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Automated relative binding free energy calculations
from SMILES to ΔΔG
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In drug discovery, computational methods are a key part of making informed design decisions

and prioritising experiments. In particular, optimizing compound affinity is a central concern

during the early stages of development. In the last 10 years, alchemical free energy (FE)

calculations have transformed our ability to incorporate accurate in silico potency predictions

in design decisions, and represent the ‘gold standard’ for augmenting experiment-driven drug

discovery. However, relative FE calculations are complex to set up, require significant expert

intervention to prepare the calculation and analyse the results or are provided only as closed-

source software, not allowing for fine-grained control over the underlying settings. In this

work, we introduce an end-to-end relative FE workflow based on the non-equilibrium

switching approach that facilitates calculation of binding free energies starting from SMILES

strings. The workflow is implemented using fully modular steps, allowing various components

to be exchanged depending on licence availability. We further investigate the dependence of

the calculated free energy accuracy on the initial ligand pose generated by various docking

algorithms. We show that both commercial and open-source docking engines can be used to

generate poses that lead to good correlation of free energies with experimental

reference data.
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A longstanding challenge in computational drug discovery
has been the development of methods for efficient in silico
prioritization of compounds. In recent years, relative

binding free energy (RBFE) calculations have become the gold
standard for accurately computing binding affinities1–4, a key
property during small molecule optimization. However, these
simulations remain complicated to set up, computationally
expensive to run and technically challenging to scale to large sets
of compounds. In general terms, a standard FE calculation
workflow first requires generation of a plausible low-energy
conformer for each compound from a set of congeneric binders,
ideally with consistent formal charge. The resulting embedded
ligands are then docked into a protein crystal structure, typically
requiring constraints or hand-modelling to generate acceptable
poses similar to that of a known binder. Atoms for perturbation
are then mapped between pairs of proximate compounds (based
on compound similarity), and a relative change in binding free
energy is computed for each edge. Typically, around 60 ns of total
simulation time is required for a single perturbation1,3,4.

Several approaches have yielded accurate predictions for large
scale RBFE calculations. Equilibrium free energy perturbation
(FEP) calculations, popularised by Schrödinger’s FEP+ workflow,
employ discrete windows along the alchemical coordinate
(usually denoted lambda) for a step-wise morphing from one
compound to the other1,5. Individual simulations at discrete
lambda states (typically 12-24 states depending on ligand simi-
larity and charge state changes) can be run in parallel and employ
replica exchange with solute tempering (REST) type enhanced
sampling between replicas6.

An alternative approach, employed throughout this work, is
non-equilibrium switching (NES)3. In this approach, one equili-
brium simulation is run for each physical end state of a pertur-
bation, after which many short non-equilibrium simulations
(‘transitions’) are run during which the lambda value is con-
tinuously driven from one endstate to the other, and the free
energy change is computed using thermodynamic integration7.
Whilst the overall simulation time per edge is identical to the
equilibrium FEP approach, the transition simulations are inde-
pendent, and therefore trivially parallelisable into many small
jobs, allowing for routine evaluation of many edges simulta-
neously, even on a typical shared computing cluster.

Whilst the outlined FE calculation methods facilitate scaling to
large sets of compounds, the requirement for significant invest-
ment of expert time to manually set up, execute and evaluate such
calculations remains a limitation to wider adoption, particularly
outside of industrial research where access to commercial
packages is more limited. To address this, we report the devel-
opment of a fully automated end-to-end workflow employing
constrained embedding and docking steps to facilitate non-
equilibrium simulation (NES) based RBFE calculations starting
from SMILES string ligand representations. The workflows are
implemented using Icolos, our in-house, open-source workflow
manager, which streamlines the configuration of complex, multi-
step physics-based workflows and allows for flexible combination
of commercial and open-source tools at various stages of the
workflow8.

Herein we demonstrate the use of various configurations of our
workflow to automate the whole process of RBFE calculation:
from the SMILES string for ligand representation to the final
binding free energy estimate. We showcase how the steps in the
workflow can be performed by both commercial and open-source
software. In particular, we investigate the impact of automated
docking protocols on the quality of RBFE predictions, comparing
the performance of both open-source and commercial docking
engines, and further demonstrate the deployment of the workflow
on both in-house and cloud compute platforms.

