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ABSTRACT: We introduce the Open Force Field (OpenFF)
2.0.0 small molecule force field for drug-like molecules, code-
named Sage, which builds upon our previous iteration, Parsley.
OpenFF force fields are based on direct chemical perception,
which generalizes easily to highly diverse sets of chemistries based
on substructure queries. Like the previous OpenFF iterations, the
Sage generation of OpenFF force fields was validated in protein−
ligand simulations to be compatible with AMBER biopolymer
force fields. In this work, we detail the methodology used to
develop this force field, as well as the innovations and
improvements introduced since the release of Parsley 1.0.0. One
particularly significant feature of Sage is a set of improved Lennard-
Jones (LJ) parameters retrained against condensed phase mixture
data, the first refit of LJ parameters in the OpenFF small molecule force field line. Sage also includes valence parameters refit to a
larger database of quantum chemical calculations than previous versions, as well as improvements in how this fitting is performed.
Force field benchmarks show improvements in general metrics of performance against quantum chemistry reference data such as
root-mean-square deviations (RMSD) of optimized conformer geometries, torsion fingerprint deviations (TFD), and improved
relative conformer energetics (ΔΔE). We present a variety of benchmarks for these metrics against our previous force fields as well
as in some cases other small molecule force fields. Sage also demonstrates improved performance in estimating physical properties,
including comparison against experimental data from various thermodynamic databases for small molecule properties such as ΔHmix,
ρ(x), ΔGsolv, and ΔGtrans. Additionally, we benchmarked against protein−ligand binding free energies (ΔGbind), where Sage yields
results statistically similar to previous force fields. All the data is made publicly available along with complete details on how to
reproduce the training results at https://github.com/openforcefield/openff-sage.

1. INTRODUCTION
Atomistic force fields describe the potential energy surface of
molecular systems as a function of atomic positions. Force fields,
while often relatively simple in functional form, have been widely
adopted in computational chemistry and biophysics due to their
balance between chemical accuracy and computational
efficiency.1−13

Molecular dynamics simulations performed with force fields
have been used to study the mechanisms of many biological
phenomena, including protein folding,14−16 membrane trans-
port,17,18 identification of active sites,19,20 docking of ligands,21

and protein−ligand binding.22−24 Protein−ligand interactions
are of particular interest to the pharmaceutical industry, as such
methods can accelerate drug discovery by identifying promising
candidates in silico.25,26 This process, known as computer-aided
drug design (CADD), requires quantitatively accurate descrip-
tions of many chemically diverse drug candidates and their

interactions with different chemical moieties and accurate
predictions of their physical properties in various environments.
In order tomodel the protein−ligand complex, we need accurate
force fields for both the specific protein chemistries (many of
which have been proposed, validated, and tested8,11,12,27−34)
and the small molecule ligands.3,10,13 As the space of potential
drug-like molecules is chemically complex and combinatorially
large,35,36 a small molecule force field should be able to model a
diverse set of molecules with high accuracy. OpenFF Sage 2.0.0
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achieves these goals by combining the generality of SMIRNOFF
direct chemical perception with extensive parameter refitting to
improve accuracy.
1.1. OpenFF Innovations: Journey from Parsley to

Sage. OpenFF Parsley 1.0.0, the first version of our Parsley
generation of small molecule force fields10 achieved excellent
coverage of chemical space with a novel direct chemical
perception scheme37 and similar accuracy to other small
molecule force fields, as measured on protein−ligand binding
free energies.10,38 In contrast to indirect chemical perception, or
atom typing, direct chemical perception involves substructure
based parameter assignment that brings together complex
chemistries under one physically intuitive chemical grouping.
SMIRKS patterns39 are used to define these groups, and the
associated parameters can be applied to any substructure match
in anymolecule, thusmaking it more general. Rather than having
the chemical environment around a parameter being encoded in
the atom types, the chemical environment is used to directly
assign the parameters via these SMIRKS patterns. This direct
chemical perception scheme greatly reduces the number of
empirical force field parameters, facilitating rapid refit of
parameters to improve chemical accuracy. As atomic partial
charges are due to more global effects of chemical environment
than SMIRKS strings can provide, another key ingredient of
OpenFF force fields is the use of the AM1-BCCmodel for partial
charge assignment, a fast and very widely used atomic charge
model for organic molecules.40,41

Our underlying philosophy throughout the OpenFF effort is
to combine modern force field optimization techniques and data
set selection pipelines to rapidly produce and update new small
molecule force fields. A previous paper37 outlined the concept of
parameter-type based force fields using the SMIRNOFF format.
In Parsley 1.0.0, most of the initial set of nonbonded parameters
was ported from parm@Frosst7 into what we called
SMIRNOFF99Frosst, an informal AMBER family small
molecule force field. SMIRNOFF99Frosst was used as a starting
point for Parsley with significant optimization of the valence
parameters through fits with an extensive set of QM

calculations.10 Since both GAFF and Parsley share roots in the
AMBER family of force fields, this meant that their nonbonded
parameters were virtually identical.10,42

Since the release of Parsley, we have made several updates to
our force field, consisting of improved valence parameters as well
as bug fixes. Parsley 1.1.0 included the addition of new nitrogen-
centered improper torsion terms to better describe the planar
and pyramidal structures that are often difficult to differ-
entiate.43,44 This was followed by Parsley 1.2.045 which included
a major redesign of the quantum chemical training data sets and
a full valence parameter refit to this new data set. This training
data curation46 resulted in significant improvement in relative
conformer energies, optimized geometries, and torsional profiles
with respect to accurate high-level ab initio data when compared
to Parsley 1.0.0. Revisions after Parsley 1.2.0 include new torsion
parameters for dialkyl amides in Parsley 1.3.0 to improve amide
torsional energy profiles;47 in Parsley 1.3.1, a minor regression in
the accuracy of the description of sulfonamides was corrected.48

Building on the foundation of Open Force Field Parsley
generation of force fields, we now introduce the OpenFF Sage
2.0.0 small molecule force field which extends our previous work
by continued refining of valence terms and, for the first time,
refitting the Lennard-Jones (LJ) parameters. Like Parsley, Sage
is applicable to drug-like molecules covering the chemical space
C, H, O, N, P, S, F, Cl, Br, and I, and the monoatomic ions Li+,
Na+, K+, Rb+, F−, Cl−, Br−, and I−. Sage again included
substantial work retraining the valence parameters used in
Parsley, but the most significant update to Sage is the retraining
of select Lennard-Jones (LJ) parameters to physical properties.
LJ parameters in previous generation Open Force Fields were
taken from AMBER parm9949 and parm@Frosst7 force fields.
The LJ parameters in Sage 2.0.0 were optimized against
condensed phase physical properties, including enthalpy of
mixing and densities measured for both pure and binary
mixtures. The inclusion of such properties measured for
mixtures has been shown to be critical to accurately capture
interactions of unlike chemistries.50 Physical properties of
aqueous systems using TIP3P water51 were directly included in

Figure 1. Sage 2.0.0 fitting pipeline is composed of three stages. Beginning with an initial force field (Parsley 1.3.0), in the first step, selected LJ
parameters were refit against liquid densities and enthalpies of mixing sourced from the NIST ThermoML archive, producing an intermediate force
field (vdw-v1). In the second step, valence parameters from vdw-v1 were trained against optimized geometries and torsion energy profiles of drug-like
molecules, resulting in a new force field (Sage 2.0.0) trained against curated quantum chemical and condensed-phase property data. Both steps
optimize force field parameters using a regularized least-squares approach implemented in ForceBalance. Sage 2.0.0 was then benchmarked against test
sets of gas phase QM equilibrium structures, solvation free energies, and protein−ligand binding free energies.
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the training set ensuring maximal self-consistency between the
small molecule and water interactions. TIP3P was chosen as the
water model, as it has typically been considered the default for
AMBER-style force fields. Sage is most similar (though not
equivalent to) an AMBER force field because of its roots in the
AMBER-variant parm@Frosst, and AMBER force fields for
proteins and nucleic acids are tested and recommended with
OpenFF small molecule force fields. Thus, it seemed preferable
to use TIP3P at least until we are able to refit a fully consistent
biopolymer and small molecule force field for compatibility with
an alternate optimized water model.
1.2. Sage Training Data and Methods. We give full

details of our training and fitting procedures in the Methods
(section 2), below, but here we provide a brief overview of the
key training and test data used to produce the Sage force field.

1.2.1. Overall Optimization Strategy. Force field optimiza-
tion and validation were performed in three stages (workflow
shown in Figure 1):

1. Training of selected LJ parameters against experimental
measurements of physical properties (densities and
enthalpies of mixing) using Parsley 1.3.0 valence
parameters.

2. Starting from a force field with the refitted LJ parameters
(vdw-v1), training valence parameters with QM data with
fixed LJ parameters.

3. Validation of the new force field using a variety of
quantum mechanical, physical property, and protein−
ligand binding data.

The starting point for this refit is Parsley 1.3.0, which includes
valence parameters fit against improved training data (compared
to Parsley 1.0.0) and several new bond, angle, and torsion types
that address specific chemistries. The reversion of the
sulfonamide angle in Parsley 1.3.1 was not included in this
refit, as development on Sage 2.0.0 was already underway by the
time Parsley 1.3.1 was released. However, testing the parameters
from Sage on the reported discrepancy, in “O∼S∼N” angles of
sulfonamides, showed that this problem was resolved by the
Sage workflow and did not require further fixes.

1.2.2. LJ Training Data. A large subset of the condensed
phase physical property measurements of binary mixtures from
the NIST ThermoML Archive52 was used to refit the LJ
parameters. Our choice of mixture data was motivated by a
previous pilot study50 that demonstrated advantages to training
LJ parameters against condensed phase mixtures as opposed to
pure liquid properties. Mixture data readily captures interactions
between unlike molecules, allows for the selection of data at
multiple concentrations, and is more readily available inmodern,
validated databases such as the NIST ThermoML Archive. The
pilot study demonstrated that LJ parameters refitted against
mixture densities and enthalpies of mixing better capture
interactions between both like and unlike molecules than those
refitted against pure liquid densities and enthalpies of vapor-
ization. Given that Sage marks the first time the LJ parameters of
an OpenFF force field were refit, and especially as they were refit
to properties of mixtures for the first time, the training set was
selected to encompass as broad a chemical space for which there
was data, rather than targeting specific groups. Identifying
problematic groups will likely be the focus of future studies once
the performance and deficiencies of the refit parameters are
better understood. As the amount of experimental data is rather
limited, the number of functional groups covered by the LJ
training set was fewer than that by the valence training set. For

the full refit of the Sage force field, a total of 30 LJ parameters
(Rmin/2 and ϵ for 15 LJ types) representing carbon, hydrogen,
oxygen, nitrogen, chlorine, and bromine environments were
included.

