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Thermodynamically consistent phase-field theory including nearest-neighbor pair correlations
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Most of our current understanding of phase separation is based on ideas that disregard correlations. Here
we illuminate unexpected effects of correlations on the structure and thermodynamics of interfaces and in turn
phase separation, which are decisive in systems with strong interactions. Evaluating the continuum limit of the

Ising model on the Bethe-Guggenheim level, we derive a Cahn-Hilliard free energy that takes into account pair
correlations. For a one-dimensional interface in a strip geometry, these are shown to give rise to an effective
interface broadening at interaction strengths near and above the thermal energy, which is verified in the Ising
model. Interface broadening is the result of an entropy-driven interface delocalization, which is not accounted

for in the widely adopted mean field theory. Pair correlations are required for thermodynamic consistency as
they enforce a thermodynamically optimal local configuration of defects and profoundly affect nucleation and

spinodal decomposition at strong coupling.
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I. INTRODUCTION

Instigated by the seminal works of Cahn and Hilliard [1-3],
phase separation, the process through which homogeneous
mixtures demix into distinct phases, has attracted consider-
able attention in a variety of fields, including physics [4—13],
mathematics [14—16], chemistry [17-20], material science
[21-23], and recently biology [24-27]. Our understanding of
phase separation in systems in [28,29] and out [30,31] of equi-
librium is mostly based on mean field (MF) ideas [32], also
known as regular solution [1], Bragg-Williams [33], or Flory-
Huggins [34,35] theory (for recent works see [10-13,25—
27,36—41]). MF theory neglects correlations whose impor-
tance grows with the strength of interactions [4]. For example,
capillary wave fluctuations [41,42] are not captured in MF
theories. This questions whether MF ideas correctly describe
the physics of strongly interacting systems [39,43].

Various refined techniques have been developed beyond
the MF approximation, including the cavity method [44],
random phase approximation [45,46], self-consistent field the-
ory [47], and field-theoretic approaches close to criticality
[48]. Yet, these techniques either do not apply to nonuniform
systems, or are applicable in a limited range of interaction
strengths. As a result, the phenomenology of phase separation
in the strong-coupling limit remains largely unexplored, and
thus poorly understood.
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Here we employ the Bethe-Guggenheim (BG) approxima-
tion [49-52] that includes nearest-neighbor pair correlations.
By evaluating the thermodynamic limit of a spatially in-
homogeneous nearest-neighbor interacting Ising model, we
derive a Cahn-Hilliard free energy on the BG level that effec-
tively accounts for the effects of capillary wave fluctuations.
We investigate the phenomenology of interfaces and phase
condensation, and find at sufficiently strong interactions an
effective interface broadening not accounted for by MF the-
ories. We corroborate the broadening with simulations, and
exact results in the infinite-interaction limit. Furthermore, via
numerical simulations of the Cahn-Hilliard equation [53], we
analyze nucleation kinetics, and observe amplified nucleation
barriers and a nonmonotonic dependence of the interface
steepness and critical nucleus size on the interaction strength.

II. MOTIVATING EXAMPLE: INTERFACE
DELOCALIZATION

An intriguing phenomenon in strongly interacting sys-
tems is interface delocalization [54—65]. Consider a two-
dimensional Ising model with ferromagnetic interaction J (in
units of kg7) in a strip geometry (i.e., height > length) in
the two-phase regime. Imposing periodic boundary conditions
in the vertical direction, and thermodynamically coexisting
phase compositions at the left and right edges, the instan-
taneous concentration of down spins projected onto the x
direction, ¢;(x), develops an interface [see Fig. 1(a)], whose
position x; is defined implicitly via ¢;(x;) = 1/2. In the ab-
sence of boundary effects, shifting an instantaneous interface
¢i(x;)) = @i(xi + dx;) costs no energy. However, x; near the
boundaries are entropically penalized, as they allow only
for a limited bandwidth of capillary wave fluctuations [see
Fig. 1(a), top] [64—67]. As a result, we find at weak to moder-
ate J that the probability density of instantaneous interface
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FIG. 1. (a) Realizations of spin configurations (top) and
corresponding  instantaneous interfaces (bottom) in a two-
dimensional Ising strip with lattice constant § and dimensions
(Ly, Ly) = (40, 120)8, for different J = {0.45, 0.6, 1.25} obtained
from Monte Carlo simulations (see Appendix A for details). The
circle and dashed line denote the position of the instantaneous
interface. (b) Statistics of interface positions derived from
simulations (green) and given by Eq. (4) (black dashed line) via a
mapping onto the Brownian excursion problem. (c) Corresponding
ensemble-averaged concentration profile along the x axis
alongside theoretical predictions of mean field (MF; red) and
Bethe-Guggenheim (BG; blue) theory. (d) Scaled interface steepness
L.¢'(0) = L,0,¢(x)|x—o as a function of J.