Results and discussion
Automated RBFE calculations were successfully performed for a
total of 1005 alchemical perturbations, comprising 201 pertur-
bations between the 127 ligands across the 4 systems for each of
the 5 tested FE workflow configurations.

Impact of the pose generation method. Previous work on
benchmarking FE methods has predominantly relied on hand-
modelled ligand poses. Whilst this has allowed for reliable com-
parison between different binding free energy methods, the per-
formance observed in these benchmarks cannot be expected to
translate to prospective, fully automated applications, since the
quality of the poses is highly dependent on the docking protocol.

The impact of ligand pose quality has recently been examined
in conjunction with Schrödinger’s FEP+ workflow9 where it was
shown that high quality poses were key to obtaining reliable
RBFE predictions. In particular, it was shown that a core
constraint derived from a maximum common substructure
(MCS) relative to a reference pose could reliably generate poses
from which FEP+ results strongly correlated with experimental
binding affinities, especially for cases where the consistent
binding mode assumption holds.

Accurate binding mode prediction is particularly crucial when
developing automated workflows for free energy calculations
which can be later incorporated into more complex pipelines, e.g.
active learning protocols that use alchemical calculations to
inform surrogate models10,11. For such applications one must rely
on high quality docking poses, since manual user inspection is
not possible in a large scale automated process. In lead
optimization applications, where RBFE calculations see the
majority of use, this is normally managed by assuming a constant
binding mode. This allows poses to be constrained to match a
crystallographically determined binding mode, however induced-
fit approaches have recently been shown to deliver further
accuracy improvements, particularly where homology models
have been used12.

P38α. For P38α, poses were successfully generated for all but one
ligand under all tested docking protocols. The core-constrained
Glide protocol required setting a fallback core constraint
threshold of 1 Å which resulted in several poses where the aryl
fluoride motif differed from the modelled poses (Fig. 1). Vanilla
Glide predicted the overall ligand position in accord with the
modelled ligands, however 4 poses have the core out of plane
compared to the reference, resulting in the aryl fluoride position
also deviating from the reference. In the MCS Glide docking
protocol, the experimental orientation of the aryl fluoride ring
was predicted consistently with the modelled poses in all but two
cases. The AutoDock Vina MCS workflow generated poses with
the orientation overall matching that of the other protocols, but
with greater deviations in the core position compared to all Glide
protocols. In this case, the filtered Vina protocol performed
comparably to the vanilla protocol: relatively few poses were
generated by the vanilla docking approach, thus filtering provided
comparatively little benefit for this system.

These trends are reflected in the quality of the RBFE
correlations with experiment. All but Vanilla Glide poses resulted
in a correctly predicted overall correlation (i.e. positive Kendal’s τ
and Pearson’s ρ), with MCS and core-constrained Glide
performing best in terms of overall correlation, average unsigned
error (AUE) and root mean square error (RMSE). The larger
variation in core positioning is reflected in higher overall errors
for both Vina docking protocols (RMSE=1.7 kcal mol−1 for both
Vina protocols c.f. 1.1 kcal mol−1 for MCS Glide). For Vanilla
Glide, we hypothesize that the inconsistent positioning of the aryl
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fluoride ring is responsible for the larger errors observed in the
RBFE correlations. All automated protocols are outperformed by
the manually modelled poses (AUE and RMSE ranged between
0.9-1.4 kcal mol−1 and 1.1-1.7 kcal mol−1 c.f. 0.6 kcal mol−1 and
0.8 kcal mol−1 respectively for modelled poses), illustrating the
importance of expert knowledge for this system, however only
vanilla Glide fails to recover the experimental trend. In contrast,
the Glide MCS protocol provided the best performance
among the docking protocols with RMSE and AUE values of
1.1 kcal mol−1 and 0.9 kcal mol−1.