1.2.3. Valence Parameter Training Data. Quantum
mechanical (QM) data in the form of optimized conformer
geometries and one-dimensional torsional profiles were used to
train valence parameters, outlined in Table 1. 3663 optimized

conformer geometries and 713 one-dimensional torsion scans
from Generation 2 data sets were used for training. Out of 302
valence parameters (angles, bonds, and proper torsions), 184
parameters were refitted. In Sage, two main changes in the
choice of valence parameter training data were (1) balancing the
contributions of conformers from each molecule and (2)
removing vibrational frequencies as training targets. We pruned
the number of conformers in optimized geometry targets in
order to balance contributions to the objective function. This
balancing was necessary as some training set molecules have >50
conformers while others have <10, introducing a large bias
toward molecules with many minima. We also removed
vibrational frequencies as training targets, as we found that
misalignment of vibrational modes degraded performance and
in some cases led to pathologies in the parameters, such as the
problems with sulfonamide in Parsley 1.3.0 described above.
1.3. Benchmarking the Sage Force Field. After refitting,

the new force field was benchmarked against several test sets
designed to assess parameter quality and transferability. These
data sets provide a holistic benchmark for the force field,
including QM geometries for drug-like molecules to assess
valence parameter quality, solvation and transfer free energies
for small organic molecules to assess nonbonded parameter
quality, and protein−ligand binding free energies to ensure the
refit did not adversely affect performance on this critical
measure. These benchmark data sets are sourced from high-
quality public databases like FreeSolv,53 QCArchive,54 and the
NIST ThermoML archive.55−60 The scripts to access the data

Table 1. Generation 2 Optimization and TorsionDrive Data
Sets, ListedHere,Were Used in Training Valence Parameters
of Sagea

TorsionDrive data sets

OpenFF Gen 2 Torsion Set 1 Roche 2 (122 1D scans)
OpenFF Gen 2 Torsion Set 2 Coverage 2 (117 1D scans)
OpenFF Gen 2 Torsion Set 3 Pfizer Discrepancy 2 (69 1D scans)
OpenFF Gen 2 Torsion Set 4 eMolecules Discrepancy 2 (234 1D scans)
OpenFF Gen 2 Torsion Set 5 Bayer 2 (151 1D scans)
OpenFF Gen 2 Torsion Set 6 supplemental 2 (20 1D scans)

Optimization data sets

OpenFF Gen 2 Opt Set 1 Roche (278 conformers)
OpenFF Gen 2 Opt Set 2 Coverage (159 conformers)
OpenFF Gen 2 Opt Set 3 Pfizer Discrepancy (153 conformers)
OpenFF Gen 2 Opt Set 4 eMolecules Discrepancy (1407 conformers)
OpenFF Gen 2 Opt Set 5 Bayer (1666 conformers)

aFrom these data sets, around 3663 optimized geometries and 713 1D
torsion scans were used in training, and the explicit number targets
from each subset are enumerated in this table. The QCA ids of the
records are available on the github repo, https://github.com/
openforcefield/openff-sage/tree/2.0.0-rc.1/data-set-curation/
quantum-chemical/data-sets. The json files 1-2-0-opt-set-v3.json and
1-2-0-td-set.json for opt-geo targets and torsion-prof ile targets,
respectively, contain the QCA record information.
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and run the benchmarks are available at https://github.com/
openforcefield/openff-sage/tree/2.0.0-rc.1/inputs-and-results/
benchmarks. The release assets of the repository, https://github.
com/openforcefield/openff-sage/releases, contain the QC
benchmark structure files in SDF format (https://github.com/
openforcefield/openff-sage/releases/download/2.0.0-rc.1/
QM_Benchmarks_qc_opt_geo.tar.gz), as well as csv files with
the reference and estimated property data for the vdW
benchmark (https://github.com/openforcefield/openff-sage/
releases/download/2.0.0-rc.1/sfe-results.tar.gz).
Unlike the training set, the test set did not include either

enthalpy of mixing or density measurements. As the amount of
such data was limited, a focus was given to building as diverse a
training set as possible. We believe that the inclusion of related
properties such as transfer free energies should yield similar
insight however. We also opted not to include enthalpies of
vaporization in the test set. In previous work,50 we showed that
training to enthalpies of mixing and densities of binary mixtures
does not in general degrade the performance of such properties.
Further, due to the force field not containing polarizability
terms, we do not expect to see significant improvements to the
enthalpy of vaporization; indeed, a force field that gives better
condensed-phase properties might yield worse enthalpies of
vaporization.

2. METHODS
2.1. Software and Data Infrastructure Used to Build

Force Fields. The open source software stack that supports the
development of our force fields includes several components.
The most crucial of these are workflows for generation of QM
data sets (including optimized geometries, torsion scans, and
vibrational frequencies), a publicly accessible database with
seamless data retrieval, a force field optimizer, and benchmark-
ing infrastructure. The major software components that are used
in building our force fields are

• ForceBalance: A versatile package for force field
optimization61−63

• GeomeTRIC: Geometry optimizer for molecular struc-
tures with translation-rotation-internal coordinate
(TRIC) system64

• Nonbonded: Automated workflow for the optimization
and assessment of the nonbonded interaction parameters
of force fields against physical property data sets65

• OpenFF-Toolkit: Chemistry toolkit for working with
SMIRNOFF format force fields, as well as interface to
various cheminformatics back-ends (RDKit66 and Open-
Eye67), and molecular dynamics engines (OpenMM)68

• OpenFF-QCSubmit: Data set building, validation, and
data retrieval from QCArchive69

• OpenFF-Evaluator: Automated and highly scalable
physical property evaluator70

• OpenFF-BespokeFit: Processing QCArchive data and
creating ForceBalance inputs69

• OpenMM: High performance molecular dynamics pack-
age with a variety of enhanced sampling methods71

• PMX: Toolkit for free-energy calculation setup/analysis
and biomolecular structure handling72

• Psi4: Highly parallel electronic structure code covering a
large range of methods, density functional/basis set
combinations, and property evaluations73

• QCEngine: A common Python interface to various
Quantum Chemistry packages74

• QCFractal: Server for facilitating Quantum Chemistry
calculations on large compute clusters and archiving the
results in a database54

• QCArchive: Openly accessible QCFractal server of
Quantum Chemistry calculations, operated by MolSSI54

• TorsionDrive: Highly efficient, wavefront propagation
based torsion potential scanner75

2.2. Description of LJ Training. 2.2.1. Details of LJ
Training Method. We refit a total of 30 Lennard-Jones
parameters (LJ Rmin/2 and ϵ for 15 LJ interaction SMIRKS
types); these types and the chemistries they describe are listed in
Table 2. The parameters for another 20 LJ types (including 9 LJ
types for ions) were left unchanged.
Our original goal was to refit all LJ SMIRKS types, but there

were insufficiently diverse physical property training data
(determined as having fewer than 5 data points for either
density or enthalpy of mixing) for some chemistries. This refit
covered most parameters for the chemical space of hydrogen,

Table 2. All LJ SMIRKS Types Adjusted in the Training of Sage 2.0.0, along with Descriptions of the Chemical Contexts They
Describea

refit SMIRKS type description

[#1:1]-[#6X4] hydrogen attached to tetravalent carbon
[#1:1]-([#6X4])-[#7,#8,#9,#16,#17,#35] hydrogen attached to tetravalent carbon attached to an electronegative

atom
[#1:1]-[#6X3] hydrogen attached to trivalent carbon
[#1:1]-[#6X3]∼[#7,#8,#9,#16,#17,#35] hydrogen attached to trivalent carbon attached to an electronegative atom
[#1:1]-[#6X3]
(∼[#7,#8,#9,#16,#17,#35])∼[#7,#8,#9,#16,#17,#35]

hydrogen attached to trivalent carbon attached to two electronegative
atoms

[#1:1]-[#7] hydrogen attached to nitrogen
[#1:1]-[#8] hydrogen attached to oxygen
[#6:1] Generic carbon
[#6X4:1] tetravalent carbon
[#8:1] generic oxygen
[#8X2H0+0:1] divalent oxygen with no hydrogens attached
[#8X2H1+0:1] divalent oxygen with one hydrogen attached
[#7:1] generic nitrogen
[#17:1] generic chlorine
[#35:1] generic bromine
aLJ ϵ and σ are adjusted for each of these types.
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carbon, nitrogen, oxygen, chlorine, and bromine; notable types
that were not refit describe fluorine, phosphorus, and sulfur. The
training data, described in detail in section 2.2.2, consisted of
measurements of densities of pure liquids ρ, of binary liquid
mixtures ρmix, and enthalpies of mixing of binary liquid mixtures
ΔHmix. Optimization was performed by iteratively minimizing a
ForceBalance objective function LLJ(θ), a weighted least-squares
objective comparing simulation estimates of training data points
with their experimental values, shown in eq 1.
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In this equation, Nρ and NΔH dmix
represent the total number of

measurements of ρ and ΔHmix in the training set, respectively; θ
represents the set of LJ parameters optimized and Δθp
represents the change from the initial values taken from Parsley
1.3.0. Mixture and pure densities are pooled together in this
objective function, so ρ here represents the set of all densities.
The constants dρ and dΔH dmix

represent scaling factors for those
two data types and are set to dρ = 0.05 g/mL and dΔH dmix

= 1.6 kJ/
mol. These scaling factors represent the relative weight given to
each data type and are set such that both ρ andΔHmix contribute
roughly equally to the objective function for the initial Parsley
1.3.0 force field. The scale σp in the regularization term is set to
0.1 kcal/mol for all vdW ϵ and 1 Å for all vdW Rmin/2 and were
chosen based on values that led to successful optimizations in
our previous study.50

Each optimization iteration consists of:

1. Estimating all physical properties in the training data set
by simulation and their gradients with respect to the LJ
parameters being optimized, using the OpenFF Evaluator
software package.70

2. Calculating the value of the objective function at the
current parameter set.

3. Selecting a new set of parameter values using the L-BFGS-
B algorithm.

This optimization is allowed to continue until the objective
function is observed to fluctuate around a constant minimum.50

The minor fluctuations around the minimum in the objective
function are expected due to noise in the gradients of the
physical properties with respect to the LJ parameters caused by
finite simulation lengths. In practice, it was found that 15
iterations was sufficient to consistently meet this criterion, which
was completed in roughly 1 week using a pool of 60 GPUs.
All simulations used to estimate physical properties in the LJ

training and test data sets are performed with the OpenFF
Evaluator70 software package version 0.3.4,76 using the default
simulation workflow schemas, described below. Where possible,
simulation results are used to estimate multiple properties (e.g.,
using the same pure liquid simulations in both a ρ and ΔHmix
calculation). All liquid simulations used in the optimization are
performed with 1000 molecule simulation boxes created with
PackMOL.77 After energy minimization and a 0.2 ns
equilibration run, each box is simulated for 2 ns in the NPT
ensemble. Ensemble averages used in physical property
calculations are taken from uncorrelated snapshots, subsampled
with the method proposed by Chodera.78 Physical property
calculations are calculated with the same procedures used in
Boothroyd et al.50