positions, defined as pj,(x;J), is peaked at the center [see
Fig. 1(b), top]. At larger J the amplitude of capillary waves
diminishes [see Fig. 1(a), center and bottom], and a transi-
tion occurs that delocalizes the instantaneous interface [see
Fig. 1(b), center and bottom as well as [60-65]]. A sharp
but delocalized instantaneous interface becomes effectively
broader upon time or ensemble averaging over respective
interface positions [see Figs. 1(c) and 1(d)]. Exact results
in the regime J — oo have confirmed the interface broad-
ening [60-63], whereas it is known that MF theory fails to
account for it [64,68]. A comprehensive theory that captures
the broadening transition due to the instantaneous interface
delocalization remains elusive. This example therefore moti-
vates a deeper and more systematic analysis of interfaces and
phase separation in the strong interaction limit.

III. OUTLINE

First, we present in Sec. IV a derivation of the probability
density of instantaneous interface positions based on a map-
ping onto the Brownian bridge problem [Eq. (4)]. Thereafter,
we present in Sec. V a detailed microscopic derivation of the
Cahn-Hilliard—type phase-field free energy starting from an
anisotropic two-dimensional Ising model using the BG ap-
proximation [Egs. (27)-(29)]. In Sec. VI we analyze the field
theories by determining the one-dimensional equilibrium con-

centration profile, interface steepness, interface stiffness, and
the critical wavelength of stable perturbations. Furthermore,
we analyze nucleation kinetics via numerical simulations of
the newly derived Cahn-Hilliard equation. Finally, in Sec. VII
we conclude and reflect on possible future directions. De-
tails of simulations and calculations are shown in a series of
Appendixes A-G.

The Appendixes are organized in the order they appear in
the main paper. First, we present in Appendix A a detailed
description of the Monte Carlo simulations that are shown in
Fig. 1. Appendixes B and C are devoted to the derivation of
the Cahn-Hilliard free energy starting from a two-dimensional
Ising model using the mean field (Appendix B) and Bethe-
Guggenheim (Appendix C) approximations, respectively. The
latter is also discussed in Sec. V, but here we provide some
more technical details. Next, in Appendixes D and E we
analyze the field theories by determining the one-dimensional
equilibrium concentration profile, interface steepness, inter-
face width, and critical wavelength of stable perturbations. In
Appendix F we probe the accuracy of both approximations
by comparing them with exact results for system sizes which
are amendable to exact solutions. Finally, in Appendix G we
present details on the numerical simulations of nucleation
shown in Fig. 5.

IV. STATISTICS OF INSTANTANEOUS
INTERFACE POSITION

Here we derive the probability density of instantaneous
interface positions, based on the analogy with Brownian
bridges, used for Fig. 1(b) (black dashed lines). Furthermore,
in Sec. IV C we prove the convergence to a uniform distri-
bution in the limit J — oo, which we use in Sec. VIB to
disentangle interface delocalization from the instantaneous
interface width.

A. Main idea

Neglecting overhangs, one can map the statistics of instan-
taneous interfaces onto a one-dimensional confined Brownian
bridge problem (see Fig. 2) [65]. The idea is to treat the
respective bulk phases as “pure” (i.e., homogeneous) and the
interface (i.e., domain wall) as a random walk located between
two hard walls at x = 0 and L,. Then, in the continuum limit
the interface is equivalent to a Brownian trajectory where the
vertical coordinate y plays the role of time and the diffusion
coefficient is proportional to 1/4A (see Sec. IV B), where

A = sinh (2J 4 Intanh J) €))]

is the exact interface stiffness for the two-dimensional Ising
model [69,70]. Periodic boundary conditions in the y direction
render the trajectories Brownian bridges.

