capsid penetrates into the host cell’s
cytoplasm. If the virus contains RNA and is a so-called retrovirus, it is able to reverse the
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normal flow of genetic information from DNA to RNA by using the enzyme reverse tran-
scriptase, which synthesizes DNA from RNA. The DNA is then integrated into the host
cell’s nuclear genome, such that the virus takes advantage of the host cell’s mechanisms
of protein synthesis to produce viral proteins. These proteins then form a new virus core
structure, which can be released as a new virion [24–26].

During protein biosynthesis in the host cell, many viruses employ PRF in order to com-
press genomic information into a smaller amount of space. Additionally, PRF allows for
regulation of the relative amounts of proteins produced in the the 0 and shifted frames [15,
25]. For HIV-1 for example, PRF is crucial: Dulude et al. investigated the frameshifting
efficiency of eight mutations of the coding sequence of the HIV wild type. Each of the
eight mutations had a lower frameshifting efficiency compared to the wild type, which
resulted in a decreased synthesis of a certain protein and consequently in a reduced in-
corporation of viral enzymes into the virions. Therefore, all mutants were attenuated in
long-term virus replication [7].

In my work I will take 9 viruses into account to analyze the effect of the mRNA
secondary structures downstream of the slippery sequence on the frameshifting free-energy
differences. Here, I will give a short introduction to each of these viruses, which I will
refer to as HIV, SIV, HERV, HTLV, PLRV, RSV, SARS, SRV, and WNV. HIV and SIV
have a stem loop downstream of their slippery sequence (Fig. 6). The other seven viruses
exhibit a pseudoknot as their downstream secondary structure (Fig. 6).

The human immunodeficiency virus (HIV) targets the immune system of infected people
by destroying and impairing their immune cells, such that their defense against many
infections and some types of cancer is weakened. This retrovirus is responsible for a high
mortality worldwide as the virus has claimed around 40.1 million lives so far. The acquired
immunodeficiency syndrome (AIDS) is the most advanced stage of HIV infection [19, 27].

Simian immunodeficiency viruses (SIV) are closely related to HIV and represent a large
group of viruses, found naturally in an extensive number of African primate species. Other
than HIV and SRV, SIVs do not lead to an AIDS-like terminal stage of infection. It was
proposed that the viruses have been associated and co-evolved with their hosts over a
long period of time, such that the SIV-positive primates do not show clinical symptoms
[28]. The type of SIV considered in this work is SIVmac239.

HERV stands for human endogenous retrovirus. HERVs are naturally integrated in the
human DNA and passed on from one host cell generation to the next one in the host cell’s
genome (provirus). They can originate from ancient retroviral infections. Their presence
in the genome is not expected to have any major effect. In this work, I will include the
type HERV-K10 [29, 30].

The human T-lymphotropic virus (HTLV) is the first human oncogenic retrovirus that
was discovered. It causes, for instance, adult T-cell leukemia, a type of cancer. The
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retrovirus has many endemic areas, such as Southern Japan, Central and South America,
and the Caribbean. In my work, I consider the coding sequence of HTLV-1 [31, 32].

PLRV stands for potato leaf roll virus. It mostly infects potato plants and causes
leafrolling and stunting [33].

The Rous Sarcoma Virus (RSV) was discovered by Peyton Rous in 1911. It is a retro-
virus causing sarcoma in fowls [34].

The severe acute respiratory syndrome (SARS) is caused by the SARS-associated coro-
navirus (SARS-CoV). In my work I will include SARS-CoV-1, the first type of this disease,
which was first reported in China in late 2002. Its symptoms are typically fever, followed
by a dry nonproductive cough and shortness of breath. SARS-CoV-1 is not to be con-
fused with SARS-CoV-2, which caused the COVID-19 pandemic [35, 36]. SARS-CoV-1
and SARS-CoV-2, however, have very similar sequences and the frameshift site is almost
completely conserved. The the frameshift stimulating pseudoknot differs only by one
nucleotide [37].

The simian retrovirus type 1 (SRV-1) is a retrovirus causing simian acquired immune
deficiency syndrome (SAIDS) in rhesus macaques. Although SRV-1 is genetically un-
related to HIV, an infection leads to a pathology resembling that of terminal AIDS in
humans, as it causes the depletion of certain immune cells [38, 39].

The West Nile Virus (WNV) is a neuropathogen, primarily transmitted by mosquitoes.
It is indigenous in Africa, Asia, Europe, and Australia. Birds are its natural hosts, such
that the virus maintains naturally in a mosquito-bird-mosquito transmission cycle. Hu-
man WNV infections are often subclinical. However, clinical infections can, for instance,
lead to a severe meningitis [40].

Originally, I additionally considered the human protein CCR5 (C-C chemokine receptor
type 5), a receptor on the surface of white blood cells that plays a role in inflammatory
responses [41]. In 2014, Belew et al. described a −1 PRF signal in the mRNA encoding
CCR5 with a pseudoknot as a secondary structure [42]. However, during my work on
this thesis, experimental evidence by Khan et al. was published stating that PRF does
not take place during CCR5 decoding [43]. That is why, I excluded CCR5 from my
investigation. Interestingly, Khan et al. deduced with their results that, apart from mutant
states of genes and retroelement-derived genes, there are currently no known human
genes functionally utilizing efficient −1 PRF [43]. Retroelement genes are transposable
(jumping) genes, which are transcribed into RNA, reverse-transcribed into DNA and
afterwards, introduced into a new site of the genome [44].
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Figure 6: Secondary structures of the frameshift inducing mRNA sequences included in
this work: Stem loop (red) of SIV [45] and HIV [7, 19], pseudoknots (blue) of SRV [39,
46, 47], PLRV [48–50], HTLV [51], WNV [52], SARS [20], HERV [53], and RSV [54].
For RSV and WNV, the bases with a blue background also base-pair in the pseudoknot.
Additionally, the slippery sequences (yellow) and spacer regions (grey) are depicted.
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3. Physical Background

In this section the physical background is introduced. The concept of free energy is
explained and, subsequently, used in the thermodynamic model, which quantifies the
frameshifting efficiency.

3.1. Free Energy

A state of a system in classical mechanics is described by an energy. The description of
microscopic systems containing an ensemble of states, additionally requires the entropy.
The analogue of the classical energy is the free energy in statistical physics. There are
different free energies that describe different ensembles. The so-called Gibbs free energy
G describes an isobaric-isothermal system (fixed pressure P and a fixed temperature T ).
It is defined as

G = U + PV − TS (3.1)

with inner energy U , entropy S and volume V [55]. The change of the free energy is
defined with the change of inner energy ∆U , volume ∆V , and entropy ∆S as

∆G = ∆U + P∆V − T∆S . (3.2)

A negative ∆G characterizes a process, that releases energy. In this case spontaneous
processes occur to take the system to equilibrium, since the system attempts to minimize
its energy. Hence, ∆G measures the favorability of a given reaction quantitatively, here,
the favorability of the occurrence of a frameshift [1].

3.2. Thermodynamic Model Based on Free Energy

In the 0 frame and the −1 frame the tRNA anticodons typically pair with different
codons in the mRNA slippery sequence (Fig. 3). That is why the base pairs in the codon-
anticodon binding exhibit different free energies in the two frames. It can be assumed
that these differences in free energy are additive and contribute to the total free-energy
difference ∆G [8].