2.2.2. Details of LJ Training Data. All data used to train the
LJ parameters is sourced from the NIST ThermoML Archive,52

a machine-readable collection of thermophysical property data
maintained by NIST that draws from several scientific journals.
The training data set consists of measurements of 70 neat liquid
densities (ρ), 485 densities of binary mixtures (ρmix), and 477
enthalpies of mixing of binary mixtures (ΔHmix). These

Table 3. List of QM Data Sets of Optimized Geometries and 1D Torsion Scans, Curated and Used for Training One or More of
the Force Fields Discussed Here, as Referenced on MolSSI’s Publicly Accessible Repository QCArchivea

generation TorsionDrive data set
optimization data set (each set has a corresponding

basic data set)

Generation 1 training sets (<Parsley 1.2.0), 620
unique molecules

OpenFF Group 1 Torsions (820 1D scans) OpenFF Optimization Set 1 (937 conformers)

SMIRNOFF Coverage Torsion Set 1 (585 1D scans) SMIRNOFF Coverage Set 1 (1132 conformers)
OpenFF Group 1 Torsions 2 (19 1D scans)
OpenFF Group 1 Torsions 3 (6 1D scans)

Generation 2 training sets (≥Parsley 1.2.0), 1526
unique molecules

OpenFF Gen 2 Torsion Set 1 Roche 2 (142 1D scans) OpenFF Gen 2 Opt Set 1 Roche (298 conformers)

OpenFF Gen 2 Torsion Set 2 Coverage 2 (157 1D
scans)

OpenFF Gen 2 Opt Set 2 Coverage (373 conformers)

OpenFF Gen 2 Torsion Set 3 Pfizer Discrepancy 2 (82
1D scans)

OpenFF Gen 2 Opt Set 3 Pfizer Discrepancy (197
conformers)

OpenFF Gen 2 Torsion Set 4 eMolecules Discrepancy 2
(272 1D scans)

OpenFF Gen 2 Opt Set 4 eMolecules Discrepancy
(2201 conformers)

OpenFF Gen 2 Torsion Set 5 Bayer 2 (219 1D scans) OpenFF Gen 2 Opt Set 5 Bayer (1850 conformers)
OpenFF Gen 2 Torsion Set 6 supplemental 2 (22 1D
scans)

aAs discussed in the text, Generation 1 data sets were the first set generated with coverage of all parameters as the main objective, whereas
Generation 2 data sets were generated to increase the chemical diversity. Hessian data sets (termed as “basic data set”) for the equilibrium
geometries of all the optimization data sets listed here are also available on QCArchive. Each of the Hessian data sets has the exact same data set
name as the corresponding optimization data set but Hessians for the final optimized geometries. A complete list of OpenFF data sets, including
those not used in fitting here, can be found at https://github.com/openforcefield/qca-dataset-submission#dude-wheres-my-dataset.
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measurements are selected at close-to-ambient conditions
(99.9−101.4 kPa, 288.15−318.15 K) and are selected from
molecules containing only hydrogen, carbon, nitrogen, oxygen,
chlorine, and bromine. The measurements represent a diverse
range of functional groups, chosen so that each included
functional group includes at least 5 measurements. Long-chain
alkanes and ethers were excluded due to difficulty packing
simulation boxes and long correlation times in simulation, while
1,3-diketones were excluded due to their propensity for ketone−
enol tautomerism. For physical properties of binary mixtures, we
attempt to select 3 measurements at concentrations close to (x1
= 0.25, x2 = 0.75), (x1 = 0.5, x2 = 0.5), and (x1 = 0.75, x2 = 0.25).
We enforced a minimum concentration of xi = 0.05, where xi is
the mole fraction of either component, to avoid problems with
sampling and convergence caused by a low absolute number of
molecules of that component in a simulation box. Data in the
ThermoML Archive includes expanded 95% CI uncertainty
estimates provided by NIST, estimated either through
uncertainty propagation or internal validation of methods/
data consistency. While these uncertainty estimates are not
directly used in the training process, they provide additional
confidence in the data. This data set is available at https://
github.com/openforcefield/openff-sage/tree/main/data-set-
curation/physical-property/optimizations/data-sets.
2.3. Description of Valence Parameter Training.

2.3.1. Expansion of QM Training Data Sets. Valence
parameters (angles, bonds, and proper torsions) in Sage were
trained on QM data from a diverse range of data sets. We used
three categories of QM data sets: optimized geometries of
conformers, torsion scans of rotations around a specific central
bond in molecules, and Hessian calculations on equilibrium
geometries. The data sets can be broadly classified into two
generations: the first generation data sets, whose main focus was
full coverage of all force field parameters, and the second
generation data sets, which improved chemical diversity.
Training data sets used in one or more of the force fields
discussed here, as referenced on MolSSI’s QCArchive, are listed
in Table 3. Section 2.3.2 has details on the data used from these
data sets in training a specific version of the force field, and Table
1 lists Sage-specific training data.
The second generation data sets were sourced frommolecules

of interest from our industry partners. A large compendium of
molecules was curated using fingerprint-based clustering.
MACCS keys fingerprints79 with a default path length of four
bonds were generated for all, and a matrix of graph similarity
scores (Tanimoto) was evaluated. For each of the bonded
parameters, clustering with DBSCAN80−82 based on these graph
similarity scores was done, with cluster sizes of at least 5
molecules, and representative molecules were picked randomly
from each cluster, with the goal of ensuring that if multiple
training set molecules used the same parameter, these molecules
would be chemically diverse. The tautomeric and isomeric states
were expanded for the filtered molecules using the CMILES and
Fragmenter packages.83 The final list of molecules in the
optimization data sets listed in Table 3 were generated following
these steps.
Along with an increase in chemical diversity, additional large

molecules (>20 heavy atoms) were included in Generation 2
sets compared to Generation 1. These larger molecules also
included more flexible molecules with many rotatable bonds
sampling a range of structurally diverse local minima, as well as
manifesting complex nonbonded intramolecular interactions
arising from diverse chemistries, thus better sampling from

possible complexities in training torsional space. A comparison
of number of heavy atoms between Generation 1 and 2 data sets
is shown in SI Figure S3, and an extended tail in the region of
>20 heavy atoms can be observed.
We tested the coverage of Generation 2 data sets of

approximately 200 pharmaceutically relevant functional groups.
In order to explore the functionality, we constructed a graph
representation of the data set. Functional groups are represented
as nodes, and edges were constructed between nodes if both the
functional groups represented by the nodes were present in the
same molecule. Higher level abstractions of chemical environ-
ments such as aromatic, heterocycle, and so forth, were not
considered as a functional group to avoid clutter. From this
analysis, the Generation 2 data set had 108 nodes which covers
an additional 45 functional groups compared to Generation 1,
which had 63 nodes. Generation 2 data set’s network of
functional groups had 5533 edges, whereas Generation 1 had
739 edges. This increase in number of edges shows that a larger
combinatorial mixing of functional groups was achieved with
Generation 2 training data. The difference in connectivity
between different clusters is shown in SI Figure S1, and the
functional groups were tabulated in SI Table S1.6.
Torsion drive data sets were generated by enumerating all the

torsions in molecules from Generation 2 optimization data sets
and picking select molecules for a one-dimensional torsion scan.
These torsions were chosen by listing all torsion definitions
applied to each rotatable central bond in each molecule. This list
of molecules was filtered, with each torsion scan ideally scanning
a torsion exercising a single torsion in the force field. However,
this was not always possible given the set of available molecules,
so when no suitable molecules could be found, the number of
allowed overlaps with other torsions was incremented by one
and the process repeated until qualifying molecules were
found.46 For the 1-dimensional torsional scans, the dihedral
angle was sampled on a grid of 24 points spanning the range
[−180, 180] with a spacing of 15°, and the torsion potential
scans were performed using the TorsionDrive package.75 For
some of the molecules with in-ring torsions only a subset of the
24 grid points were retained as a full rotation takes the system
into unphysically high energy regions and distorts the torsion
drive. This energy cutoff on the grid was 0.05 hartree (∼31.4
kcal/mol). TorsionDrive uses wavefront propagation to find the
minimum energy conformation at each torsion angle along a
torsion scan.75

The QM data sets described above were generated using the
B3LYP-D3BJ/DZVP level of QM theory,84−87 the same level of
theory used to generate training data for Parsley.10 The choice of
QM theory level at which the training data is generated should
be sufficiently accurate for metrics such as conformer energies
and torsion profile energetics for a wide range of molecules. This
choice of QM theory level includes the choice of functional as
well as the basis set. Prior benchmarks using this theory level88

showed optimal performance on conformer energetics of the
MPCONF196 data set,89 which contains small peptides and
medium-sizedmacrocycles, and on the YMPJ data set,90 which is
a data set of natural amino acids. We have also conducted our
own work benchmarking levels of theory for this data and
reached a similar conclusion, which will be reported in a separate
study.
All the OpenFF-generated QM data sets reside on MolSSI’s

QCArchive public data repository and are accessible via its
Python API (QCPortal) or by using OpenFF-QCSubmit.69 The
Sage release github repository (https://github.com/
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openforcefield/openff-sage) has Python scripts for data set
download and processing the downloaded records, using the
OpenFF-QCSubmit package.

2.3.2. QM Training Data Used in Training Valence
Parameters. Training for the Sage 2.0.0 release built on training
data sets for the 1.2.0 and 1.3.0 data sets, which have not been
previously reported in detail, so these are briefly described here.
In training Parsley 1.2.0, 4745 optimized geometries, 710 1D

torsion scans, and 1189 Hessians (for vibrational frequencies
targets) from Generation 2 data sets were used. The explicit
target files used in training Parsley 1.2.0 and the ForceBalance
output can be found in the release tarball for the 1.2.0 force
field.91

For training Parsley 1.3.0, which was aminor release to correct
discrepancies in amide torsional profiles, a mix of data from both
generations was used. Molecules for torsion profile targets were
picked from Generation 1 data sets due to lack of molecules in
Generation 2 data sets that have a planar amide bond along with
planar geometries. The presence of mostly nonplanar molecules
with amides in Generation 2 data sets was due to strong steric
interactions from nearby substituents and other chemical
interactions pushing the amide group out of plane. Therefore,
a set of 62 1D torsions were selected from Generation 1
TorsionDrive data sets, and 2347 optimized geometries and 532
Hessian targets were selected from Generation 2 data sets. The
explicit target files used in training Parsley 1.3.0 and the
ForceBalance output could be found from the release tarball for
this force field.92 The 1.3.0 training data set was smaller than that
used for 1.2.0 or 2.0.0 and contained molecules chosen from
both Generation 1 and Generation 2 sets, whereas 1.2.0 and
2.0.0 force fields used only Generation 2 sets.
For training valence parameters in Sage 2.0.0, around 3663

optimized conformer geometries and 713 1-dimensional torsion
scans were used as training targets from Generation 2 data sets,
shown in Table 1. For any given molecule, we use no more than
10 optimized conformers in fitting, so that molecules with a
higher number of conformations were not weighted higher than
other chemistries. A greedy selection algorithm was applied to
select the conformers which were most distinct as measured by
their RMSD.
For all force fields trained above, a few filtering steps were

common. Molecules with changes in connectivity between
initial and final structures after geometry optimization were
filtered out from the training targets. Most of these include
molecules with an intramolecular proton transfer occurring
during the optimization. Additionally, for torsion-prof ile targets,
molecules with strong intramolecular hydrogen bonds were
excluded based on Baker−Hubbard criteria as implemented in
MDTraj.93,94 Molecules with intramolecular hydrogen bonds
were excluded to avoid training against conformations with
internal H-bonds that, though very strong in the gas-phase, are
less dominant in the condensed phase.