PTP1B. Ligands in the PTP1B series contain two carboxylic
groups, both of which were modelled in their deprotonated form.
As in GAFF2 force field the oxygens of a deprotonated carboxy
group were represented by the same atom type carrying identical
partial charges, this symmetry removed ambiguity for the initial
orientation of the carboxy groups. In addition, the ligands con-
tained a hinge, and as such proved to be a more challenging set to
dock, with one ligand failing to redock under all docking proto-
cols due to a steric clash with the receptor. Of the remaining
ligands, their orientation in the binding pocket was consistently

Fig. 1 Comparison of experimentally measured and calculated binding affinities for P38α protein-ligand system. The simulations were initialized with
different starting structures (docked/modelled or docked only). The data in the panel Docked/modelled FEP+ and Docked/modelled PMX/GAFF are from
Gapsys et al.3. Overlays of starting ligand poses are inset into the corresponding plot. Experimental errors are taken from the original publication, whilst
prediction errors correspond to the standard error over 3 simulation replicas also taking into account the bootstrapped uncertainty of individual free energy
estimates. The shaded grey region corresponds to a 1 kcal mol−1 deviation from experiment, and the solid line is a linear fit through the data. The crystal
structure with a bound ligand highlighted in orange is shown in the top right.
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predicted differently from the modelled poses in all but the Glide
MCS protocols. Similarly to P38α, a fallback core constraint of 1 Å
was required to allow the remaining ligands to dock with the fixed
core constraint, which resulted in a flipped core being observed for
several poses in the Glide core-constrained protocol. Vanilla Glide
docking also suffered from a poorly positioned core in some cases
(Fig. 2). Vanilla Vina generated a mix of core orientations: in 8 out
of 23 ligands the pose was reversed in comparison to the modelled
compounds. The MCS-filtered Vina protocol had no such
pose inversions, which is reflected in the reduced AUE (1.1 vs
0.8 kcal mol−1) and RMSE (1.5 vs 1.1 kcal mol−1).

Similarly to P38α, PTP1B’s reference poses were extensively
hand-modelled in the original publication. This is reflected in the
reduced RMSE and increased τ values for the reference computa-
tions compared to all tested docking protocols. Nevertheless, all
protocols were able to recover the expected trend in experimental
binding affinities, with core-constrained Glide producing the worst
correlation (Kendal’s τ = 0.1). Interestingly, the MCS-filtered Vina
together with vanilla Glide protocols achieved the lowest
RMSE (0.8 kcal mol−1) and AUE (1.1 kcal mol−1) among the
docking protocols. Also, the worst performing unguided
vanilla Vina protocol (RMSE= 1.5, AUE= 1.1 kcal mol−1)

Fig. 2 Comparison of experimentally measured and calculated binding affinities for PTP1B protein-ligand system. The simulations were initialized with
different starting structures (docked/modelled or docked only). The data in the panel Docked/modelled FEP+ and Docked/modelled PMX/GAFF are from
Gapsys et al.3. Overlays of starting ligand poses are inset into the corresponding plot. Experimental errors are taken from the original publication, whilst
prediction errors correspond to the standard error over 3 simulation replicas also taking into account the bootstrapped uncertainty of individual free energy
estimates. The shaded grey region corresponds to a 1 kcal mol−1 deviation from experiment, and the solid line is a linear fit through the data. The crystal
structure with a bound ligand highlighted in orange is shown in the top right.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-00859-9

4 COMMUNICATIONS CHEMISTRY |            (2023) 6:82 | https://doi.org/10.1038/s42004-023-00859-9 | www.nature.com/commschem

www.nature.com/commschem


performed comparably with the best performing MCS Glide
protocol (RMSE = 1.2 kcal mol−1, AUE = 0.9 kcal mol−1).

TNKS2. Poses were successfully generated for all ligands and
were, in general, the most consistently generated across the
docking protocols of the four systems studied. All methods
positioned the core in a comparable manner, with both vanilla
protocols successfully identifying the consistent orientation with
the other methods, and both MCS and core-constrained protocols
producing similar poses by visual inspection.

These docking poses resulted in highly correlated FE predic-
tions, with all methods performing at least on par with, and in
some cases better than, the reference poses used in calcula-
tions with NES. In particular, MCS Glide produced excellent
experimental correlation (Kendal’s τ = 0.67), with AUE =
0.4 kcal mol−1 on par with experimental uncertainty (Fig. 3).