For E. coli and a specific gene dnaX there is experimental evidence provided by Bock
et al. [8] that the frameshifting efficiency can be reproduced and predicted with a thermo-
dynamic model: by assuming a thermodynamic equilibrium between 0 and −1 frame, the
distribution of the two states follows a Boltzmann distribution (probability ∝ e−G/kBT ).
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The frameshifting efficiency (FS) can then be estimated quantitatively:

FS = fmodel(∆G) =
e−

G(−1 frame)
kBT

e−
G(−1 frame)

kBT + e−
G(0 frame)

kBT

=
e−

∆G
kBT

1 + e−
∆G
kBT

(3.3)

with Boltzmann Factor kB and temperature T . ∆G is the difference between the free
energies in the −1 and 0 frame:

∆G = G(−1 frame)−G(0 frame) . (3.4)

I hypothesize that a back-pull in the presence of a pseudoknot downstream of the
slippery sequence translates into an additional free-energy term that reduces the free-
energy difference ∆G. Therefore, when considering the same slippery sequence, I call
∆∆G the difference between the ∆G in the presence of a downstream stem loop and the
∆G in the presence of a downstream pseudoknot. If my hypothesis that a pseudoknot
reduces ∆G is true (see section Section 2.4), ∆∆G is expected to be larger than 0 kJ/mol.
Eq. (3.3) has then to be extended:

FSpseudoknot =
e−

∆G−∆∆G
kBT

1 + e−
∆G−∆∆G

kBT

. (3.5)

4. Bayes’ Theorem and Metropolis Algorithm

I employ Bayes’ theorem in this work to use information from observed data in order to
update available knowledge about parameters in a statistical model. For two events A

and B, Bayes’ theorem can be derived with a simple multiplicative rule of probability
[56]:

P (A ∩B) = P (A)P (B|A) , (4.1)

P (A ∩B) = P (B)P (A|B) . (4.2)

Here, P (A ∩ B) is the probability of both, events A and B, being true. The marginal
probabilities P (A) and P (B) are the probability for event A and B, respectively, to be
true. The conditional probability P (B|A) is the probability for event B to be true, under
the condition that event A is true, for P (A|B), this is reversed [56]. Rearranging Eq. (4.1)
and Eq. (4.2) yields Bayes’ theorem:

P (A|B) =
P (A)P (B|A)

P (B)
, (4.3)
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if P (B) ̸= 0. Instead of the events A and B, one can consider a data set „Data“ and
model parameters „Parameters“. Then Bayes’ theorem reads

P (Parameters|Data) =
P (Parameters)P (Data|Parameters)

P (Data)
. (4.4)

Since the marginal probability P (Data) is a normalizing factor and does not depend on
the „Parameters“ it is often left out:

P (Parameters|Data) ∝ P (Parameters)P (Data|Parameters) . (4.5)

Associated with Bayes’ theorem, the contributing terms of this proportionality have cer-
tain names, such that Eq. (4.5) is in words: given the observed data, the posterior prob-
ability P (Parameters|Data) is proportional to the prior probability P (Parameters) times
the likelihood P (Data|Parameters) [56–58]. The prior probability P (Parameters) contains
the prior knowledge of one or more given parameters of a statistical model. The likeli-
hood function P (Data|Parameters) is the conditional probability of obtaining the input
data, given the statistical model. The posterior probability density P (Parameters|Data)
is the conditional probability of the parameters, given the data. It can be interpreted as
„updated knowledge“, since it includes the information from both the prior and the ob-
tained data. The posterior probability can be used to make predictions, but its functional
form can be very complicated and high-dimensional [56–58]. Eq. (4.5) allows to compute
the posterior as the product of prior and likelihood up to a proportionality constant.
Moreover, the high number of parameters considered in this work translates into very
complicated and high-dimensional posterior and likelihood functions. That is why, I em-
ploy the Metropolis algorithm which estimates the posterior densities of the parameters.
It works as follows [57, 59, 60]:

Let f be a function proportional to the posterior probability from which random samples
are to be obtained by the algorithm. Additionally, let x be the parameter (or vector of
parameters) for which a probability density is to be obtained. First, an arbitrary initial
value xold is set and the probability of the initial value pold = f(xold) is determined.
Afterwards, a large number of iteration steps are executed, each undergoing the following
steps:

1. A random next candidate xnew is sampled from a proposal density (e.g. a Gaussian
distribution with mean value xold).

2. The probability pnew = f(xnew) is determined.

3. An acceptance ratio α = pnew
pold

is calculated.
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4. A uniform random number u ∈ [0, 1] is generated:

a) If u ≤ α: the new value xnew is accepted and pold = pnew and xold = xnew are
set.

b) If u > α: the candidate is rejected. Thus, pold and xold stay unchanged.

In other words, if the probability pnew of the candidate xnew is larger than the old one pold,
the candidate ∆Gnew will always be accepted. If pnew is smaller than pold, the candidate
xnew will sometimes be accepted, depending on the α and u. After a large number of
iteration steps x will converge and the accepted parameters yield a probability density of
x or, if x contains more than one parameter, a probability density for each parameter.

5. Experimental Background

The data I use in the thesis is provided by Mikl et al. [9]. The authors assessed the
frameshifting potential of more than 12,000 synthetic oligonucleotide involved in PRF, i.e.
short polymers of nucleotides. The tested oligonucleotides included viral, bacterial, and
human wild-type sequences and variants obtained by systematically introducing mutations
into the wild-type sequences. The mutations were located either in the slippery sequence
or in its proximity. In this thesis, I considered only sequences that varied in the slippery
sequence and otherwise corresponded to the wild-type sequence. The following subsections
describe the measurement method of frameshifting potential used by Mikl et al. [9]. In
particular, the first subsection illustrates the frameshifting reporter construct. The second
subsection describes how the method of fluoresce activated cell sorting (FACS) was used
to assess the frameshifting potential. Finally, the method that was used to measure the
background noise in the fluorescence signal is reported.

5.1. Frameshifting Reporter Construct

To investigate a variants’ ability to induce a frameshift, a frameshifting reporter con-
struct was developed. This construct was then introduced in human cells and processed
by the human translation machinery. As illustrated in Fig. 7, the construct contains
the sequence encoding the red fluorescent protein mCherry, followed by one of the tested
oligonucleotides, and by the sequence encoding the green fluorescent protein (GFP). To
investigate the −1 frameshifting, the GFP sequence is positioned +1 nucleotide down-
stream to the oligonucleotide sequence that is to be tested [9].
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5' 3'mCherry Ntested sequence GFP

Figure 7: Frameshifting reporter construct: the coding sequence of mCherry is followed
by the tested sequence, one nucleotide (N), and the coding sequence of GFP [9, modified
version].

Only if −1 frameshifting occurs in the oligonucleotide sequence, the GFP coding se-
quence will be in frame and GFP will be synthesized. If frameshifting does not occur, the
GFP coding sequence will not be in frame and GFP will not be synthesized. Thus, the −1

frameshifting potential can be quantified by the number of synthesized GFPs, which can
be measured through the intensity of green fluorescence, emitted by GFP when exposed to
blue or ultraviolet light [61]. The protein mCherry emits red fluorescence, which is mon-
itored to check whether the construct was translated or not. Since the mCherry coding
sequence is placed before the slippery sequence, it is synthesized before the frameshifting
and, therefore, independent of the occurrence of a frameshift [9].