B. Derivation of interface statistics

We parametrize the domain wall as a Brownian motion
{x;,}()gyg[‘y where y plays the role of time (or contour length
in the polymer context). Then, the Green’s function of the
interface with diffusion coefficient D follows the Edwards
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FIG. 2. Mapping the instantaneous interface (red line, left) onto
a Brownian bridge (red line, right). Neglecting overhangs, and treat-
ing the bulk phases (black and white regions) as homogeneous,
the instantaneous interface becomes a Brownian trajectory where
the vertical coordinate y plays the role of time. Greens dots indicate
the equal positions of the interface at 0 and L,, rendering the interface
a Brownian bridge.

equation with absorbing boundary conditions at the walls
8,G(x, ylxo) = DV{G(x, ylxo),
G(x, Olxo) = 8(x — xo), @)
G(0, ylxo) = G(Lx, ylxo) =0, Vye[0,Ly].
The general solution to Eq. (2) is

2 & k k —2k*D
G(x, )’|xo):[ Z sin ( Zx) sin ( Zjo> exp <%>

* k=1

Particularly interesting is the mean-squared displacement,
which for y « D/Lf is given by ((x—xo)?)~2Dy, where =~
stands for asymptotic equality, i.e., A~ B when A/B — 1.
Such a scaling is expected for a freely diffusing particle.
Now we recall the exact results of Abraham [69] and Fisher
[70] who found that for the two-dimensional Ising strip the
interface width should scale as {(x — x)?) o y/A where the
proportionality factor includes some lattice length scale and A
is the surface stiffness given by Eq. (1). This outcome allows
us to relate the diffusion coefficient D to the surface stiffness

1
Do —. 3
x5 3
Under periodic boundary conditions in the y direction the
interfaces have an equal position at y = 0 and L,, also known
as Brownian bridges. In this case the propagator is simply
given by G(x, Ly|x). We can now calculate the probability
density to have an interface located at position x, which upon
normalization is given by
G(x, Ly|x)
Ly
Jo " G(x, Ly|x)dx

_195(0,e7) — 93(x/Ly, e™)
L, 93(0,e=%) — 1

pim(X; J) =

)

where oy = nzDL),/Lf and ¥3(a, x) is Jacobi’s elliptic theta
of the third kind. The second equality can be obtained from
the definition of ¥3(a, x). Plugging Eq. (3) for the diffusion
coefficient (with proportionality factor equal to unity) into
Eq. (4), we obtain the black dashed lines in Fig. 1(b). As
long as J <« 1 we have A < 1 and thus «; > 1. Accordingly,

Eq. (4) predicts instantaneous interfaces to be localized with
a probability density pi,(x;J) o sin(wx/L,)* [see Fig. 1(b),
top panel]. Conversely, for sufficiently large J we find A > 1
and hence «; < 1, and the interface positions become delo-
calized [see Fig. 1(b), center and bottom panels].

C. Convergence to the uniform distribution

Next, we show that Eq. (4) converges to a uniform distri-
bution for J— oo. First, we define g=e™* and rewrite

9]
193(7TX/LX, e—ot,) — Z qnzeiznxn/Lx. (5)

n=—0o0

Since oy > 0 and limy_,» &y = O (uniformly), we find that
lim;_, o, €™* is equivalent to lim,4; ¢ in Eq. (5). We now use
the asymptotic result for g 1 1 [71]:

2 T 72x?
lim q" e/ ~ exp( > ) (6)
g1 ‘. —Ing LzIng

n=—

Let us now rewrite Eq. (4) as
03(0, e )—1—03(wx/Ly, e )+1
%3(0,e ) — 1
H(mx/Ly,e™)—1
93(0,e™)—1

L pine(x;J) =

)

We can now evaluate the limit of Eq. (7) using Eq. (6). Note
that Eq. (6) > 1 for 0 < x < L,. Hence, we find

2.2
lim L pin(;J) = 1 — lim exp( T )
J—00 gl

LZIng

2.2

X
=1-—limexp|— — 1, 8
;40 p( L§a,) ®

for O<x<L,, while we have pin(0;J)=pint(Ly;J)=0, V J.
This completes the proof. In the forthcoming sections we take
the boundaries at x = +L,/2, which shifts the coordinates to
x—>x — L./2.