The TNKS2 case illustrates well the impact of manual
intervention in generating appropriate poses when compared to
those used for the P38α and PTP1B cases. Here, the reference
results from Schindler et al.4 and Gapsys et al.13 studies do not
outperform automated docking protocols in terms of agreement
with experiment. This effect is likely due to the starting pose
generation, where Schindler et al. primarily relied on docking
followed by a closer exploration of possible tautomers and
multiple binding poses, yet no manual pose generation was
attempted.

SYK. Poses for all SYK ligands were generated successfully for all
docking protocols. Use of both the fixed core constraint and MCS
with Glide resulted in consistent ligand positioning (Fig. 4). The
MCS protocol was able to further consistently predict the
orientation of the phenol ring, whereas some ring flips were
observed in the core-constrained protocol. Without a core con-
straint, the vanilla Glide poses showed larger diversity in core
placement, in one case resulting in a flipped ligand. For Auto-
Dock Vina, the vanilla protocol successfully placed the hinge in
the orientation matching that of the docked/modelled poses in all
cases, whilst the MCS filtering refined the overall alignment, in
particular for the phenol ring placement.

Correlations with experimentally measured affinities for SYK
were overall comparable to the reference performance, for both
FEP and NES. Notably, all workflows meet or improve upon 1
kcal mol−1 average AUE, despite a comparatively large, flexible
series of ligands compared to other systems under study (Fig. 4).
Both Vina protocols achieved similar accuracy to the Glide based
docking. All the approaches had difficulties accurately predicting
binding affinities at least for some ligands: in each case there are
significant outliers both over- and underpredicting binding free
energies.

Overall accuracy and docking protocols. From the summary of
the results across four studied protein-ligand systems (Fig. 5) it is
evident that manual modifications of the poses help improving
the accuracy of free energy calculations. The poses for P38α and
PTP1B were initially generated in1 and subsequently manually
refined in3: for these cases the docked/modelled poses outperform
the fully automated docking algorithms. For the other two sys-
tems, TNKS2 and SYK, the docked/modelled poses did not
undergo extensive manual modifications4 and this is clearly
reflected in the accuracy measures, both in terms of correlation
with experimental ΔΔG and the ability of the automated work-
flow introduced here to recover equivalent performance to the
original publications (Fig. 5).

For the automated docking protocols, the outcome may
strongly vary depending on the system studied, e.g. TNKS2

appears to be a convenient target for the explored set of ligands,
while other cases were more challenging. Including core or MCS
based constraints into Glide protocol also does not always
facilitate accurate prediction of binding affinities. Similarly, MCS
filtering for the open source Autodock Vina docking protocol
may improve final prediction accuracy, but this effect is also
system dependent. Overall, it is encouraging to see that the
calculations based on the Vina poses can perform on par with the
poses generated with the commercial software, demonstrating
the feasibility of a fully open-source end-to-end RBFE workflow.

How sensitive are the predictions to the starting pose? From
the studied cases it is evident that the outcome of the alchemical
free energy calculation will depend on the starting ligand pose.
For example, for the TNKS2 system (Fig. 3) prediction accuracy
in terms of AUE doubles when changing the starting poses
from MCS filtered Vina variant to Glide MCS: 0.81:30:7 and
0.41:00:4 kcal mol−1, respectively. Such an accurate prediction, as
observed in the latter case, provides confidence in the correctness
of the initial ligand poses, which in turn allows establishing a
reliable structure activity relationship (SAR) depicted in (Fig. 6).

Here, we show the substituents on a common scaffold together
with the highest affinity of a ligand with the corresponding
substituent among the investigated congeneric series. The inner
circle corresponds to the experimental ΔG, while the outer circle
marks the values calculated starting from the Glide MCS based
docked ligands. Naturally, such a depiction is ignorant of the
relationships between the modified ligand sites, and only provides
an insight whether a particular modification of a specific site can
lead to high/low affinity. Even such a simplified representation
can give a quick intuitive understanding. For example, bulkier
hydrophobic modifications at the R4 site lead to higher binding
affinity and R5 site has a clear preference for carbon to nitrogen.
At the R2 and R3 sites hydrogen and fluorine lead to higher
affinities, while at R1, hydrogen and methyl would be preferred.