5.2. Fluorescence Activated Cell Sorting and Obtained Percent

GFP Fluorescence

To make use of the human translation process the frameshifting reporter constructs were
inserted into human cells, such that every cell contained constructs with one oligonu-
cleotide variant and every variant had the same genomic environment. Experiments were
carried out at a temperature of 310 K. The mCherry-positive cells were sorted by Fluores-
cence Activated Cell Sorting (FACS), which is a technique derived from flow cytometry.
During flow cytometry, a large number of cells pass one after the other through one or
more laser beams. Detectors measure scattered light from different angles and fluorescence
emissions [62]. In addition to flow cytometry, during FACS the cells are also physically
sorted according to their measured fluorescence. Specifically, in the experiments from
Mikl et al., the intensity of green fluorescence of the mCherry positive cells was first mea-
sured in a setup similar to flow cytometry. After that, the cells were charged according to
their green fluorescence intensity and sorted into 16 bins by an electric field. The DNA
of the cells in each bin was then sequenced to determine the distribution of each variant
across bins. Subsequently, the median of the log2 fluorescence for all cells in a bin of a
certain variant was calculated and used as the fluorescence value associated with this bin
and this variant. The resulting distribution for each variant across all bins was smoothed.
For the variants with one or more peak in their distribution the weighted average was
determined. The obtained value is called GFP fluorescence in the following as it was done
in the paper by Mikl et al. [9]. To assign a percentage of GFP expression to every variant,
the authors set the lowest obtained GFP fluorescence value to 0% and the highest ob-
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tained GFP fluorescence value to 100% [9]. In the following, I will refer to these values as
percent GFP fluorescence and I will call the set of all measured percent GFP fluorescence
values Mall. These percentages must not be confused with the frameshifting efficiency.
The connection of these two observables is discussed in Section 7.3.

5.3. Background Fluorescence

The measured values in Mall contain a background fluorescence caused by autofluorescence
of the cells, which is a natural emission of light by components of the cell when they are
excited by light with a suitable wavelength [63]. To measure this background noise, Mikl
et al. adjusted the frameshifting reporter construct as depicted in Fig. 8.

5' 3'mCherry Ntested sequence GFPSTOP

Figure 8: Frameshift reporter construct to measure background noise. A stop codon was
added directly after the coding sequence of mCherry [9, modified version].

With the added stop codon, the tested sequence, as well as the sequence of GFP, cannot
be translated. Thus, GFP fluorescence coming from a ribosomal frameshift is excluded [9].
The measurements of the background fluorescence are also provided in the data set, such
that I can treat the background fluorescence and the percent GFP fluorescence, resulting
from a ribosomal frameshift, separately in the following.

6. Methods

In this section I present my methods to estimate the effect of different downstream struc-
tures on the free-energy difference between the 0 and the −1 frame. I start with my
method to select the input measurements, where I explain how I pre-process the data
from Mikl et al. [9]. Afterwards, I demonstrate, step by step, my methods to determine
probability densities for the free-energy differences of selected sequences from the data
set. Finally, I introduce my method to calculate differences of free-energy differences,
which will be the foundation of discussing how different secondary structures affect the
free energies.

6.1. Selection of the Input Measurements

In the case that a specific variant (sequence) was tested several times, there are multiple
measured percent GFP fluorescence values for this variant. In the following, for each
variant I will refer to the set of values obtained for the variant as MV. For many variants,
MV contains only one value. However, for wild-type variants, MV usually consists of a lot
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more, sometimes around 30 values. For several cases, these sets MV contain individual
values, that differ dramatically from most of the other values in the set. To systematically
identify and exclude these outliers, I use the interquartile range.

The interquartile range is the difference of two values called the quartiles Q1 and Q3.
The lower quartile Q1 is defined as the value below which 25% of the measured values
in MV are. Above the upper quartile Q3 are 25% of the measured values in MV. The
interquartile range is given by [64]

Q = Q3 −Q1 . (6.1)

Here, I define outliers as values below Q1 − 1.5Q or above Q3 + 1.5Q. These values are
then excluded in the further use of MV.

Additionally, I exclude measurements that have more than one peak in their log2 flu-
orescence distribution across bins (see Section 5.2), since I do not expect to have two
different GFP expression levels for the same sequence and, thus, I expect these multi-
modal measurements to be associated to measurement errors.

6.2. Determination of Free-Energy Differences

This section introduces my methods to determine the probability density of free-energy
differences ∆G for the tested sequence variants. Here, P (∆G|MV) is the conditional
probability density for a ∆G given a data set MV. Maximizing this function or a function
proportional to P (∆G|MV) yields the most probable value for ∆G given a data set MV.
At the same time, I aim at obtaining a probability density of ∆G, which entails the
uncertainty. As explained in section 4, the functional form of P (∆G|MV) is not trivial.
Therefore, I apply Bayes’ theorem and multiply the likelihood P (MV|∆G) and the prior
P (∆G) to obtain a function, that I call PMV , which is proportional to the posterior
P (∆G|MV). I will here report how I derive likelihood and prior to compute PMV . I will
then describe how I obtained the probability densities of the free-energy differences by
applying the Metropolis algorithm which is introduced in section 4.

6.2.1. Bayes’ Theorem Applied on Free-Energy Differences

My aim is to derive a function PMV , which is proportional to the posterior probability
P (∆G|MV). For this purpose, I use Bayes’ theorem (see Section 4):

P (∆G|MV) ∝ P (∆G)P (MV|∆G) = PMV(∆G) . (6.2)

For the prior P (∆G), I make use of previously obtained knowledge to set a boundary
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for ∆G. In the paper by Bock et al. the highest ∆G determined while changing two A-site
and P-site base pairs simultaneously is around 10 kJ/mol [8]. Since more than three base
pairs cannot be changed simultaneously in the A-site and P-site, I choose the highest
possible ∆G of 3 · 10 kJ/mol = 30 kJ/mol as an upper boundary and −30 kJ/mol as a
lower boundary. Hence, I define the interval I = [−30 kJ/mol, 30 kJ/mol], such that the
prior function is the indicator function

P (∆G) = χI(∆G) =

1, if ∆G ∈ I ,

0, if ∆G /∈ I .
(6.3)

The likelihood function P (MV|∆G) represents the conditional probability density of
a data set MV given a ∆G. This function is not as simple as the prior function and is
derived in the subsequent Section 6.2.2.

6.2.2. Derivation of the Likelihood Function

I intend to obtain a conditional probability density function (likelihood function) of a
data set MV given a free-energy difference ∆G. Therefore, I assume that the percent
GFP fluorescence values given in Mall consist of the random variable B representing the
background fluorescence and a random variable S representing the percent GFP fluores-
cence resulting from a frameshift signal. Hence, the measured value given in Mall is a
random variable M = B + S. These values I assume to be random, because firstly, the
autofluorescence in B fluctuates randomly (due to different cell components and the fluc-
tuating amount of light the components absorb) and secondly, B and S fluctuate, due to
the limited accuracy of the measurement process of percent GFP fluorescence values. On
the random variables B and S, I apply the central limit theorem (CLT). This is possible,
since in B a large number of independent molecules contribute to the autofluorescence
and I assume that every molecule exhibits the same probability density to exhibit fluo-
rescence. For S (and additionally for B) this is possible, because of the large number of
frameshifting events in each cell contributing to the fluorescence measurement. The CLT
states that the probability densities of B and S are well approximated by a Gaussian
distribution [65]:

fB(b) =
1√
2πσ2

B

exp

(
−(b− µB)

2

2σ2
B

)
, (6.4)

fS(s) =
1√
2πσ2

S

exp

(
−(s− µS)

2

2σ2
S

)
, (6.5)
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with values, i.e. observed measurements, b and s of the random variables B and S, mean
values µB and µS, and standard deviations σB and σS.