Notably, when J — oo a Casimir effect appears in addition
(see, e.g., [72,73]) that is not captured in Eq. (4), i.e., the en-
tropy due to bulk fluctuations is enhanced near the boundaries
resulting in “peaks” [see Fig. 1(b), bottom].

V. CAHN-HILLIARD FREE ENERGY INCLUDING
PAIR CORRELATIONS

A. Lattice setup and the thermodynamic limit

Spins. For simplicity, and without much loss of general-
ity, we limit the discussion to two-dimensional systems with
horizontal and vertical direction x=(x, y)eR?, respectively.
We consider N, = NJ x N} spins o;j = %1 with (i, j) €
({1,...,N*}{1,...,N;}) arranged on a lattice with sides
(Ly, Ly). In Fig. 3(a) we provide an example of a square
lattice with 16 spins. The lattice spacings between spins are
(8, 8y)=(L/NZ, Ly/Ny). The lattice coordination number is
denoted with z=z,+z,, and z=diag(z,, z,) is a diagonal matrix
containing the lattice coordination numbers in each direction.
The square lattice in Fig. 3 has (zy, zy) = (2,2) and z = 4.
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FIG. 3. (a), (b) Lattice setup of the spins (a) and spin blocks (b).
(Lyy, Ly, 8y,y) are the lattice length, spin-block length, and lattice
spacing, respectively. The number of spins and spin blocks are de-
noted with (N*¥, N,”"). Here we consider an example with 16 spins
and 4 spin blocks. (¢), (d) Thermodynamic limit of the spins (c) and
spin blocks (d) defined in Eq. (9). The circles display a graphical
magnification of individual spins (c) and spin blocks (d).

Spin blocks. Similar to Kadanoff’s block-spin method
[74] we place spins into N, = N} x Ng blocks as shown
in Fig. 3(b). Let b;; with (i, j) € ({1,..., N/} {1,...,N;})
denote such a block containing N° = N, /N,, spins. Conse-
quently, the horizontal and vertical length of each block is
given by (I, ly) = (L/Ny, Ly/N, ). The blocks have the same
lattice coordination number as the spins. In Fig. 3(b) each
block has four spins and aligns with two blocks in the hori-
zontal and vertical direction, respectively.

Thermodynamic limit. To construct a Cahn-Hilliard free
energy we introduce the following two scaling limits where
we take the number of spins and blocks to infinity while
simultaneously keeping the block and lattice length fixed, i.e.,

. _ N¥,Nj—o0
hm [ ] hml) ly=const [ ]’

. Nj N —00
111’1’1?”[ ] = th Ly _comt[ ]’ (9)

where N, and N, denote the thermodynamic limit of the spins
and blocks, respectively. In Figs. 3(c) and 3(d) we give a
schematic representation of both limits.

B. Coarse-grained lattice observables
Fraction of down spins. The fraction of down spins in block
b;; (containing N” spins) is defined as

¢ii(bii) = (V)™ D201 = o)/2, (10)

mneb;;

where mn € b;; denotes a sum over all indices within block
b;;. For a finite number of spins within each block ¢;; is a

rational number. Applying the first scaling limit in Eq. (9)
takes the number of spins within each block to infinity, render-
ing hm “[¢;;] € [0, 1] a continuous variable [see Fig. 3(c)].
The second limit takes the number of blocks to infinity while
simultaneously decreasing their distance, resulting in a con-
tinuous differentiable field

Hm [lim} [¢;;]] = ¢(x),

as depicted in Fig. 3(d).

Intrablock defects. Additionally to Eq. (10), we need to
define the fraction of intrablock defects inside b;; in the hori-
zontal and vertical directions, which are given by

é-i);',y({bij}) = (ZX7YN£)71 Z |Cmn =0, (11)

(mn,kl), y€b;;

where (mn, kl), , € b;; denotes nearest neighbors within
block b;; in the horizontal (x) and vertical (y) direction, re-
spectively.

Interblock defects. Finally, we define the fraction of in-
terblock defects between neighboring blocks in the horizontal
and vertical direction, respectively, given by

4 —1
&by b ) = @N) T D low —oul
(mn,kl)€(bj;,bix1;)

%‘iyji({bij,bijil}) = (Z,\’N:)71 Z

(mn,kl)y€(bjj,bjjx1)

|Umn - Uk['a

12)

where one needs to account for the boundary conditions upon
summing over boundary blocks.