Of course, in the current study such analysis is only
retrospective, as the binding affinities are readily available. Since
for this illustration we have selected a well behaved case (affinities
in the inner and outer circles of Fig. 6 match well), the
constructed SAR provides a reliable interpretation for ligand
activity. Yet, if the free energies calculated with some ligand poses
were to lead to a disagreement with experiment, obtaining a
reliable SAR would not be feasible. For example, Vina based
docking as well as docked/modelled poses for the ligand with the
nitrogen atom at the R5 position placed the atom on the opposite
side than depicted in Fig. 6 (i.e. pointing in the same direction as
R3 site). In turn, such poses lead to inaccurate affinity predictions
for these cases. For a prospective study, we would need to rely on
the calculated affinities based on the docked poses only, i.e.
without an experimental binding affinity reference.

There are numerous further complications that might arise
when applying such a docking based approach to calculate
binding affinities prospectively. One of such difficult situations is
depicted in Fig. 7. In this case only the vanilla Vina docking pose
yields an accurate free energy estimate (−9.4 ± 0.7 kcal mol−1

c.f.−9.7 ± 0.2 kcal mol−1 for experiment), however, this starting
structure is reversed in comparison to the pose predictions by all
other docking protocols. This suggests that consistency in pose
prediction among docking algorithms does not necessarily
warrant accurate affinity estimation.

Another example of this effect is the vanilla Vina protocol
applied to the PTP1B system: more than 33% of the PTP1B
vanilla Vina poses were reversed in comparison to other
approaches (Fig. 2). Although, starting simulations with such
poses deteriorates prediction accuracy, even in this case the
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overall ΔG accuracy is not significantly worse than for the rest of
the docking protocols (Fig. 5). These examples also highlight the
sometimes unexpected insensitivity of the binding affinity
predictions to the starting pose.

Another caveat to take into account when correlating docking
pose quality with alchemical calculation accuracy is that the
reported absolute ΔG values are only reconstructions from the
relative ΔΔG estimates14. This means that accurate/inaccurate
predictions may not necessarily be caused by the inappropriate
pose of a ligand itself, but also of its neighbours to which it was
mapped in the ligand perturbation map. All in all, for a systematic

study of the starting pose effects on the affinity prediction
accuracy one would require a particular system setup with well
controlled structural changes or rely on absolute binding affinity
calculations15–17.

Deploying the workflow in the Cloud. To demonstrate the
potential of our end-to-end RBFE workflow, we benchmarked it
using the Amazon Web Services (AWS) cloud. For this proof of
concept demonstration we calculated relative binding free energy
between two ligands from the set of TNKS2 inhibitors. By

Fig. 3 Comparison of experimentally measured and calculated binding affinities for TNKS2 protein-ligand system. The simulations were initialized with
different starting structures (docked/modelled or docked only). The data in the panel Docked/modelled FEP+ are from Schindler et al.4. The data in the
panel Docked/modelled PMX/GAFF are from Gapsys et al.13. Overlays of starting ligand poses are inset into the corresponding plot. Experimental errors
are taken from the original publication, whilst prediction errors correspond to the standard error over 3 simulation replicas also taking into account the
bootstrapped uncertainty of individual free energy estimates. The shaded grey region corresponds to a 1 kcal mol−1 deviation from experiment, and the
solid line is a linear fit through the data. The crystal structure with a bound ligand highlighted in orange is shown in the top right.
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leveraging an AWS ParallelCluster and Icolos’ SLURM interface,
each simulation type was dispatched to a different instance to
showcase the versatility of the approach in maximising the price-
to-performance ratio. Optimal node selection for running
GROMACS workflows in the cloud has been recently studied18.
Based on this work, minimisation and NVT equilibration jobs
were performed using Intel CPU-only C5 instances, equilibrium
simulations using NVIDIA-equipped G4DN nodes, and transi-
tions using AMD HPC6a. All in all, with our Icolos workflow, a
single free energy estimate requires 10 hours of wall clock time, at
a cost of $12-15 per ΔΔG value.

To support this running mode and improve the scalability of
the workflow, we integrated a fault-tolerant capability to enable
the use of spot-allocated instances on AWS. By efficiently
handling revoked node allocations, and restarting interrupted
simulation from a checkpoint file as soon as another node is
available, price/performance is significantly improved.