Assuming that the background fluorescence B and the fluorescence resulting only from
a frameshift signal S are independent, the probability density function of M is

fM = fB ∗ fS , (6.6)

where ∗ denotes the convolution operator [65]. With the Convolution Theorem [66]

F{fB ∗ fS}(z) = F{fB}(k) · F{fS}(k) , (6.7)

Eq. (6.6) can simply be calculated by multiplying two Fourier transforms point-wise and
applying the inverse Fourier transform. The calculation can be found in Appendix A. The
result is again a Gaussian distribution, where m is the value of the random number M ,
i.e. an observed measurement from Mall:

fM(m) =
1√
2π

1√
σ2
B + σ2

S

exp

(
−(m− µB − µS)

2

2(σ2
B + σ2

S)

)
. (6.8)

The mean value µB and the standard deviation σB can be calculated with the given
background fluorescence measurements from Mikl et al. (see Section 5.3) [9]. The method
is described in Section 6.2.3. The mean value of percent GFP fluorescence resulting from
a frameshift signal µS is related to the expected frameshifting efficiency, which can be
described by the thermodynamic model fmodel(∆G) from Eq. (3.3). Thus, µS = µS(∆G)

and consequently fM = fM(m,∆G). Because the provided measurements by Mikl et al.
[9] are in the dimension „percent GFP fluorescence“, fmodel(∆G) has to be converted from
the dimension „frameshifting efficiency“ into the dimension „percent GFP fluorescence“
to equal µS. In Section 6.2.5, I explain the methods to derive a term for µS, in detail.
Section 6.2.4 demonstrates the methods to determine a term for σS.

Eq. (6.8) is a probability density function for one m in Mall. The probability density of
the ∆G values associated to a specific sequence is computed for each sequence separately.
To that aim, I compute the product of all the fM(m,∆G) obtained from the MV set
corresponding to the considered sequence. Each one of the fM(m,∆G) is computed from
one m measurement in the MV set:

P (MV|∆G) = Πm∈MVfM(m,∆G) , (6.9)

which is the conditional probability density of a data set MV given a ∆G and therefore
the required likelihood function.

Inserting the likelihood function Eq. (6.9) and the prior function Eq. (6.3) into Bayes’
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theorem Eq. (6.2) yields

P (∆G|MV) ∝ χI(∆G) · Πm∈MVfM(m,∆G) = PMV(∆G) . (6.10)

6.2.3. Determination of the Mean Background Fluorescence µB and its Standard
Deviation σB

Since Mikl et al. provided the obtained measurements for the background fluorescence,
the mean background fluorescence and its standard deviation can simply be calculated
from the given data [9]. To that aim, I fit the Gaussian distribution from Eq. (6.4) (was
derived from the CLT in Section 6.2.2) on a histogram of the measurements. However,
these measurements contain values that are significantly larger than most of the other
measurements. That is why, it might be reasonable to select the input measurements by
employing the interquartile range (see Section 6.1) before determining µB and σB. Both
ways, selecting input measurements and taking all measurements into account, I apply in
Section 7.1.

6.2.4. Determination of the Relation between Variance of GFP Fluorescence and
Mean GFP Fluorescence

As defined in Section 6.2.2, S is the percent GFP fluorescence resulting only from a
frameshifting signal. In this section I describe a method to determine σS, which is not as
trivial to calculate as µB or σB because the percent GFP fluorescence values provided by
Mikl et al. contain the background fluorescence B (see Section 6.2.2). Thus, there is no
data available that exclusively yields the percent GFP fluorescence resulting only from a
frameshifting signal S [9].

A simple possibility would be to sample probability densities for both σS and ∆G, for
each variant separately, with the Metropolis algorithm. This, however, leads to conver-
gence problems when considering MV sets that contain only one value. In this case, it is
like trying to solve a system of equations with more parameters than equations: one can-
not determine every single parameter, but only their combination, as the parameters are
dependent from one another. Hence, there is no chance of convergence for two variables
when MV contains only one value. Thus, in order to reduce the number of variables, I
test if, in the measurements, there is a relation between σS and µS from which σS can
be determined. To that aim, I plot σ2

S against µS in Section 7.2. I chose to plot the
variance σ2

S and not the standard deviation σS, since in the further course I will obtain
higher probabilities when considering a linear relation between σ2

S and µS instead of a
linear relation between σS and µS.

For the plot, I need probability densities for µS and σ2
S to consider their uncertainties.
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Thus, I use Bayes’ theorem and the Metropolis algorithm varying µS and σS as parameters.
Therefore, µS and σS now correspond to the x from Section 4. In order for µS and σS to
have a narrow density, i.e. low uncertainty, I run the algorithm only over the measurement
sets MV that contain many values. The largest numbers of measurements were obtained
for the wild-type variants, thus I use the 12 sets MV corresponding to the sequences of
the following wild types: RSV, CCR5, HTLV, PLRV, PEG10 (retrotransposon-derived
(see Section 2.5) human protein [67]), HIV, SIV, WNV, SRV, HERV, SARS, and PRRSV
(Porcine reproductive and respiratory syndrome virus).

The probability density f from Section 4 corresponds now to PMV :

PMV(µS, σ
2
S) = χ2(µS, σ

2
S) · Πm∈MVfM(m,µS, σ

2
S) (6.11)

with

fM(m,µS, σ
2
S) =

1√
2π

1√
σ2
B + σ2

S

exp

(
−(m− µB − µS)

2

2(σ2
B + σ2

S)

)
(6.12)

from Eq. (6.8) and µB and σB inserted from Section 7.1. The prior probability is modeled
by the indicator function χ2:

χ2(µS, σ
2
S) =

1, if µS ∈ [0%, 100%] ∧ σ2
S ≥ 0 ,

0, else .
(6.13)

The indicator function has this form, because the mean value µS, as a percentage (percent
GFP fluorescence), has to be between 0% and 100% and σ2

S, as a variance, has to be
greater than or equal to zero, per definition. When applying the Metropolis algorithm,
I use two proposal functions for µS and σS, namely, two different Gaussian distributions
with mean values µSold and σ2

Sold
and standard deviations σµ and σσ. I choose σµ and

σσ in order to get an acceptance rate between 20% and 80% as this usually results in a
good convergence. Based on the results that are shown in Section 7.2, I assume a linear
relation between µS and σ2

S with slope mσ:

σ2
S = mσ · µS , (6.14)

which I use in the Metropolis algorithm to determine free-energy differences (see Sec-
tion 6.2.6).
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6.2.5. Determination of the Relation between Mean GFP Fluorescence and
Frameshifting Efficiency

As explained in Section 5.2 and Section 6.2.2, the mean value of percent GFP fluorescence
µS depends on the frameshifting efficiency fmodel(∆G), but is not assumed to be identical.
To get a relation between the two units, I will plot µS in „percent GFP fluorescence“
obtained from the Mikl et al. [9] data for several variants against the frameshifting effi-
ciencies of the corresponding variants independently reported in the literature. To that
aim, I take frameshifting efficiencies from several papers into account: Biswas et al. [17],
Dulude et al. [7], and Léger et al. [68] determined frameshifting efficiencies for coding
sequences, for which also Mikl et al. [9] reported percent GFP fluorescence values. Since
some of these data sets, which will be the input measurements, contain only one value, I
again I cannot use both µS and σ2

S as parameters, but I can employ the gained relation
between σ2

S and µS (Eq. (6.14)) and only use µS as a free parameter. Therefore, I once
more use PMV as f from Section 4 and the Metropolis algorithm:

PMV(µS) = χ3(µS) · Πm∈MVfM(m,µS) , (6.15)

with

fM(m,µS) =
1√
2π

1√
σ2
B +mσ · µS

exp

(
−(m− µB − µS)