2.3.3. Valence Parameters Trained in Sage 2.0.0. Valence
parameters that were applied to at least five molecules in the
target QM data set were chosen for optimization. Parameters
that are not chosen for optimization retain the same values as the
Parsley 1.3.0 force field. With a new automated setup, using
OpenFF-BespokeFit andOpenFF-QCSubmit, the set of training
targets and the parameters to be optimized with Force Balance
were stored in a json file for reproducibility. The data file,
https://github.com/openforcefield/openff-sage/blob/2.0.0-rc.
1/schemas/optimizations/vdw-v1-ms-v1-td-opt-v3.json, in-
cludes the selected optimized geometries and torsion scans

tagged by their QCArchive record numbers and a list of
SMIRKS patterns of valence parameters to be optimized.
The numbers of each type of valence parameters optimized

were as follows:
• Harmonic bond stretches: 56 out of 88 total parameters

were retrained.
• Harmonic angle bending: 33 out of 40 total parameters

were optimized. In case of angles for linear bonds (e.g.,
triple bonds), only the force constant was optimized,
keeping the equilibrium angle constant at 180°.

• Proper torsions: Force constants of 95 torsion parameters
out of 167 total parameters were optimized. Torsion
parameters (t165, t166, and t167 in Sage 2.0.0) that were
used to describe linear substructures, such as in acetylene,
were not optimized and they retain the value of zero for
their force constants, as all enumerated rotatable bonds
must be assigned force constants. We note that the
number of Fourier terms was set separately for each
torsion parameter, with the number of the Fourier terms
chosen manually for each parameter based on chemical
typing, with periodicities that were expected to give
appropriate minima at appropriate dihedral angles as
observed in QM torsion profiles. Neither the number of
terms nor the periodicities were adjusted in fitting; only
the force constants were varied in fitting.

• Improper torsions: There were 7 improper torsions, and
none were optimized for the 2.0 release. Instead, they
were held at the same values as in prior force fields, chiefly
because torsions were deemed to be too broadly defined,
i.e., covering too diverse a range of chemistries, and
therefore in need of further refinement before refitting.

2.3.4. ForceBalance Targets and Loss Function Definitions
for Valence Term Training. ForceBalance61 is a force field
optimizer which constructs an objective function taking into
account the deviations in MM estimated properties with respect
to reference QM properties. A very large number of approaches
are possible in weighting the different components of the fit from
QM to MM structures. We describe below the current OpenFF
approach, and how the parameters and justifications have
evolved over time. Although other approaches to fitting are
possible and may be worth exploring, we have found that the
approach reported here yields reasonable results that agree
better�for both training and test sets�with benchmarks than
our starting point force fields, and it performs better than any
other fitting approach we have tried to date. However, we
welcome experimentation from the scientific community, and
our data sets and infrastructure are readily available to help
facilitate such work.
The optimization procedure used for Sage was similar to that

used for Parsley,10 where the goal was tominimize the deviations
in internal coordinates for optimized geometries and to
minimize the deviations in relative energies with respect to a
reference QM torsion profile. EachQMoptimized geometry of a
molecule is called an opt-geo target. Consideration of the opt-geo
target involves evaluating a sum of the deviations in internal
coordinates of MM optimized geometry at the current set of
MM parameters at each iteration with respect to the QM
reference. The QM torsional profile of a molecule, in which a
specific central bond is rotated on a grid of dihedral angles, is
called a torsion-prof ile target. Evaluating a torsion-prof ile target
involves taking the differences in relative energies between a
MM generated torsion profile at the current set of MM
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parameters, at each iteration, with respect to QM relative
energies, at each of the grid points of the torsion scan (eq 3).
For the optimized geometry targets, the objective function

contribution is defined as
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where θ stands for force field parameters in the current iteration
used in the MM calculation, xiQM and xiMM are the internal
coordinates of the QM optimized reference minimum and the
MM optimized geometry, respectively, and di refers to the
scaling factors of 0.05 Å, 8°, and 20° for bond lengths, bond
angles, and improper torsion angles, respectively. The values of
dimensional scaling factors here were chosen based on chemical
intuition given the size scale of typical atomic fluctuations, with
the goal that each term in the objective function contributes
similarly to the overall objective function and that fluctuations
larger than “normal” in a particular coordinate would be
penalized. Deviations in proper torsion angles were not included
in this objective function since those were fitted with the torsion
profile energetics by keeping the dihedral angle constant on a
grid of angles and fitting torsion profiles solely with optimized
geometries might introduce numerical artifacts. This is because
equilibrium geometries do not provide information about the
higher energy regions of energy landscapes that are encountered
in a dihedral rotation.
Improper torsion parameters were not retrained but instead

were held constant, as noted above. However, deviations in
improper angles were included in the opt-geo target objective
function to minimize discrepancies in improper angles of MM
optimized structures, since planarity is dictated by a balance of
angle bending parameters and our (unchanged) improper
torsion parameters. Without including some metric of planarity
in the fits, angle parameters would be free to change in a way
which bends planar groups out-of-plane without this contribu-
ting to the objective function, so we included this metric in the
opt-geo objective function. The situation should be improved in
subsequent work as we introduce a more chemically specific set
of improper torsion parameters and begin to specifically refit
these.
For torsion-prof ile targets, relative energies were calculated

with respect to theminimum energy on the grid for the reference
QM torsion profile, as well as MM torsion profile. While
evaluating the MM torsion profiles, to avoid large structural
changes a harmonic positional restraint with a force constant of
1 (kcal/mol)/Å2, was applied on atoms not involved in the
torsion. The energy contributions from the restraints were
removed before comparing with the QM energies. The four
atoms involved in the torsion were constrained during MM
optimization.10
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where the primes indicate the absolute energies at each grid
point i, and the weighted differences in relative energy profiles
serve as the objective for minimization:
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where xi represents the coordinates of the ith conformer, the 0th
conformer is the minimum energy conformer in respective
potential energy landscapes, θ is the force field parameter set at
that iteration, andOptMM(xi, θ) corresponds to theMMenergy
obtained via constrained minimization and dE = 1 kcal/mol is a
conversion factor to make the sum over deviations dimension-
less.
The weights w(EQM) in eq 4 were applied to prioritize

matching the torsion profile near the minima rather than the
barriers. Boltzmann sampling favors low energy regions of state
space, so agreement of potentials in low energy regions is
typically of higher importance than agreement in high energy
regions for thermodynamic measures. The choice of weights as a
function of energy deviation from theminima EQMwas similar to
that of Parsley and was based on a prior study that used a
Boltzmann distribution with T = 2000 K (kBT ≈ 4.0 kcal/mol)
to weight energies in torsion fitting and found that these weights
led to the best performance relative to other choices.95 Thus, we
used an energy cutoff as a function of QMenergy difference from
the minima EQM as follows:
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The total objective function was a weighted sum of
normalized contributions of both opt-geo and torsion-prof ile
targets,
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where wi’s were weights of 0.1 and 1 for opt-geo and torsion-
prof ile targets, respectively. These weights were chosen such that
the final contributions from each of the different targets stay on
the same scale, on the order of 1.0 after weighting, and do not
skew the optimization in favor of either of the objective function
components. The corresponding loss functions Li for each of the
targets were as defined in eqs 2 and 4. wreg is the regularization
penalty weight, whereas Δθp is the deviation from initial
parameter values. The denominator σp gives the penalty for the
parameters to deviate significantly from the starting point, for
each type of parameter, and is described in more detail in the
next subsection.

2.3.5. Regularization of the Parameters. Regularization was
used in the optimization to achieve smooth convergence and to
prevent the parameters from moving too far from the starting
point to potentially unphysical local minima. For this
optimization, the starting point was the 1.3.0 force field.
Regularization with a harmonic term can be seen in a Bayesian
sense as imposing a Gaussian prior on each parameter withmean
of the starting point and standard deviation equal to the
regularization scale σp. We used a data-driven approach to
determine the regularization scales used in the fitting procedure.
The distribution of parameters in SMIRNOFF99Frosst for each
parameter type was first plotted. Since the distributions were not
bell-shaped (as seen in SI Figure S4a), we decided to use IQR
(interquartile range) values instead of standard deviation of the
distributions to set the regularization scale σp, given in Table 4.
The overall optimization of the force field through this

process was considered to have converged when it satisfied at
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least two out of the following three criteria: total objective
function value, including the regularization penalty, to reach a
value ≤0.1; the norm of gradient on parameters to reach a value
≤0.1; and the optimization step size to be ≤0.01.
2.4. Benchmarking Methods. Calculations of solvation

free energies (ΔGsolv) used the YANK alchemical simulation
software package, version 0.25.296 and the same OpenFF
Evaluator workflow as used in Boothroyd et al.70 These
calculations used a thermodynamic cycle that involved 2
simulation steps: (1) the removal of a solute molecule from a
box of solvent and (2) the annihilation of a solute molecule from
a vacuum box. For step 1, the simulation box contained 2000
molecules of solvent and a single molecule of solute. The solute
was removed along an alchemical pathway which gradually
turned off the nonbonded interactions along a soft-core
alchemical schedule.97 The implementations of the alchemical

pathway and values of λ are handled by the openmmtools
software package version 0.20.3.98

We also assessed the performance of the newly fitted Sage
force field in relative binding free energy calculations based on
molecular dynamics simulations following suggested best
practices for benchmarking binding affinities.99 Relative binding
free energies were calculated employing alchemical perturba-
tions between pairs of ligands in water and the protein complex.
These calculations employed a nonequilibrium workflow based
on GROMACS and pmx as described previously.72,100 For the
ligandmolecules, the Sage 2.0.0 force field was used. The protein
was parametrized with the AMBER ff99sb*-ILDN force
field,27,28,101 and a TIP3P explicit water model51 was employed.
We chose AMBER ff99sb*-ILDN as the protein force field
because Parsley and Sage are essentially AMBER-family force
fields and should be compatible, or nearly so, with AMBER
protein force fields.10 The water model was chosen as TIP3P due
to the widespread use of this water model with the AMBER
family of protein force fields and because TIP3P was used in
fitting to condensed phase properties described in this paper. To
mimic physiological conditions, ions (150 mM NaCl102) and
additional counterions to neutralize the system were added to
the dodecahedral simulation boxes.
The analysis workflow used for analyzing the calculations is

available in Hahn et al.103 The statistics in this workflow were
calculated using Arsenic (repackaged as Cinnabar),104 which is a
package implementing best practices for consistently calculating
statistics and reporting results from relative binding free energy
calculations. The test set consisted of 22 different series of
congeneric ligands binding to 20 protein targets with a total of
599 ligands. All calculations used the input structures provided
in the protein−ligand-benchmark repository.105 More detailed

Table 4. Regularization Scales Used in Optimizing Force
Field Parameters with ForceBalancea

parameter regularization scale σp

bond force constant Kr 100 kcal/(mol/Å2)
bond equilibrium length r0 0.1 Å
angle force constant Kθ 100 (kcal/mol)·rad2

equilibrium angle θ0 20°
proper torsion barrier height K 1 kcal/mol
vdW well depth ϵ 0.1 kcal/mol
vdW minimum Rmin/2 1 Å

aRegularization helps when we are training on smaller data sets, as the
final optimized parameter values apply generally to a wider chemical
space. The values were chosen based on chemical intuition and also
by looking at the distribution of parameter values in SMIRNOFF99-
Frosst.