Conclusion
In this work, we have introduced a framework for end-to-end
calculation of relative binding free energies using our previously

Fig. 4 Comparison of experimentally measured and calculated binding affinities for SYK protein-ligand system. The simulations were initialized with
different starting structures (docked/modelled or docked only). The data in the panel Docked/modelled FEP+ are from Schindler et al.4. The data in the
panel Docked/modelled PMX/GAFF are from Gapsys et al.13. Overlays of starting ligand poses are inset into the corresponding plot. Experimental errors
are taken from the original publication, whilst prediction errors correspond to the standard error over 3 simulation replicas also taking into account the
bootstrapped uncertainty of individual free energy estimates. The shaded grey region corresponds to a 1 kcal mol−1 deviation from experiment, and the
solid line is a linear fit through the data. The crystal structure with a bound ligand highlighted in orange is shown in the top right.
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Fig. 5 RMSE and Kendall’s τ for each docking method on each of the four tested systems. Shaded regions represent 95% confidence intervals for RMSE
and τ of the experimentally measured values based on the experimental uncertainty. For the cases where experimental uncertainty was not available
(PTP1B, TNKS2, SYK), a lower bound for uncertainty of 0.43 kcal mol−1 as suggested by the best practices was used47. Error bars denote 95% confidence
intervals for the calculated values.

Fig. 6 Structure activity relationship (SAR) for the ligand series binding to TNKS2. The affinities of the strongest binder with the corresponding
substituent at a given site are shown. Experimental ΔG is depicted in the inner circle. Calculation based on the poses from Glide MCS are shown in the
outer circle.
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developed Icolos workflow manager. This implementation pro-
vides a scalable, flexible and reproducible method of executing
free energy calculations and allows for straightforward distribu-
tion, parallelisation and monitoring of calculations using either
local or cloud computing resources. The modular nature of the
workflow enables substitution of the blocks allowing to easily
combine open source and commercial software packages.

We have employed our workflow to investigate the impact of
the docking protocol on automated SMILES-to-ΔΔG calculations,
and show that, in general, open-source docking protocols per-
formed competitively with commercial alternatives. Additional
constraints on the ligand during docking procedure may improve
correlation of the estimated binding affinities with experiment,
however this appears to be strongly dependent on the system.
Nevertheless, the vast majority of tested configurations, including
all core- or MCS-constrained protocols, successfully produced
qualitative agreement with experimental binding affinities,
demonstrating the value of our automated approach in early-
stage drug discovery applications, where the workflow’s ability to
enrich a compound series by differentiating the most and least
potent binders is critical. In this aspect, we have shown that our
workflow can, even in challenging cases, produce results that are
qualitatively in agreement with those from expert-optimised
poses, whilst in more favourable cases provides quantitative
agreement to within experimental uncertainty.

The accuracy of binding free energy predictions depends on the
quality of docked poses. An experimentally resolved protein
structure with a co-crystallized molecule sharing a similar scaffold
to the ligands of interest may facilitate higher quality starting pose
generation via constrained docking algorithms. However, as
demonstrated by several examples in the current work, such
constrained docking does not automatically guarantee agreement
with experiment in terms of predicted binding affinity. To
improve on the accuracy of alchemical free energy calculations
numerous other aspects need to be taken into account, e.g. pro-
tein and small molecule force field, initial protein and ligand
structure preparation, ensuring sufficient sampling, experimental
measurement quality.

We hope that, through freely available source-code and
example workflow configurations, we have lowered the barrier to
entry, and increased the usability of non-equilibrium binding free

energy calculations in drug-discovery applications. Furthermore,
as the computational cost of free energy calculations continues to
drop with ongoing advances in software and hardware, we believe
that automated workflows that retain a high degree of control for
the expert user will become increasingly important, as these
predictions become part of large computations, for example active
learning and de-novo design tasks.

Methods
Automated SMILES to ΔΔG workflow. All workflows were implemented using
the Icolos workflow manager8. Introduction into starting using Icolos is provided
in the Supplementary Note 1. Workflows were specified as a series of sequentially
executed steps using JSON configuration files. The workflow recipes and full
workflow configurations can be found in the Supplementary Note 2 and Supple-
mentary Note 3, respectively. This approach makes the setup straightforward,
reproducible and transferable between different protein-ligand systems with only
minimal changes required, whilst allowing for efficient parallelisation and utiliza-
tion of high performance computing (HPC) resources through the built-in Slurm
interface. Icolos also enables error checking and failure handling for each job
required to evaluate a typical ligand perturbation map.