2

2(σ2
B +mσ · µS)

)
(6.16)

from Eq. (6.8) and µB and σB inserted from Section 7.1. The prior probability is modeled
by the indicator function χ3:

χ3(µS) =

1, if µS ∈ [0%, 100%] ,

0, else .
(6.17)

The indicator function again results from µS being a percentage. Running the algorithm
successively with all data sets available (eleven in total) gives a probability density of µS

for each variant, which I then compare with the corresponding frameshifting efficiency.
Based on the results that are shown in Section 7.3, I assume a linear relation between
mean value µS and frameshifting efficiency fmodel(∆G) with slope mµ:

µS = mµ · fmodel(∆G) . (6.18)

I employ the obtained dependency in the Metropolis algorithm to determine free-energy
differences (see Section 6.2.6).
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6.2.6. Determination of Frameshifting Free-Energy Differences with the
Metropolis Algorithm

To sample a probability density for the free-energy difference of a certain variant Ṽ (tested
sequence), I employ the Metropolis algorithm introduced in Section 4. This is then re-
peated in order to obtain ∆G densities for each variant. For the function f in Section 4,
I could just insert Eq. (6.14) and Eq. (6.18) with the obtained values for mσ and mµ from
Sections 7.2 and 7.3 into PMV from Eq. (6.10). Then, the parameter that was called x

in Section 4 would be only ∆G. I would use a Gaussian distribution with mean value
∆Gold and a standard deviation σ, which I would choose in order to get an acceptance
rate between 20% and 80% as this usually results in a good convergence.

However, instead of using only the ∆G values as free parameters, I extend the algorithm
to also include mσ and mµ as free parameters. This has the advantage that the algorithm
always optimizes the probability densities of mσ and mµ given all measurements of the
used wild-type sequences and all measurements of the tested sequence. Hence, I adjust
the algorithm, in such a way that in each step it does not only generate a new candidate
for ∆G, but a new set of candidates for 15 parameters. The set contains ∆G for the tested
variant Ṽ , mσ, mµ, and the ∆Gi values for the 12 wild-type sequences. New candidates of
these 15 parameters are calculated from 15 different Gaussian distributions: their mean
value is the old candidate and their standard deviation σ of each Gaussian is set before
running the algorithm and can be adjusted to get an acceptance rate between 20% and
80%. Furthermore the likelihood is extended, so that it consists of three parts:

1. The first part of the algorithm takes the percent GFP values of the data set MṼ

and its purpose is to yield a probability density for ∆G. Its likelihood function is

L1,MṼ
(∆G,mσ,mµ) = Πm∈MṼ

fM(m,∆G,mσ,mµ) (6.19)

with

fM (m,∆G,mσ,mµ) =
1√
2π

1√
σ2
B + fmodel(∆G) ·mµ ·mσ

exp

(
− (m− µB − fmodel(∆G) ·mµ)

2

2(σ2
B + fmodel(∆G) ·mµ ·mσ)

)
.

(6.20)

2. The purpose of the second part of the likelihood is to obtain a probability density
for mσ. To this aim, I used the same data sets used in Section 6.2.4 and containing
the percent GFP values for 12 wild-type sequences. These data sets are here called
MWT,i with i = 1, 2, ..., 12. This part of the likelihood takes all data sets MWT,i into
account and depends on the ∆Gi for each wild-type sequence i:

L2,MWT(mσ,mµ,∆G1, ...,∆G12) = Π12
i=1Πm∈MWT,i

fM(m,∆Gi,mσ,mµ) (6.21)
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with

fM (m,∆Gi,mσ,mµ) =
1√
2π

1√
σ2
B + fmodel(∆Gi) ·mµ ·mσ

exp

(
− (m− µB − fmodel(∆Gi) ·mµ)

2

2(σ2
B + fmodel(∆Gi) ·mµ ·mσ)

)
.

(6.22)

3. To estimate the relation between percent GFP fluorescence and frameshifting effi-
ciency, I included the eleven sequences, whose frameshifting efficiencies are estab-
lished by Biswas et al. [17], Dulude et al. [7], and Léger et al. [68] and whose percent
GFP values are given by Mikl et al. [9] (see Section 6.2.5). The stated frameshifting
efficiencies I call FSj with j = 1, 2, ..., 11. The data set with the measured percent
GFP values of sequence j is called MFS,j. Thus, the third and last part of the likeli-
hood has as input data all FSj and MFS,j and its purpose is to obtain a probability
density for mµ:

L3,MFS(mσ,mµ) = Π11
j=1Πm∈MFS,jfM(m,FSj,mσ,mµ) (6.23)

with

fM (m,FSj ,mσ,mµ) =
1√
2π

1√
σ2
B + FSj ·mµ ·mσ

exp

(
− (m− µB − FSj ·mµ)

2

2(σ2
B + FSj ·mµ ·mσ)

)
. (6.24)

In each fM above I insert the mean value µB and standard deviation σB from Section 7.1.
Finally, I multiply the product of the three parts of the likelihood with the prior function
χ(∆G, µS, σ

2
S,∆G1, ...,∆G12) to get a the function that is proportional to the probability

density of the whole set of parameters:

PMṼ ,MWT,MFS(∆G,mσ,mµ,∆G1, ...,∆G12) =χ(∆G,µS , σ
2
S ,∆G1, ...,∆G12) · L1,MṼ

(∆G,mσ,mµ)

· L2,MWT(mσ,mµ,∆G1, ...,∆G12) · L3,MFS(mσ,mµ) .

(6.25)

The prior function is defined as

χ(∆G,µS , σ
2
S ,∆G1, ...,∆G12) =

1, if µS ∈ [0%, 100%] ∧ σ2
S ≥ 0 ∧∆G ∈ I ∧∆Gi ∈ I for i = 1, ..., 12 ,

0, else

(6.26)

with I = [−30 kJ/mol, 30 kJ/mol] as described in Section 6.2.1. I assume the set of
parameters to be converged when the logarithm of pnew (see Section 4) is above 1100,
because then, the trajectories of the parameters show a convergent behaviour. Once pnew

has reached 1100, I execute 10,000 more iterations and obtain probability densities from
the last 9,000 steps.

With this algorithm, I sample one probability density for the free-energy difference ∆G

for each of the sequences tested by Mikl et al. [9] that are from the nine included viruses
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introduced in Section 2.5 and that are obtained either from the wild type or by introducing
variations only on the slippery sequence. In total, I determine free-energy differences for
568 different sequences. Each of the 568 probability densities of ∆G, I sample with two
different sets of initial values, to confirm, that the free-energy differences converge to the
same value. Thus, in total, I sample 1136 ∆G probability densities. The results are
reported in Section 7.4.