Figure 2.Changes in LJ parameter values for refit LJ types. Plot shows % change of σ (left panel) and ϵ (right panel) for each of the 15 LJ types refit in
Sage 2.0.0. In this plot, “ENA” refers to electronegative atom, corresponding to the SMIRKS string [#7,#8,#9,#16,#17,#35].
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discussion of the workflow, the employed parameters, analysis,
and benchmark sets can be found in the Supporting Information.

3. RESULTS
3.1. Changes in Parameters As a Result of Training.

3.1.1. Changes in LJ Parameters. Optimization against
densities and enthalpies of mixing led to significant changes in
many of the LJ parameters after refitting, detailed in Figure 2.
These changes, as detailed below, provide clear evidence that
using condensed phase mixture properties in the optimization
can have significant effects on force field performance.

Overall, almost all new values of LJ Rmin/2 and ϵ are within
±5% and ±10% of the Parsley 1.3.0 values, respectively.
Exceptions include the Rmin/2 for [#35:1] (Br), which
decreased significantly. This decrease is associated with a
correction in bromide densities, which were generally under-
predicted relative to experiment in Parsley 1.3.0. The reduction
in Rmin/2 and therefore molecular volume leads to an increase in
densities after the optimization that corrects the under-
prediction. The dramatic correction in densities for bromides
and bromide-containing mixtures after optimizing the LJ
parameters is illustrated in Figure 3, panel a.

Figure 3. Selected categories of physical property training data, before and after LJ optimization. These plots show parity between experiment and
simulation for physical properties in the training set, before (Parsley 1.3.0) and after (vdw-v1) LJ training. This shows how LJ refitting impacts the
computed properties, before refitting valence terms, so that the effects of LJ refitting are isolated from other factors. “MSE” in the panel legends refers to
the mean signed error (bias) of the data set. This plot highlights successful refits as well as challenges remaining. Panel a shows correction of systematic
error in bromide density prediction after reduction in [#35:1] Rmin/2. Panel b shows correction in ΔHmix of alcohol/ester mixtures after training.
Panel c shows significant overprediction of ΔHmix for aqueous mixtures, which is reduced but not eliminated in Sage 2.0.0. Panel d shows ΔHmix for
mixtures of heterocycles. The three data points in the upper left corner are mixtures of pyrrole and pyridine, which have large negative values of ΔHmix
that our force field does not currently reproduce, potentially solvable with lone pairs on heterocycle nitrogens. Values in parentheses indicate
bootstrapped 95% confidence intervals.
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Figure 3 shows performance on the training set before and
after LJ refitting, focusing on several notable cases where the
optimization was successful or unsuccessful; a similar plot for all
training data is available in SI Figure S1. Figure 3 shows the force
field with refitted LJ parameters but unchanged valence
parameters, referred to as vdw-v1.
This intermediate refitted force field shows improvement on

the densities and enthalpy of mixing measurements in the
training set. Density root mean square error (RMSE) is reduced
from 0.041 g/mL (95% CI 0.033, 0.049) in Parsley 1.3.0 to
0.017 g/mL (0.015, 0.019) in vdw-v1; percentage error is
reduced from 2.13% (95% CI 1.93, 2.33) in Parsley 1.3.0 to
1.28% (1.18, 1.38) in vdw-v1. For enthalpy of mixing, RMSE is
reduced from 0.65 kJ/mol (95% CI 0.59, 0.72) in Parsley 1.3.0
to 0.53 kJ/mol (0.47, 0.60) in vdw-v1; percentage errors for

enthalpies of mixing are not computed because many heats of
mixing are near zero, resulting in numerical inconsistencies. The
performance of vdw-v1 on liquid state properties is expected to
be nearly identical to Sage 2.0.0, as these properties are most
dependent on LJ parameters and electrostatics, which are
unchanged between vdw-v1 and Sage 2.0.0, and the valence
parameters, upon which these properties only weakly depend,
are only optimized slightly in the final fitting. Additionally, the
performance of vdw-v1 on the solvation/transfer free energy
benchmark set described in section 3.2 (shown in Supporting
Information Table S1) was not statistically different than that of
Sage 2.0.0. The data in this table is presented not as the final
force field, as the valence parameters in vdw-v1 were not yet
reoptimized in the presence of new van der Waals parameters,

Figure 4. Percent change in angle parameters (angle θ, force constant k) from the starting points in Parsley 1.3.0 to the optimized values in Sage 2.0.0.
The maximum change in equilibrium angle values was 10.16° for the parameter a40 ([*:1]∼[#15:2]∼[*:3]), which was a change of 7%. The
maximum change in angle force constant values was 78.74 (kcal/mol)/rad2 for the parameter a19 ([*:1]−[#7X4,#7X3,#7X2−1:2−[*:3]),
which was a change of 71%. The parameter IDs were with respect to the notation in Sage, and SMARTS strings corresponding to each parameter id are
given in SI Table S3.
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but to illustrate the direct effect of LJ refitting on performance
with mixture data.
The other substantial percent change is the ϵ for the hydroxyl

hydrogen [#1:1]-[#8] type, which is less notable on an
absolute scale, as it is reduced from 5.27 × 10−5 kcal/mol to 1.22
× 10−5 kcal/mol. This parameter was discussed previously in
Mobley et al.,37 and its value is essentially designed to be “small
but non-zero”, in order to avoid unphysical effects; it did not
originally result from a fit to condensed phase properties. We
therefore do not assign a significant physical meaning to the
reduction of this value.
Among the other LJ types retrained, we see a notable

reduction for ϵ of the [#1:1]-[#7] type, which is for
hydrogens attached to nitrogens, as well as the [#1:1]-
[#6X3]∼[ENA] type, which is associated in this training with
aromatic heterocycles containing nitrogens. “ENA”
in th i s con t e x t r e f e r s t o the SMIRKS s t r i n g
[#7,#8,#9,#16,#17,#35] and represents a bond to an
electronegative atom. These changes are likely made to reduce
overpredictions in densities and enthalpies of mixing for many
nitrogen-containing compounds, although they were not
entirely successful. We also note that while we cover several
nitrogen chemistries, there is only one nitrogen LJ type, and so
adjustment of these parameters (as well as the [#1:1]-
[#6X4]-[ENA] type) is the main method of accounting for
different nitrogen environments.
Additionally, we see a reduction in Rmin/2 for

[#8X2H1+0:1], which corresponds to a hydroxyl oxygen.
In previous work,50 we hypothesized that this change might be
related to improved treatment of mixtures of alcohols and
hydrogen bond acceptors like esters and ketones. We see those
same improvements here, where alcohol/ester mixtures are
initially underpredicted relative to experiment, but that
underprediction is reduced after retraining, as shown in Figure
3, panel b.
Aside from parameter changes, another notable trend from

the training targets is the systematic overprediction of enthalpies
of mixing for aqueous mixtures, as shown in Figure 3, panel c.
That this systematic overprediction was slightly reduced, but not
corrected, points to a larger issue with the aqueous mixtures.
Since the water model used in refitting (TIP3P) was not refit, the
optimization algorithm was likely unable to eliminate this error
by adjusting the nonaqueous components alone. This indicates
that in order to significantly improve aqueous mixtures, we
would likely need to retrain a water model in a future version of
the force field or pursue a more aggressive optimization of these
aqueous physical properties.
Examining training data split out by chemical context allows

us to detect failures and rapidly propose solutions for future
releases. One prominent example is illustrated in Figure 3, panel
d. The three data points in the upper left corner of this plot
represent mixtures of pyrrole and pyridine at several
concentrations. While the experimental ΔHmix of these mixtures
should be significantly negative, simulations with both Parsley
1.3.0 and Sage 2.0.0 produce a ΔHmix of roughly 0, indicating
nearly ideal mixing. A potential reason for this failure to capture
the molecular behavior is the force field’s inability to correctly
capture the orientation of the pyridine lone pair. A possible
solution is the introduction of an off-site charge for pyridine;
preliminary tests with off-site charges show promising initial
results in correcting this issue.106

3.1.2. Changes in Valence Parameters. As mentioned in
section 1.2.1, the LJ parameters were optimized first, and the

resulting force field from step 1 was used as input for valence
parameter training. With the optimization procedure described
in section 2.3, the ForceBalance run satisfied the convergence
criteria after 14 steps, and the drop in objective function value is
shown in SI Figure S5.
Examining the changes in valence parameter values, we find

that bond lengths barely changed between Parsley 1.3.0, the
starting point for this optimization, and the final optimized
values in Sage, with none changing more than 2%. There are two
bond parameters with a more significant change in force
constant values, b56 ([#16X4,#16X3!+1:1]-[#6:2]),
which changed by 13%, equivalent to +69 (kcal/mol)/Å2, and
b57 ([#16X4,#16X3:1]∼[#7:2]) with a 24% change in
value or +142 (kcal/mol)/Å2. For all other bond parameters,
changes in bond force constant values are around 5% or less.
For angle parameters, the equilibrium angle values again

barely changed, with all changes less than 8%. There were
significant changes in some angle force constants, as high as
154%, for k of a6 ([#1:1]-[*;r3:2]∼;!@[*:3]), and
these are shown in Figure 4. Changes in angle force constants are
expected as they are coupled strongly with torsions, which are
mainly affected by changes in LJ parameters.
Torsion parameters are the most flexible, and it is difficult to

derive any insights by looking at the change in magnitude of
force constants of torsion parameters. In general, torsional
energy contributions are lower magnitude terms and a
distribution of force constants with most values near zero is
not unexpected, which can be seen SI Figure S6. In this figure,
distributions of torsion force constants for Parsley 1.3.0, the
starting point for the fit, and Sage 2.0.0 overlap pretty well with a
peak near zero. Benchmarking torsion profile energetics and
dihedral deviations with respect to QM geometries is a better
way to assess torsion parameter quality, which we discuss in
section 3.3.
3.2. Benchmarking Results: Solvation Free Energies. A

set of solvation free energies (ΔGsolv) served as a target to
evaluate the performance of Sage 2.0.0 on condensed phase
properties. This data set consists of (1) 87 solvation free energies
for small molecules in aqueous solution from the FreeSolv
database,53 referred to here as aqueous solvation free energies
(ΔGsolv(aq)), and (2) 382 solvation free energies of small
molecules in nonaqueous solution from the MNSol database,107

referred to here as solvation free energies (ΔGsolv(nonaq)). The
uncertainties of the ΔGsolv(aq) measurements from FreeSolv are
generally 0.6 kcal/mol or below, and the uncertainties for the
ΔGsolv(nonaq) values in MNSol are listed as 0.2 kcal/mol for
neutral solutes. The data sets are available at https://github.
com/openforcefield/openff-sage/tree/main/data-set-curation/
physical-property/benchmarks/data-sets.
We also computed aqueous to nonaqueous transfer free

energies (ΔGtrans(aq → nonaq)) from these reference data,
where ΔGsolv values for a single solute are available in multiple
solvents. ΔGtrans(aq → nonaq) can be calculated from its
individual components, as shown in eq 7.