The steps for a typical end-to-end workflow are shown in Fig. 8, with multiple
compatible backends listed where appropriate. Workflows were started with a
ligand embedding step, in which a single low-energy conformer for each ligand was
generated. This was either performed with LigPrep19 or RDKit20. For LigPrep,
default settings were used unless otherwise specified; with EPIK21,22 calculation was
performed at pH= 7 ± 2, enumerating over undefined stereocenters and tautomers
and filtering to a single net charge. For RDKit, ligands were embedded and 3D
coordinates optimised using the UFF force field23.

Embedded ligands were subsequently docked into the receptor. For Glide
workflows, calculations were performed using Schrödinger version 2021-4, with
default settings used throughout, unless otherwise noted. A single conformer was
generated for each ligand in all cases24–27. In addition to the standard docking
protocols, termed ‘Vanilla’ in this work, we investigated both fixed and maximum
common substructure (MCS)-derived positional constraints available in Glide.
Whilst equivalent functionality is not available in Vina, we implemented a post-hoc
filtering step using RDKit functionality to identify the pose for each ligand that
minimised RMSD compared to the reference pose20. This is implemented in Icolos
using the data_manipulation step (see example configuration files for
details).

Docked poses for the open-source variants of the workflow were generated
using AutoDock Vina 1.2.128,29. For the ‘Vanilla’ protocol, a single conformer was
generated for each ligand, whilst for the MCS filtered protocol, a maximum of 64
conformations per compound were generated, and subsequently filtered by
selecting the pose that minimised the RMSD of the maximum common
substructure of the ligand compared to a reference ligand.

For each system, a single pose from the reference dataset was selected, from
which all positional constraints were derived. Fixed core constraints were manually

Fig. 7 Impact of core positioning on ΔG prediction for the ligand 2h in the P38α system. The vanilla Vina pose delivers an accurate free energy prediction
compared to the experimental value of −9.7 ± 0.2 kcal mol−1, despite the inverted core (circled) compared to the modelled pose.
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specified by SMARTS string to capture the conserved portion of the molecule. Full
Glide configuration files for each system are provided in the Supplementary Data.

In total, for each test system, the following five sets of docking poses were
generated.

● Glide docking using no constraints (‘Vanilla Glide’)
● Glide core constraint
● Glide MCS
● AutoDock Vina with no constraints (‘Vanilla Vina’)
● AutoDock Vina filtered MCS

For the subsequent PMX calculations, multiple bespoke workflow steps were
created to prepare, execute and analyse the simulations. In general, individual
Icolos PMX steps correspond to the execution of an underlying executable from the
PMX package, while further bespoke code was written to handle simulation
preparation and execution.

From the docked ligands, a perturbation map was constructed to identify
suitable edges based on maximum common substructure matching. This
functionality is available in Icolos using either Schrödinger’s fep_mapper.py
script5 or an open source LOMAP tool30. In this work, a single perturbation map
was generated for each test system using Schrödinger’s fep_mapper.py script
and the Glide MCS poses to eliminate the effect of changes to the perturbation map
topology on the accuracy of RBFE predictions.

Output from the perturbation mapping steps was parsed internally to a unified
PerturbationMap data structure, capturing the node identity and graph
connectivity, and subsequently driving the remainder of the workflow. The PMX
calculation was then set up, involving construction of the output directory structure
and generation of protein and ligand parameters. The protein was parameterised
with gmx pdb2gmx using the AMBERff99sb*-ILDN forcefield31–33. GROMACS
version 2021.6 was used for all preprocessing and simulations. ACPYPE version
2022.1.334 and Antechamber version 21.035 programs were used to assign
GAFF2 parameters and AM1-BCC partial charges36 for the ligands. pmx
atomMapper was then run to establish a mapping between the atoms to be
morphed between ligand pairs, followed by pmx ligandHybrid to generate the
GROMACS topologies for hybrid molecules. Full systems were then assembled,
and subsequently prepared for simulation using the step pmx box water ions.
In this step, the standard GROMACS37 tools were used to place each system in a
dodecahedral box with a buffer of at least 1.2 nm from solute to box edge, solvate
with the TIP3P water model38 and neutralise with sodium and chloride ions39 at a
concentration of 0.15 M.