6.3. Determination of the Differences between Frameshifting

Free-Energy Differences of Sequences with Different

Downstream Secondary Structures

In Section 2.4 I hypothesized that a pseudoknot reduces the free-energy difference ∆G

between the 0 and the −1 frame. Thus, as mentioned in Section 3.2, the difference between
the ∆G obtained from sequences that contain a stem loom and the ∆G of sequences with
a pseudoknot the free-energy difference of sequences should then be larger than zero.
To test my hypothesis, I determine, from the data of Mikl et al. [9], ∆∆G probability
densities for many pairs of sequences exhibiting different secondary structures. In this
context, I compare all sequences with a pseudoknot to each of the sequences with a stem
loop (HIV and SIV). Thereby, I compare two viruses with different secondary structures
at a time. To compare for example HIV (stem loop) and SARS (pseudoknot), I choose
(from the data set Mall) pairs of sequences containing the same slippery sequence and
the upstream and downstream region of the corresponding wild type of HIV and SARS,
respectively. For each of the two compared sequences, I determine the probability density
for the frameshifting free-energy difference ∆G as in Section 6.2.6. Then, I calculate, for
each pair of sequences, the difference ∆∆G = ∆G(HIV)−∆G(SARS). Since the slippery
sequence is the same in both sequences, the base-pair free-energy differences cancel out in
the subtraction and only the free-energy difference resulting from the different secondary
structures (∆∆G) remains. Repeating this procedure for all of the selected pairs of
sequences yields a probability density of ∆∆G for the compared viruses. Additionally, I
repeat this with all pairs of the listed viruses containing different secondary structures.
The results are in Section 7.5.

To compare the effect of the secondary structure on different viruses, I combine all ∆∆G

probability densities for each comparison between two viruses. This is possible, because
I expect the ∆∆G to depend only on the secondary structure, thus, ∆∆G is expected
to be the same for different slippery sequences. My method to combine the densities is
the following: to each localized probability density (a density without an upper or lower
boundary) I fit a Gaussian distribution. Then, I determine the product of all Gaussian
distributions to obtain the joint probability density for each pair of viruses. The resulting
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plot is in Section 7.5 (Fig. 20).

7. Results

This section reports on the results that are obtained by following the steps described in the
methods in order to obtain the probability densities of the differences ∆∆G between the
frameshifting free-energy differences of mRNA sequences containing different downstream
secondary structures (either stem-loop or pseudoknot). As described in Section 6.2.6, in
order to obtain the ∆G probability densities corresponding to each selected sequence, I use
the Metropolis algorithm to sample from the probability density PMṼ ,MWT,MFS introduced
in Eq. (6.25). When computing PMṼ ,MWT,MFS several parameters must be taken into
account in addition to ∆G: µB, σB, µS, and σS. Thus, I first determine µB and σB from
the measured background fluorescence, as described in Section 6.2.3. Next, I employ the
methods explained in Section 6.2.4 to explore the relation between the variance σ2

S and
the mean value µS. After that, I investigate the relation between µS and the frameshifting
efficiency, as described in Section 6.2.5, to include it in PMṼ ,MWT,MFS . Finally, I sample
probability densities of ∆G of the considered sequences as described in Section 6.2.6. As
explained in Section 6.3, I then determine probability densities for ∆∆G.

7.1. Determination of the Mean Background Fluorescence µB and

its Standard Deviation σB

As explained in Section 5.1 any measurement is affected by the presence of background
fluorescence due to autofluorescence of the cell. In Section 6.2.2, I showed that this effect
has to be taken into account when analyzing the signals. The two ways to determine mean
value µB and standard deviation σB of the background fluorescence measurements given
by Mikl et al. [9] are explained in Section 6.2.3: I either determine both values directly
from the measurements or I exclude the outliers (see Section 6.1) first. A histogram of the
background percent GFP fluorescence values is shown in Fig. 9a. Excluding the outliers
from the background fluorescence yields Fig. 9b.
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Figure 9: Histograms (blue) of the background percent GFP fluorescence of all variants
(tested sequences) is depicted [9]. (a) A Gaussian (red) is plotted with mean value and
standard deviation of all measurements, i.e. no outliers are excluded from the fitting data.
(b) A Gaussian (red) is plotted with mean value and standard deviation of the remaining
measurements after excluding outliers.

The Gaussian in Fig. 9b depicts a better approximation to the background noise than
the Gaussian in Fig. 9a. That is why, I will use mean value and standard deviation of the
selected measurements (method with interquartile range applied) in my further analysis:

µB ≈ 0.721% , (7.1)

σB ≈ 0.271% . (7.2)

7.2. Determination of the Relation between Variance of GFP

Fluorescence and Mean GFP Fluorescence

In addition to the background fluorescence, the measured values from Mikl et al. consist of
the percent GFP fluorescence which results from a frameshift signal [9]. For this observable
I also need standard deviation and mean value, which I introduced in Section 6.2.2. In
this section, I derive a relation between the standard deviation σS and the mean value
µS. To this aim, I first obtain the probability densities for both parameters as explained
in Section 6.2.4. Then, I plot the variance σ2

S against the mean value µS. The resulting
plot is shown in Fig. 10.
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Figure 10: The variance σ2
S is plotted against the mean value µS for 15 different coding

sequences of wild-type viruses (and human proteins). The data points represent the mean
value and the error bars represent the standard deviation of the obtained probability
densities for σ2

S and µS.

The plot does not show a clear dependency between variance and mean value. That is
why, I assume the simplest case, which is a linear dependency:

σ2
S = mσ · µS . (7.3)

A probability density for the slope mσ is derived by the Metropolis algorithm (see Sec-
tion 6.2.6). To make sure, that for my purpose a linear dependency between σ2

S and µS

is a better approximation than a linear dependency between σS and µS, I have run the
algorithm with both relations. As mentioned in section Section 6.2.4, the assumption of
a linear dependency between σ2

S and µS lead to higher values of PMṼ ,MWT,MFS . Hence, I
chose to include Eq. (7.3) in the algorithm in Section 6.2.6, instead of assuming a linear
dependency between σS and µS.

7.3. Determination of the Relation between Mean GFP

Fluorescence and Frameshifting Efficiency

In this work, the frameshifting efficiency is calculated from the thermodynamic model
fmodel(∆G) (Eq. (3.3)). However, the mean GFP percent fluorescence values µS do not
directly reflect the frameshifting efficiency (see Section 5.2). To get a relation between the
two observables, I plot µS for several variants against the frameshifting efficiencies of the
corresponding variants which were independently measured by Biswas et al. [17], Dulude et
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al. [7], and Léger et al [68] (Fig. 11). The methods to get probability densities of µS for the
sequences with available frameshifting efficiencies are explained in Section 6.2.5. Notably,
three different values for the frameshifting efficiency of wild-type HIV were reported in
the literature [7, 17, 68], resulting in three data points with µS ≈ 2.04%. Since wild-
type sequences were measured in many repeats, the data from Mikl et al. contains many
percent GFP values and their standard deviation of µS is rather small [9].
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Figure 11: The mean value µS is plotted against the corresponding frameshifting efficien-
cies. For µS the data points represent the mean value and the error bars represent the
standard deviations of the obtained probability densities. The error bars of the frameshift-
ing efficiencies resemble the errors indicated in the respective paper. The papers are rep-
resented by different colors. The straight line of the sum of squares convergence fit of the
data points is plotted in red. It is depicted plus minus its standard deviation.

The plot does not show a very clear relationship. As a first assumption, I consider a
linear relationship as is displayed by the result of the sum of squares convergence fit in
Fig. 11. The value resulting from the sum of squares convergence fit of the data points
is mµ ≈ 0.225. However, as explained in the methods, in order to make full use of the
data (both wild-type and variant measurements), µS is varied in the following steps as a
parameter, by including its linear relation to the frameshifting efficiency in the likelihood
function:

µS = mµ · fmodel(∆G) . (7.4)
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7.4. Determination of Free-Energy Differences with the

Metropolis Algorithm

Using the algorithm from Section 6.2.6, I sample probability densities of ∆G for each
sequence from Mikl et al. [9] that belongs to one of the the nine viruses mentioned in
Section 2.5 and consists of either the wild type or variants of the slippery sequence,
combined with wild-type upstream and downstream regions. In order to confirm that
the free-energy differences converge to the same value, I sample each of the resulting 568
probability densities for ∆G within two independent calculations started from different
sets of initial values. Thus, in total, I sample 1136 ∆G densities. Six probability densities
for ∆G are plotted for three different sequences in Fig. 12 to exemplify the type of results
that I obtained for the probability densities.
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Figure 12: Examples of probability densities of ∆G for sequences with three different
slippery sequences combined with the SARS wild-type upstream and downstream regions.
Probability densities were obtained from two independent calculations (blue and orange).