=G G G(aq nonaq) (nonaq) (aq)trans solv solv
(7)

Using eq 7 and the test data from MNSol and FreeSolv, we
calculated reference transfer free energies ΔGtrans(aq → nonaq)
for 313 systems, where a system consists of a solute, an aqueous
solvent, and a nonaqueous solvent.
Each set of free energies was calculated with Parsley 1.3.0,

Sage, and GAFF 2.11 in order to provide comparisons to other
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widely used small molecule force fields. In each case, TIP3P is
used as the water model for the solvent phase in aqueous
mixtures and partial charges were assigned with the AM1-BCC
method. For clarity, we will refer to the resulting GAFF force
field as GAFF 2.11/AM1-BCC. While the recommended charge
model for GAFF 2.11 is RESP, and others have indicated that
GAFF 2.11/RESP often offers more accurate predictions than
GAFF 2.11/AM1-BCC,42 we find that AM1-BCC charges are a
reasonable charge model with significantly lower computational
expense than RESP for large data sets.108We also note that a new
AM1-BCC-like charge model for GAFF 2.11, ABCG2,109 was
recently developed; this charge model may offer improved
performance on this benchmark set but is not yet publicly
available.

To measure the improvement in performance due to the refit,
we employ the mean shif t performance metrics developed in
Boothroyd et al.50 with Parsley 1.3.0 as the baseline. The mean
shift metric, described in eq 8, measures how much the average
error (relative to experiment) of a prediction changes when
moving from one force field to another. In essence, it is the
difference in unsigned errors between the refitted force field
(Sage 2.0.0) and the reference force field (Parsley 1.3.0) for the
physical property calculation for each molecule, averaged over
the test set.

= | | | |
=

O
N

O O O O( )
1

( )
n

N

nsim exp ff0 ff1
1

sim,ff1 exp sim,ff0 exp

(8)

Figure 5.Mean shifts in absolute error indicate Sage has improved performance relative to Parsley 1.3.0 on both aqueous and nonaqueous ΔGsolv. The
plot shows the distribution of shifts in errors in Sage(OpenFF 2.0.0) relative to those in Parsley 1.3.0, as well as the mean shift in absolute error of Sage
relative to Parsley 1.3.0 with 95% confidence intervals bootstrapped over pairs of molecules (“mean shift”). Here, more negative shifts indicate more
accurate results. The performance of Parsley 1.3.0 is shown as a vertical line at ΔΔGsolv = 0 (Parsley 1.3.0). Left panel shows performance on aqueous
targets; right panel shows performance on nonaqueous targets.

Figure 6. Benchmarks against small molecule solvation and transfer free energies. Benchmarks for Parsley 1.3.0, Sage 2.0.0, andGAFF 2.11/AM1-BCC
against solvation free energies (aqueous, left column, and nonaqueous, middle column) and transfer free energies (right column) are shown. Top
panels show RMSE against experimental free energies, with bootstrapped 95% confidence intervals. Bottom panels show mean signed error against
experiment, which is less sensitive to individual outliers, with bootstrapped 95% confidence intervals.
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Here,Osim is the simulated value of the observable, andOexp is
the experimental value of that same observable. A negative value
of the mean shift indicates that predictions with Sage are
improving over Parsley 1.3.0, whereas a positive value indicates
that the predictions are regressing. We present this metric along
with the kernel density estimate of the distribution of shifts, to
visualize changes in improvement over the training sets. Kernel
bandwidths are set to the defaults in the scipy package.82

Figure 5 shows that the mean shifts are negative (indicating
improvement) and statistically significant for both aqueous and
nonaqueous ΔGsolv, though the effect is most pronounced for
aqueous solvation. This indicates that Sage significantly
improves predictions of ΔGsolv compared to Parsley 1.3.0.
Note that the number of ΔGsolv measurements in the
comparison is slightly lower than the total number in the test
set; this is due to several ΔGsolv simulations that failed or had
errors, and the comparison is only done on the set of free energy
calculations which were successful with both force fields.
Although the mean bias is clearly improved, the distribution

shows that a minority of the calculations were worse with Sage.
An important question is what portion of the shifts are due to
changes in the force field versus being due to statistical
uncertainty in the simulations. To estimate the proportion of

variance due to force field changes, we performed a
deconvolution analysis, fitting a Gaussian distribution to the
distribution of shifts and assuming the simulation error is
Gaussian with 0 mean, and a standard deviation equal to the
average propagated simulation uncertainty of a shift. Outlier
analysis indicated that the Gaussian assumption is reasonable,
with 95% of points (across both nonaqueous and aqueous
ΔGsolv) falling with the 2-sigma limit vs the expected 95.4%.
Using these assumptions, we estimate the percentage of variance
due to force field changes to be 85% for nonaqueous ΔGsolv and
96% for aqueous ΔGsolv, with the rest due to statistical noise.
This means the changes due to optimization are primarily due to
shifting of force field error from one set of molecular solvations
to another but with an overall reduction in total error.
Figure 6 (data also shown in Supporting Information Table

S1) compares performance between Parsley 1.3.0, Sage 2.0.0,
and GAFF 2.11/AM1-BCC, a widely used small molecule force
field, paired with the AM1-BCC a fast charge model generally
considered to be sufficiently accurate for pharmaceutical
applications. In addition to calculating benchmarks on ΔGsolv
for aqueous and nonaqueous solvents, we use the results of those
calculations to calculate aqueous to nonaqueous transfer free
energies (ΔGtrans(aq → nonaq)) for solutes that have measure-

Figure 7. Step plots showing improvement in RMSD and TFD of optimized conformer geometries and a closer match of ΔΔE with previous
generations of force fields. The error bars are bootstrapped errors for each bin. The force field Sage 2.0.0 is highlighted with a bold line, while other
force fields are shownwith narrower lines. Overall, Sage appears to do substantially better than previous releases based on geometric measures (RMSD,
TFD), while performing only marginally worse than the best prior force field (Parsley 1.2.0) on ΔΔE. The slight drop in ΔΔE values can likely be
attributed to the reduced set of opt-geo training targets used to train Sage.
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ments of ΔGsolv for water and nonaqueous solvents. Transfer
free energies are a useful benchmark target for a small molecule
force field because they are analogous to the process of a small
molecule ligand being transferred from an aqueous bulk phase to
a nonaqueous binding pocket.
For the aqueous ΔGsolv test set, Sage is slightly improved over

Parsley 1.3.0 and comparable to GAFF 2.11/AM1-BCC. A
portion of the improvement in Sage relative to Parsley 1.3.0 is
likely due to the inclusion of aqueous mixtures in the LJ training
set. For the nonaqueous ΔGsolv test set, Sage again performs
slightly better, with RMSE lower than Parsley 1.3.0 or GAFF
2.11/AM1-BCC. Both OpenFF force fields have a significantly
lower bias (measured as mean signed error) when compared to
GAFF 2.11/AM1-BCC.
While Sage 2.0.0 performs slightly better on both aqueous and

nonaqueous ΔGsolv, GAFF 2.11/AM1-BCC has the best
performance for ΔGtrans(aq → nonaq). This is apparently due
to a cancellation of error between aqueous and nonaqueous
solvents in GAFF 2.11/AM1-BCC; in both environments,
solvation free energies are overpredicted relative to experiment.
In Sage, aqueous solvation free energies are overpredicted in
aqueous solution but not nonaqueous solution. This indicates
that GAFF 2.11/AM1-BCC’s superior prediction of ΔGtrans(aq
→ nonaq) benefits from a cancellation of error between aqueous
and nonaqueous phases. This suggests that future OpenFF force
fields could benefit from the training of a companion water
model.
Finally, we note caution in the direct comparison between

GAFF2 and OpenFF, as partial charge generation protocols can
be different, such as the difference between RESP and AM1-
BCC, or between different AM1-BCC implementations.42 Some
of the differences in GAFF2 versus OpenFF performance
presumably result from differences in how they were trained;
however, it is difficult to comment on this, as the GAFF2 series
training and test procedures and data sets have not yet been
disclosed.
3.3. Benchmarking Results: Force Field Benchmarks

Relative to QM Data. Overall, benchmarking of quantum
chemical geometries and energetics shows Sage substantially
improves results relative to our earlier force fields, with
particularly substantial improvements by geometric measures
(Figure 7), as we further discuss below. Here, we provide details
of our benchmark data set and then overall performance relative
to quantum chemical data, and finally we identify areas where
the force field needs further improvement so these can be
addressed in subsequent studies.

3.3.1. Benchmark Data Set Composition and Parameter
Coverage. Following a previous benchmark study,38 we
compared performance of Sage 2.0.0 to earlier generation
OpenFF force fields, as well as general small molecule force
fields. Specifically, we use a set of QM optimized conformer
geometries and energies to assess how well we can reproduce
conformer energetics and geometries with MM parameters. A
much larger data set of QM-optimized gas-phase geometries,
named “OpenFF Industry Benchmark Season 1 v1.1” on
QCArchive, is now used for benchmarking MM optimized
geometries.110 We built this data set in collaboration with our
industry partners to benchmark force fields more generally, and
it consists of nearly 9847 unique molecules, and a total of 76713
conformers. The data set also has a wider distribution of charged
entities than our training set, including formal charges of [−2,
−1, 0, 1, 2]. The mean molecular weight of the molecules is 348
Da, and a maximum molecular weight is 1104 Da, showing a

large range of molecular size. This data set is generated at
B3LYP-D3BJ/DZVP, the same level of theory as our training
data. Following conformer generation and geometry optimiza-
tion, we processed this data set to filter out connectivity changes
during optimization, cases with stereochemistry which cannot
be perceived, as well as any calculation failures due to
convergence issues. This filtering brings down the final set
used in the benchmarking to 73301 conformers.
Although this data set is quite large, it consists mainly of drug-

like molecules that are of interest to our industry partners. As a
consequence, not all parameters are covered by the molecules in
this data set, as Sage is general enough to represent chemistries
which are rare in drug-like molecules. The following parameters
are not applied on any molecule in this data set (SMARTS for
each bond ID are given in SI Table S3):

• Bond parameters: b23, b29, b40, b47, b48, b49, b50, b55,
b63, b66, b74, b75, b78, b79, b80, b81, b82, b83 (18 out
of 88 parameters not covered).