The edges between compounds from the ligand perturbation map were then
taken through each step of the simulation protocol, each of which comprised a
prepare_simulation stage to generate the tpr files, followed by a
run_simulation stage to submit the gmx mdrun jobs. First, systems were
subjected to a short minimisation job using the steepest descent algorithm,
followed by a 10 ps equilibration in the NVT ensemble. Equilibrium simulations
were then run for 6 ns in the NPT ensemble, after which transitions were prepared
with a bespoke step to handle frame extraction and preparation. The first 2 ns of
trajectory were discarded as additional equilibration time, and 80 equally spaced
snapshots were then extracted from the last 4 ns of production trajectories, for both
the ligand and complex simulations. Each extracted frame served as the start for
performing non-equilibrium transitions. 80 such transitions were performed in
each direction over 50 ps, and the work done was computed using thermodynamic
integration. Finally, the analysis step was run to compute ΔΔG values and errors
for each edge using maximum likelihood estimator40 based on Crooks Fluctuation
Theorem41, as implemented in the pmx analyse program, and generate
summary files.

Simulation details. We use the simulation protocol described in detail by Gapsys
et al.3. A 2 fs timestep was used throughout. For all simulations following mini-
misation, the stochastic dynamics integrator was used keeping the temperature at
298 K with an inverse friction of 2 ps. Pressure was held at 1 bar using the
Parinello-Rahman barostat42 with a time constant of 5 ps. Long range coulomb
interactions were treated using Particle Mesh Ewald (PME)43,44 with a real space
cutoff of 1.1 nm, using a relative strength at the cutoff of 1e–5. Fourier grid spacing
was set to 0.12 nm, and van der Waals interactions were smoothly switched off
between 1.0 and 1.1 nm, with dispersion correction for both energy and pressure
applied. For bonds to hydrogen atoms, bond lengths were constrained using the
LINCS algorithm45. For alchemical transitions the van der Waals and electrostatic
interactions were soft-cored46.

Target selection. Systems were selected to facilitate comparison with RBFE cal-
culations reported in previous studies,1,3,4,13 whilst ensuring ligand sets represented
a sufficiently diverse set of compounds, including flexible examples that might
prove to be challenging for docking algorithms.

Four systems were selected for our investigation, and are summarised in
Table 1: P38α and PTP1B were taken from the work of Wang et al.1. The ligand
poses were further adjusted by Gapsys et al.3, and are generally considered to be of
high quality. Additionally, we selected TNKS2 and SYK from the work of Schindler
et al.4. The original ligand poses from this study were generated primarily by core-
constrained docking using Glide, however, in the case of multiple poses, charge

Fig. 8 Overview of the steps comprising our automated NES RBFE
workflow. The workflow includes ligand embedding from SMILES, docking,
topology preparation, simulation and analysis steps.
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states, or tautomers, all plausible combinations were calculated by FEP+, and the
pose with the lowest predicted binding free energy was reported as the input
structure. All input data used in this work is available in the Supplementary Data.

Comparison to experiment. For comparison to experiment, we converted double
free energy differences (ΔΔG) to absolute binding free energies (ΔG). For that we
relied on the cycle closure correction procedure and used an average of the
experimental measurement for the corresponding congeneric series to offset cal-
culated values.14 Throughout the work we compared computed free energy values
to the experimental measurements in terms of average unsigned error (AUE), root
mean square error (RMSE), Pearson’s correlation coefficient (ρ) and Kendall rank
correlation coefficient (τ).

Data availability
Docked poses, workflow configuration files and calculated free energy values are available
at https://github.com/deGrootLab/icolos_pmx_paper_2022.

Code availability
Icolos (Apache-2.0 license) workflow manager is available at https://github.com/
MolecularAI/Icolos. Free energy calculation setup was performed with pmx (LGPL-3.0
license): https://github.com/deGrootLab/pmx.
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