For each ∆G I determine, I visually inspected the results from the two independent
calculations for convergence. Fig. 12 displays also the different types of the obtained
probability densities: in many cases I did not get a localized density (Fig. 12 upper left),
but densities which correspond to an upper or lower boundary (Fig. 12 upper right and
bottom). Therefore, many of the ∆∆G densities in Section 7.5 are not localized.
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7.5. Determination of the Differences between Frameshifting

Free-Energy Differences of Sequences with Different

Downstream Secondary Structures

In Section 6.3 I explained my methods to determine probability densities for ∆∆G. I
compare all seven viruses with a pseudoknot mRNA secondary structure to HIV and SIV
whose mRNA forms stem loops. The resulting ∆∆G probability densities are shown as
violin plots in Figs. 13 to 19.
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Figure 13: The probability densities of ∆∆G are shown for different slippery sequences
(light blue area). The medians and the 95% confidence intervals of the densities are
indicated by horizontal lines. In the upper plot the slippery sequences are surrounded by
the sequence context of HIV and HERV and in the bottom plot of SIV and HERV.
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Figure 14: The probability densities of ∆∆G are shown for different slippery sequences
(light blue area). The medians and the 95% confidence intervals of the densities are
indicated by horizontal lines. In the upper plot the slippery sequences are surrounded by
the sequence context of HIV and HTLV and in the bottom plot of SIV and HTLV.
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Figure 15: The probability densities of ∆∆G are shown for different slippery sequences
(light blue area). The medians and the 95% confidence intervals of the densities are
indicated by horizontal lines. In the upper plot the slippery sequences are surrounded by
the sequence context of HIV and PLRV and in the bottom plot of SIV and PLRV.
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Figure 16: The probability densities of ∆∆G are shown for different slippery sequences
(light blue area). The medians and the 95% confidence intervals of the densities are
indicated by horizontal lines. In the upper plot the slippery sequences are surrounded by
the sequence context of HIV and RSV and in the bottom plot of SIV and RSV.
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Figure 17: The probability densities of ∆∆G are shown for different slippery sequences
(light blue area). The medians and the 95% confidence intervals of the densities are
indicated by horizontal lines. In the upper plot the slippery sequences are surrounded by
the sequence context of HIV and SARS and in the bottom plot of SIV and SARS.
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Figure 18: The probability densities of ∆∆G are shown for different slippery sequences
(light blue area). The medians and the 95% confidence intervals of the densities are
indicated by horizontal lines. In the upper plot the slippery sequences are surrounded by
the sequence context of HIV and SRV and in the bottom plot of SIV and SRV.
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Figure 19: The probability densities of ∆∆G are shown for different slippery sequences
(light blue area). The medians and the 95% confidence intervals of the densities are
indicated by horizontal lines. In the upper plot the slippery sequences are surrounded by
the sequence context of HIV and WNV and in the bottom plot of SIV and WNV.

The probability densities in Figs. 13 to 19 have rather large 95% confidence intervals and
many are located around 0 kJ/mol. However, the viruses compared with HIV display more
∆∆G densities above 0 kJ/mol than with SIV. When compared with SIV, the densities
appear to be balanced around 0 kJ/mol. Furthermore, there are plots that exhibit one or
two very low ∆∆G probability densities with median below -20 kJ/mol. These densities
correspond always either to the slippery sequence „GGGAAAG“ or „CCCUUUU“.

To show a more direct comparison between the effect of the secondary structure on
different viruses, I combine all ∆∆G probability densities for each comparison between
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two viruses from Figs. 13 to 19 by multiplying their probability densities as explained in
Section 6.3. The resulting plot is depicted in Fig. 20.
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Figure 20: For each pair of viruses, all ∆∆G probability densities are combined to one
probability density. The median of the ∆∆G density, as well as the 95% confidence
interval, is marked.

As in Figs. 13 to 19 also in Fig. 20, HIV displays more probability densities above
0 kJ/mol than SIV, whose densities are again more balanced around 0 kJ/mol.

To investigate this difference between HIV and SIV I show the ∆∆G probability densi-
ties for HIV and SIV in comparison in Fig. 21. The selected sequences are the sequences
for which Mikl et al. [9] provided measurements and, additionally, that are considered in
Figs. 13 to 19.
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Figure 21: The probability densities of ∆∆G are shown for different slippery sequences
(light blue area). The medians and the 95% confidence intervals of the densities are
indicated by horizontal lines. The slippery sequences are surrounded by the sequence
context of HIV and SIV.

Fig. 21 depicts most ∆∆G probability densities around 0 kJ/mol. However, there are
two slippery sequences that stand out for being located significantly higher: „GGGAAAG“
and „CCCUUUU“. Both were already mentioned above for showing probability densities
that are significantly shifted to lower free-energy differences for each pair of virus that
contains SIV. The probability density which corresponds to the slippery sequence „UU-
UUUUA“ shows a very low uncertainty, because it represents the wild-type sequence of
HIV as well as of SIV and is therefore based on many measurements.

8. Discussion

Based on the results shown above, in particular the difference in frameshifting free-energy
differences between sequences displaying two different downstream secondary structures,
here I discuss the influence of the stem-loop and pseudoknot on the free energies as-
sociated to frameshifting efficiencies. According to my hypothesis, a pseudoknot might
reduce the free-energy difference between the 0 and the −1 frame. Hence, the free-energy
difference ∆G of a sequence with a stem loop should be larger than the free-energy dif-
ference ∆G of a sequence with a pseudoknot. Consequently, when considering the model
in Eq. (3.5), a ∆∆G > 0 would support my hypothesis. In my results from Section 7.5,
the ∆∆G probability densities obtained by comparison of sequences that contain a pseu-
doknot with variants of HIV sequences are consistent with the hypothesis, since they are
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mostly located above 0 kJ/mol. In particular, for six out of seven virus pairs, the 95%

confidence interval is above 0 kJ/mol. In contrast, for the comparison with variants of
SIV sequences, only three virus pairs, shows a confidence interval that does not contain
0 kJ/mol. Therefore, the comparison with SIV sequences does not strongly support the
hypothesis that a pseudoknot reduces the free-energy difference between the frames, but
it also does not contradict the hypothesis. Further, regarding the probability densities
obtained from SIV sequences in Figs. 13 to 19, it is worth noticing that mainly the results
from two of the slippery sequences contribute to the fact that the densities in Fig. 20 are
lower than the ones obtained when comparing with HIV sequences. Indeed, the densities
associated with „GGGAAAG“ and „CCCUUUU“ display ∆∆G densities with a median
lower than -20 kJ/mol. Taking a look in the provided data from Mikl et al. gives a reason
for this occurrence. For each selected sequence with either „GGGAAAG“ or „CCCUUUU“
as a slippery sequence, only one percent GFP expression value is provided. In addition,
this single value is significantly larger (85.39% and 23.00%) than most of the other GFP
expression values measured for the other sequences [9]. A large percent GFP expression
value results in a large frameshifting efficiency and therefore, in a very low ∆G, which is
visible in Figs. 13 to 19 and also in Fig. 21. Since there is only one value available for
both sequences, excluding outliers with the interquartile range as in Section 6.1 could not
be applied. The measurement method for the percent GFP values from Mikl et al. allows
a high through-put, but is in turn less accurate than other methods [9]. Thus, it is ques-
tionable why these percent GFP values are that large. Indeed, neither of the sequences
corresponds to the wild type, where the slippery sequence is expected to be optimized
to yield the highest frameshifting efficiency. Consequently, this may be a measurement
error. For most of the tested sequences, that do not correspond to the wild type, there
is only one percent GFP expression value measured by Mikl et al. [9]. Hence, for most
sequences, I could not exclude outliers with the interquartile range as in Section 6.1 and,
thus, it cannot be ruled out that there are more measurement errors as the ones I expect
for the two sequences I considered above. Given sufficient statistics to obtain a model
for this additional error, it could be included in the likelihood function and give a more
robust estimation of the uncertainty of the ∆∆G values.