• Angle parameters: a30, a35, a36 (3 out of 40 parameters
not covered).

• Proper torsion parameters: t8, t63, t89, t102, t112, t113,
t114, t164 (8 out of 167 parameters not covered)

The benchmark is therefore slightly skewed toward the most
commonly occurring chemistries and may miss some exotic
chemistries, such as bridgehead nitrogens, which occur
frequently in the VEHICLe set of heterocyclic molecules. This
set is also available in QCArchive.111 However, it covers more
valence parameters than those trained in this iteration of the
force field (refer to section 2.3.3 for more information).

3.3.2. Global Metrics of Merit. As global metrics of merit, we
use root mean squared deviation in geometries between MM
optimized and QM optimized conformers (RMSD), torsion
fingerprint deviation (TFD), and error in relative conformer
energies (ΔΔE or ddE) as described in a previous work by Lim
et al.38 TFD is a weighted metric of deviations in dihedral angles
which overcomes the limitations of RMSD.112 Only 24
molecules out of the whole set of 73301 molecules fail to
generate TFDs; this happens when a molecule has no
nonterminal rotatable bonds. Overall, errors in torsions are
well captured by the TFD metric, and a lower TFD value means
the geometry is close to the reference structure.
The error in relative conformer energies, ΔΔE, is defined for

the ith conformer in a molecule by

=

= [ ] [ ]

E E E

E E E Ex x x x( ) ( ) ( ) ( )

i i i

i MM i

MM, QM,

MM 0,QM QM QM 0,QM

(9)

where the relative conformer energies were calculated with
respect to the QM minimum energy conformer (labeled 0th)
within each molecule, We exclude the minimum energy
conformer, which has a ΔΔE of 0.0, in calculating ΔΔE
statistics so that final results were not skewed toward zero. We
also note that the energies of the MM conformers were
compared directly to their QM counterparts from which they
were optimized.38 Such a direct comparison may result in higher
errors since the MM optimized structure may be very different
from the QM reference structure. However, a comparison of
ΔΔE with MM conformers that match to any of the QM
conformers within an RMSD cutoff of 1 Å (shown in SI Figure
S7) depicts the same trends as observed in Figure 7.
Improvements over generations of force fields can be seen in

the step plots in Figure 7, where the population density in the
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bins closer to minimal error are increasing for RMSD and TFD
metrics. In the case of ΔΔE the histogram stays close to the best
among earlier generations, Parsley 1.2.0. The slight degradation
observed here could be due to the reduced number of optimized
geometry targets used in training the force field; this reduction
means that the overall fit places slightly less weight on energetic
agreement relative to geometric agreement. In particular, there is
a reduction of around 1082 optimized conformers between

Parsley 1.2.0 and Sage 2.0.0 training sets, and a comparable
performance is achieved with a reduced set of targets.
3.4. What Lies in the Outliers, a Post Hoc Study, and

the Plan Ahead.We now examine what we can learn from the
outliers in force field benchmarks relative to QM conformers
and energetics and from analysis of various bond, angle, and
torsion parameters applied in these outlier cases. In particular, an
analysis of failures/poor performers will point the way forward

Figure 8. Box plots of the distribution of bond and angle RMSDs of each conformer for all the molecules in the OpenFF Industry Benchmark set. The
edges of the boxes show the first and third quartiles and the whiskers are at 1.5× (interquartile range) away from the box edges. All bond RMSDs are
less than 0.1 Å and all angle RMSDs are less than 11° using Sage 2.0.0.

Figure 9. Representative molecules from the outliers in the bond-stretch RMSD box plot (Figure 8) using Sage 2.0.0. The major bond deviation with
respect to the QMminimized structure is quantified below each molecule, and the bond parameter applied is given above each molecule, along with its
QCArchive record id. Bond parameter b57, with the SMIRKS pattern [#16X4,#16X3:1]∼[#7:2], is a frequent offender.
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for future work. Such future work may require generating new
quantum chemistry data, improving parameter typing (e.g.,
assessing the possibility of parameter splits and the quality of
new parameters), or adding more torsion periodicities.
Subsequent work will explore each of these areas, and additional
force field releases are planned once such improvements are
ready.

3.4.1. Bond and Angle Deviations. The first set of granular
metrics are the deviations in equilibrium bonds and angles, as
close agreement with QM is necessary for bonded interactions.
Unphysical structures with elongated bonds or shortened angles
indicate a pathology in describing the chemistry. Distributions of
bond and angle RMSD within each conformer with respect to
the QM reference are shown as box plots in Figure 8. The bond
lengths in MM optimized geometries with different generations
of OpenFF force fields are in close agreement with QM values.
In particular, the mean of the bond RMSDs is 0.01 Å and the
standard deviation is 0.004 Å. For angles, the mean of the angle
RMSDs is 1.98° and the standard deviation is 0.50°.
Although the global averages of bond RMSDs are generally far

lower than 0.05 Å, there are some outlier chemistries with
slightly higher bond deviations of around 0.1 Å, and angles with
larger deviations of 30° or more that may need additional force
field refinement in the future. Representative molecules for
larger bond deviations are shown in Figure 9. Most of them
involve a nitrogen attached to a hypervalent sulfur, such as in
imino-oxo-sulfanes and sulfonamides. Other cases of slightly
higher bond deviations include a carbon in trifluoromethyl
connected to an oxygen. The bond parameters assigned to these
are b14 ([#6:1]-[#8:2]) , b16 ([#6X4:1]−

[#8X2H0:2]), b44 ([#16:1]−[#6:2]), and b57
([#16X4,#16X3:1]∼[#7:2]). Among these outliers,
b57, which applies to “sulfur∼nitrogen” bond, is a
frequent offender, with deviations from QM structures as large
as 0.18 Å.
Outliers in angle RMSDs reveal a discrepancy with Sage 2.0.0

in describing a subset of sulfonamides that have
a h e t e r o a t o m n e i g h b o r . A n g l e p a r a m e t e r s
a31 ([*:1]∼[#16X4:2]∼[*:3]) and a32 ([*:1]-
[#16X4,#16X3+0:2]-[*:3]), were applied to hyper-
valent sulfurs in these outliers. The [Heteroatom]∼S∼N
angle (where Heteroatom is not the oxygen in a sulfonamide
group) in MM optimized geometries shrunk to the range of
63°−79° in contrast to QM expected range of around 97°−
105°, the deviations in MM with respect to the QM reference,
were as large as 36°. The same parameters when applied to
sulfonamides without a heteroatom neighbor closely reproduce
the pyramidal angles of “C∼S∼N”. This issue is distinct from the
sulfonamide discrepancy that corrected in Parsley 1.3.1 and
again in Sage 2.0.0. The distorted structures with Sage 2.0.0 are
shown in Figure 10. Other chemistries with larger angle
deviations include highly flexible molecules, such as larger
heterocycles that get optimized to a different ring pucker than
the QM reference. These molecules with rapid interconversion
of cycle conformations are a low priority to fix since the MM
optimizer is free to choose one potential well over the other
when there are almost equivalent minima.

3.4.2. Torsion Deviations. It is difficult to determine which
torsion parameters need improvement from optimized geo-
metries since any given optimized geometry is a result of all

Figure 10. Representative molecules from the outliers in the bond-angle RMSD box plot for Sage 2.0.0. The major angle deviation with respect to the
QMminimized structure is quantified below each molecule, and the angle parameter applied is given above the name of each molecule, along with its
QCArchive record id. Angle parameters a31 and a32 (with the SMIRKS patterns [*:1]∼[#16X4:2]∼[*:3] and [*:1]−
[#16X4,#16X3+0:2]−[*:3] respectively), for angles with hypervalent sulfur at their center are applied in these cases. The green colored
structures are QM optimized geometries (reference) and the cyan colored structures are Sage 2.0.0 optimized geometries.
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applied parameters and not simply a single torsional parameter.
In an effort to determine which parameters might be particularly
problematic, one helpful analysis is to tabulate the torsion
parameters that are over-represented in the molecules that show
a higher TFD when compared to the rest of the molecules.
Figure 11 shows the distribution of torsion parameters in higher
TFD cases when compared to the distribution of that same
torsion parameter on the whole set of molecules under
consideration. Torsion parameters t25, t49, t55, t88, t91, t103,
t134, t135, t154, and t158 are the top ten parameters that are
over-represented in cases with higher deviations, with the
corresponding SMIRKS patterns tabulated in SI Table 4. t154
shows particularly high overrepresentation and is another case of
a torsion involving hypervalent sulfur, with the SMIRKS pattern
[*:1]∼[#16X4,#16X3+0:2]=,:[#7X2:3]-,:
[*:4].
Improper torsions need a special explanation as they were not

reoptimized and therefore remain at their legacy (Parsley 1.3.0)
values. Figure 12 shows the error distribution among the
improper angle values when compared to QM structures on the
whole benchmark set. Some of the deviations in improper angles
around chiral atoms have a larger value when the out-of-plane
atom in the MM optimized conformer is a mirror image of the
QM conformation, but no filter was applied to weed out these
cases, which thus may appear to be in substantial error even
when they are not. Nitrogen-centered impropers, especially
parameter i4 ([*:1]∼[#7X3(*∼[#6X3]):2]-
(∼[*:3])∼[*:4]), have a wider distribution of improper
angle disagreements. This particular parameter has a small force
constant of 1 kcal/mol, which allows the geometry to range from
planar (0°) to pyramidal (109.5°) in different chemical contexts.
Thus, we see a wider distribution of deviations from −60 to +60

degrees in the improper angles where i4 is applied when
compared to QM.
Among other inaccuracies, puckering of small fused hetero-

cycles is of concern where MM structures keep them flat while
the QM expects them to be puckered. Incorrect descriptions of

Figure 11. Over-representation of proper torsion parameters in molecules with TFD > 0.1, defined as the ratio of number of molecules with higher
TFD where the torsion parameter is applied, to the number of molecules on the whole set where the same torsion parameter is applied. Parameters
which are highly over-represented in molecules with larger TFD may be responsible for errors in their geometry. Parameters with over-representation
values of 2 or higher are shown here. Parameters t25, t49, and t55, got slightly worse and the remaining got slightly better in Sage 2.0.0 compared to
Parsley 1.3.0.

Figure 12. Deviations in improper angles of Sage 2.0.0 optimized
geometries with respect to the reference QM structures for the whole
benchmark set. The nitrogen centered improper i4 ([*:1]∼[#7X3-
(*∼[#6X3]):2](∼[*:3])∼[*:4]”) has a wider distribution
as it covers both planar and pyramidal instances and can be improved by
binning chemistries based on structural differences and splitting the
current parameter to apply to subsets with distinct behaviors. This data
suggests that, as we expect, there is substantial room to improve
improper torsions in subsequent iterations of the force field.
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puckered rings as planar geometries would result in erroneous
intramolecular and intermolecular nonbonded interactions,
especially in hydrogen bonding interactions and π-stacked
configurations. One such deviation is shown in Figure 13.