In general, the ∆∆G probability densities in Fig. 20 could be explained by relating them
to the position and size of the pseudoknot in the sequence. RSV does not portray a trend
of ∆∆G densities above 0 kJ/mol. An explanation could be the shortness of its spacer
region (one nucleotide), which could lead the pseudoknot to have a position other than at
the entrance of the mRNA entry channel when frameshifting takes place. Consequently,
another mechanism than the pseudoknot resisting the unfolding and reducing the free-
energy difference could occur. After RSV, the viruses HERV, PLRV, and SRV show ∆∆G

densities with the lowest free-energy differences. This might be due to the size of their
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pseudoknots: HERV, PLRV, and SRV exhibit a rather small pseudoknot containing 34,
26, and 37 nucleotides, respectively. For comparison, the pseudoknots of SARS, HTLV,
and WNV are 68, 72, and 62 nucleotides long, respectively (compare Fig. 6). A small
pseudoknot might generate a less strong back-pull compared to a large pseudoknot, due to
the smaller number of base pairs that need to be dissolved upon unfolding. According to
my hypothesis a less strong back-pull would result in a lower free-energy reduction, which
would explain the lower ∆∆G densities of HERV, PLRV, and SRV. Additionally, this is
in agreement with the obtained densities for HTLV, SARS, and WNV, which display the
highest ∆∆G densities in Fig. 20 and have (excluding RSV) the largest pseudoknots (72,
68, and 62 nucleotides, respectively).

However, it is still unclear, why the viruses, when compared with HIV, show densities
that are localized much higher than when compared with SIV. According to my hypothesis
the stem loop should not affect the free-energy difference between the 0 and the −1 frame.
However, an explanation could base on a kinetic effect. In particular, translocation could
not be stalled sufficiently by the SIV stem loop (e.g. due to a potentially less stable SIV
stem loop), such that there is less time for the ribosome to overcome the free-energy
barrier between the frames. Consequently, the frameshifting efficiency and therefore the
GFP expression would be decreased. A decreased measured GFP expression would result
in ∆∆G probability densities that are shifted to lower free-energy differences and explain
Fig. 20. Nonetheless, Fig. 21 shows no general trend in the positive direction. Most ∆∆G

probability densities are balanced around 0 kJ/mol. Thus, I do not assume a kinetic effect
and the fact of SIV ∆∆G densities being located lower in Fig. 20 might be only based on
the few sequences that are located above 0 kJ/mol in Fig. 21.

There may be other elements contributing to the frameshifting efficiency. Until now, I
did not consider the upstream sequences of the viruses. There is experimental evidence,
that the slippery sequence and a downstream secondary structure affect the frameshifting
efficiency the most. However, it cannot be ruled out, that the upstream sequence does
not play a role in the frameshifting efficiency. SARS-CoV-1 for example, has an upstream
secondary structure: the virus exhibits a so-called attenuator loop upstream of its slippery
sequence. It is called attenuator loop, because it is proposed to play an attenuating role
in frameshifting, meaning that it decreases the frameshifting efficiency [69].

Additionally, there is experimental evidence that a stop codon near the slippery sequence
affects frameshifting. Bhatt et al. proposed that the presence of a stop codon near the
frameshifting site of SARS-CoV-2 increases the frameshifting efficiency [22].

Thus, including also other contributing elements into my analysis might produce more
accurate results. What also would enhance the accuracy of my results, is to modify the
likelihood function from Section 6.2.6 to make use of all the information more efficiently.
Instead of sampling a ∆G probability density for each sequence separately, the Metropolis
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algorithm could sample the ∆G of all of the sequences at the same time. Therefore, it
would be possible to compute the ∆G probability densities for all sequences after one
single run. In this way, when sampling the parameters, I would have the information
not only from one specific variant Ṽ , but also from the data sets of all other considered
variants. Additionally, such a modification would allow to cross-validate the results by
leaving out a subset of the data and predicting it from the remaining data set.

9. Conclusion

In this thesis I explored the effect of downstream secondary structures on the thermo-
dynamics of frameshifting, in particular, I aimed at comparing the effect of stem loop
and pseudoknot on the free energies. For this purpose I employed Bayesian statistics on
the measurements from Mikl et al. [9] and used the Metropolis algorithm to estimate
free-energy differences between the 0 and the −1 frame for many selected sequences.
Afterwards, I determined probability densities for the differences between frameshifting
free-energy differences of sequences with different secondary structures, in order to test
my hypothesis of a pseudoknot reducing the free-energy difference by generating a back-
pull towards the −1 frame. While conclusive results would surely require a more precise
data set, more included parameters, as the upstream sequence or the position of a stop
codon, and a further modification of the likelihood function, my results support the indi-
cation that pseudoknots reduce the free-energy difference in contrast to stem loops and,
therefore, the pseudoknots enhance frameshifting efficiencies. This gives a first glimpse
of the possibly important influence of the secondary structure on the thermodynamics of
frameshifting, and, therefore, on the reproduction of viruses overall.
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A. Calculation of the Convolution

In this section, my aim is to calculate the convolution

fM = fB ∗ fS (A.1)

with the convolution theorem [66]

F{fB ∗ fS}(z) = F{fB}(k) · F{fS}(k) , (A.2)

where F denotes a Fourier transform. A Fourier transform is defined as follows [65]:

F{f}(k) =
∫ ∞

−∞
f(x)e−ikxdx . (A.3)

Hence, the Fourier transform of a Gaussian f like fB or fS is

F{f}(k) = 1√
2πσ2

∫ ∞

−∞
e−

(x−µ)2

2σ2 −ikxdx . (A.4)

By rewriting the exponent

−(x− µ)2

2σ2
− ikx = −(x− ξ)2

2σ2
− iµk − σ2k2

2
(A.5)

with ξ = µ− iσ2k I get

F{f}(k) = e−iµk−σ2k2

2 · 1√
2πσ2

∫ ∞

−∞
e−

(x−ξ)2

2σ2 dx (A.6)

= e−iµk−σ2k2

2 . (A.7)

The second equal sign is valid since the PDF following the · is normalized to one by
definition. Multiplying the Fourier transforms point-wise yields

F{fM}(k) = F{fB}(k) · F{fS}(k) = e−i(µB+µS)k−
(σ2

B+σ2
S)k2

2 . (A.8)

Applying the inverse Fourier transform

f(x) =
1

2π

∫ ∞

−∞
F{f}(k)eikxdk (A.9)
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gives the required PDF

fM(m) =
1√
2π

1√
σ2
B + σ2

S

e
− (m−µB−µS)2

2(σ2
B

+σ2
S
) . (A.10)
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