3.4.3. How to Resolve Problems Affecting Specific
Chemistries. To address such problematic chemistries, we
must make specific changes in the process and then refit the
entire force field. The refit can be done in a straightforward
manner, but prior to this refitting, we must first do the following:

• Generate more QM training data, focusing on poorly
described molecules as well as similar instances applicable
to other chemistries. For example, to tackle the deficiency
in sulfonamides we may need to create a data set of
sulfonamides which have heteroatom neighbors for
training and testing purposes. A similar procedure can
be applied to other functional groups that are susceptible
to strong changes in local chemical environment, such as
conjugation, when heteroatom neighbors are present.

• Determine whether there is a need to split the bond, angle
or torsion parameters in question into more specific
SMIRKS patters, and whether to split either

• based on geometry features of particular subsets
and whether they are being described well or

• based on the range of values each of the applied
parameters would sample if we performed a custom
fit of parameters on each of the subset molecules

• Fix any issues with missing periodicities in torsion
parameters that are being applied on problematic
molecules, as periodicities must be added manually rather
than automatically during the fitting.

Such improvements will be incorporated into a subsequent
force field releases after comprehensive reevaluation with results
pass our overall benchmark metrics. One additional option may
be to create unit tests for chemistries with systematic errors so
that if subsequent force fields introduce failures on these
chemistries, we will quickly detect such issues. We have created
one such test set specific to simulations crashing during
hydrogen mass repartitioning calculations, and this test has
been used since Parsley 1.2.1.
3.5. Benchmarking: Protein−Ligand Benchmarking.

We assessed the performance of the newly fitted Sage force field
in relative binding free energy calculations. The Parsley results
were compared to previously published results using the
GAFF2.1x/AM1-BCC,3 and OPLS3e9,113 force fields. We
specify the force field as “GAFF2.1x” as results across the data
set are pulled from two different studies, with some systems
using GAFF2.123 and a later study using GAFF2.11.24 Specific
systems using each force field version are listed in the SI in Table
5. The GAFF2.1x/AM1-BCC calculation results were calculated
with the same pmx workflow for both Sage and Parsley, and the
OPLS3e results were calculated with Schrödinger FEP+ as
described in previous papers.23,24 The test set consisted of 22

Figure 13. For the fused heterocycle, puckering in QM (green) is not reproduced well in theMM (cyan) optimized geometry, which remains flat. One
of the bridgehead carbons (atom 10 in 2D depiction) can be seen to be out of plane in QM and almost in the plane of the ring with nitrogens for MM.
We observe similar behavior in several other cases of bridgehead atoms with heteroatom neighbors.

Figure 14. Results of protein−ligand binding free energy benchmarks. Each box represents the distribution across the individual RMSE (left) and
Kendall’s τ (right) values of the different protein−ligand systems. In total, the results for each force field summarize binding free energies for 599
ligands in 22 congeneric series binding to 20 different protein targets. The metrics are based on the binding free energies ΔG calculated from relative
ΔΔG values (1133 values for each force field) with Arsenic (now called Cinnabar).104 The presented force fields are Parsley 1.0.0, Sage 2.0.0,
GAFF2.1x/AM1-BCC, and OPLS3e (specific versions of GAFF2.1x given in SI for each system).
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different series of congeneric ligands binding to 20 protein
targets with a total of 599 ligands.
The Sage force field provides competitive accuracy in relative

binding free energy calculations, as shown in Figure 14 where
performance of the force fields is summarized according to
absolute binding free energy differences back-calculated from
the ΔΔG estimates. Indeed, the accuracies of the four force
fields examined here (Parsley 1.0.0, Sage 2.0.0, GAFF2.1x/AM1-
BCC, and OPLS3e) are within 95% confidence intervals of each
other. It is important to note that the accuracy of these
calculations is strongly affected by additional factors, including
input structure preparation and sampling time. In addition,
protein force field, water model, and partial charge assignment in
Sage (OpenFF 2.0.0) were identical to those used with Parsley
1.0.0. Given these considerations, we did not necessarily expect
here that improvements in the small molecule force field would
dramatically impact the accuracy of calculated binding free
energies. In particular, our main goal was to ensure that the
substantial refit of LJ parameters done in the present effort did
not adversely affect accuracy of these calculations, while
improving accuracy in more direct measures of force field
quality. We also note that the accuracy for these calculations
depends on the protein−ligand system, ranging from an RMSE
= 0.57 kcal/mol for target galectin to RMSE = 2.62 kcal/mol for
target PDE10 using the Sage 2.0.0 force field (SI Table 6).
With respect to the overall RMSE across all targets for binding

free energy ΔG°, Sage (RMSE = 1.29 [1.17;1.33] kcal/mol) is
statistically indistinguishable in performance from the other
force fields tested (OPLS3e (RMSE = 1.18 [1.09;1.27] kcal/
mol), GAFF2.1x (RMSE = 1.22 [1.13;1.32] kcal/mol), and
Parsley (RMSE = 1.25 [1.20;1.33 kcal/mol)) except that with
Sage, one target (PDE10), is a significant outlier. These results
indicate that Sage is a reasonable choice of small molecule force
field in combination with the TIP3P water model and the
AMBER ff99sb*-ILDN force field for binding free energy
calculations in drug discovery projects.
Details of the benchmark set and the RMSE and Kendall’s tau

values against experimental protein−ligand affinity data for each
force field tested are tabulated in SI Tables 5−7.

4. CONCLUSIONS
In this work, we report on the next generation the OpenFF
family, OpenFF Sage 2.0.0. Sage builds on the valence parameter
refits in the Parsley generation of force fields by including fitting
to condensed-phase properties for updated LJ parameters while
performing a further set of updates to the valence parameters.
The Sage release also introduces a variety of improvements to
the fitting procedures and data sets and incorporates our recent
finding that fitting to condensed phase mixture properties can
provide accuracy gains relative to fitting to pure solution
properties alone.50

We also report extensive benchmarks of Sage on data from
outside its training set. These show that Sage improves
agreement with experiment, relative to Parsley 1.3.0, for
calculations including solvation and transfer free energies, likely
primarily as a result of the refitted LJ parameters. We also find
improved agreement with QM molecular energies, likely due to
improvements in the valence parametrization. Further, calcu-
lations of protein−ligand binding free energies provide
confirmation that this first refit of LJ parameters does not
adversely affect accuracy and that performance is comparable to
other state-of-the-art small molecule force fields such as, GAFF

2.1/AM1-BCC and GAFF 2.11/AM1-BCC, OPLS3e, and
CGenFF.
The force field parametrization presented here thus provides a

strong platform for continued improvement. In the future, using
carefully selected additional condensed phase mixtures in LJ
parametrization should allow us to better capture biopolymer
nonbonded interactions. We also anticipate that new methods
for faster estimation of partial charges114 will enable co-
optimization of LJ parameters and charges, further improving
nonbonded interactions critical to accurate binding free energy
calculations.
While our most substantial changes for Sage were the LJ

parameter refits, updates to our valence parameter training data
and fitting procedures also substantially changed the force field,
even apart from the LJ refits. In particular, valence parameter
optimization resulted in improvements in global metrics of
quality for generated conformers�RMSD and TFD�on
benchmarks relative to previous generations of force fields,
and in the case of relative conformer energetics (ΔΔE), a closer
match to the previous best, which is Parsley 1.2.0. There has
been significant refinement in the choice of training targets used
in training our force fields since Parsley 1.0.0. These improve-
ments have included capping the number of optimized
conformers used as well as excluding vibrational frequency
targets from training. For Sage, we also substantially expanded
our quantum chemical benchmarking data set, giving us a better
view into changes in performance. This larger benchmark set,
“OpenFF Industry Benchmark Season 1 v1.1”, is an important
first step in finding discrepancies in describing pharmaceutically
relevant chemistries, although it does not currently cover all the
valence parameters because some parameters are used only by
rare chemistries that are uncommon in pharmaceutical data sets.
In addition to global benchmarking metrics, which can mask

errors for niche chemistries, granular benchmarking in the form
of parameter-wise or chemistry-wise analyses helped capture
some such areas where there is room for further improvement.
Analyzing such poor performers, we found that Sage 2.0.0 has a
pathology in describing angles of sulfonamides with heteroatom
neighbors, as well as slightly elongated bonds between sulfur and
amide or sulfur and double-bonded nitrogens. Another issue is
with puckering of small fused rings resulting in geometry
deviations near bridgehead atoms; we also see an inability to
capture the effects of pyridine lone pairs on condensed phase
energetics. We plan to address these errors in subsequent refits
in the near term.
Analyzing over-represented parameters in the outliers of TFD

helps better understand errors in torsion fitting, since torsions
are applied in diverse chemical contexts and sometimes a group
of torsions can pass through the same central bond. Improper
torsion parameters have also not yet been optimized, providing
further opportunity to improve the force field in subsequent
work, as some of the parameters describe improper angles with
errors as high as 60° compared to QM. Whether improper
torsion scans are needed or using current data in the form of
proper torsion scans and optimized geometries will suffice is a
question to be answered.
This work resulted in a number of key findings which will

inform future work. In particular, lead-up work suggested that
the choice of condensed phase property data used in training LJ
parameters is particularly important, and we found that using
mixture properties rather than pure solution properties and heat
of vaporization seemed to improve performance.50 In Sage, this
manifested by significantly improved performance on solvation
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free energies for both aqueous and nonaqueous solvents (Figure
5). We also observed that the choice of quantum chemical data
set for valence parameters substantially impacted performance,
and the data set expansions for Parsley 1.2.0 and 1.3.0 and Sage
improved performance here substantially relative to Parsley
1.0.0. We also increased the size and diversity of our quantum
chemical benchmarking data sets, allowing us both to better see
changes in overall performance and to identify specific
chemistries and parameters that need further refinement.
This study would have been virtually impossible without the

open source OpenFF data and software infrastructure, which
enabled rapid prototyping and rapid iteration through multiple
fitting experiments. Additionally, the benchmarking infra-
structure allowed us to identify systematic errors, and we plan
to employ this going forward to help us fix critical problems even
before releasing force fields. All of the data sets and
infrastructure used here are openly and freely available under
permissive licenses. We hope that this work and the open
procedures described in this article facilitate further force field
development cycles both within OpenFF and in the broader
community. We anticipate considerable room for future fixed-
charge force fields of the form employed here, but many other
avenues for further work are open as well; for example, off-site
charges are likely important in certain key chemical environ-
ments and should be explored,113,115,116 and polarizable force
fields117−119 are also of considerable interest. We hope OpenFF
infrastructure and data sets can provide a foundation for further
exploration in these areas as well.
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