As an example, the fraction of down spins, intrablock
defects, and interblock defects for the lower left block in
Fig. 3(b) under periodic boundary conditions is ¢;; = 1/4,
oy =1/8,&1 =1/8, &7 =1/4, 511 =0,and &, =1/8.

C. Coarse-grained Ising Hamiltonian

We now rewrite the nearest-neighbor Ising Hamiltonian
in terms of the coarse-grained intensive lattice observables
introduced in Eqgs. (11) and (12). The Ising Hamiltonian reads
as (in units of kgT')

Ho)=—Jr D om0 —Jy Y Omou,  (13)

(mn,kl), (mn,kl),

where ¢ is the matrix containing all spin configurations, and
Jyy 2 0 is the ferromagnetic interaction strength in the hor-
izontal and vertical direction, respectively. To make use of
Egs. (11) and (12) we insert the identities

OmnOkl = 1 - |Umn - Ukl|a
Y 1=z, N2
(mn,kl),,y

(the latter can also be read as a definition for z,,) and de-
compose the Hamiltonian into a sum over interblock and
intrablock contributions

N N
M) =N2 Y D [HMiner + Hina —Cl. - (14)

i=1 j=1
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The respective contributions inside the sum are given by
Hinter ({(bie1j, bij, bije1)) = 2o (€77 +E7) 12+ (o),
Hinwa({bij}) = 2285 + (x © y), 5)
C = @dx +5)/2.

The term (x < y) in Eq. (15) denotes a repetition of the
preceding term with x and y interchanged. Equation (14) is
an exact expression for the Ising Hamiltonian in terms of spin
blocks. Note that the factor 1/2 in H;yer accounts for the
double counting over interblock contributions.

D. Coarse-grained partition function

Since the Hamiltonian is decomposed into a sum over spin
blocks, the partition function Z can be factorized into a prod-
uct of partition functions per block Z;;. Inserting Eq. (14) into
the partition function leads to the following exact expression:

Ni N;

Z= 1_[ l_[ Z = l_[ H Z e N Hiet Hina=Cl (1)

i=1 j=1 i=1 j=1{b,

The evaluation of the configurational sum over all possi-
ble spin-block configurations {b;;} constitutes a difficult, if
not impossible, task. However, the Hamiltonian given by
Eq. (15) solely depends on the seven lattice observables
(@i g“l’;v, Sl’;} ). Therefore, we can interchange the config-
urational sum by a sum over all possible values of these
seven lattice observables, and introduce a degeneracy of states
W(g;j, Zy JED Vj[) which accounts for the multiplicity of con-
figurations. T hen we obtain

Z=32 Z (i, 67 e e Mo €L (17)

Qij ;.)L y x»i

Equation (17) is an exact expressmn as long as the degeneracy
of states W(¢yj, &7, &) V%) is evaluated exactly.
Normalization condmon For (Jx, Jy) = (0, 0) the degener-

acy of states should obey the relation

xy sxyEy ! N({v]
Zzw(fﬂi_ivCij ' 8ij ) = ¢ N (18)

Xyt
o &

since this is the number of possible configurations to place
@ijN? down spins in a block that contains N spins in total. We
will use Eq. (18) as a normalization condition to consistently
approximate the degeneracy of states.

E. Pair-approximation ansatz

Intuition behind the BG approximation. Our next aim is to
approximate the degeneracy of states by placing spin pairs
onto the lattice. Imagine that we are given a number of
spin pairs with N4, N, and N4, denoting the number of
up-up, down-down, and up-down (i.e., defects) spin pairs.
The total number of distinct lattice configurations for fixed
(NTT’ Nii’ NTi) is given by [75]

(N4t + Ny + Ny !
(NTT)'(NN/Z)'z(Nu)'

YV~ Wpg

where the factor 1/2 in the denominator accounts for the
symmetry N4, = N4. For even Ny the term (N4 /2)! is well
defined. However, when N, is odd we are forced to consider
the generalized factorial

TNy + Ny + Ny + 1)

U~ Upg = ,
BT TNy + DTN, /2 + 12T(N,, + 1)

19)

where I'(x) is the gamma function [76]. Equation (19) com-
prises the main essence of the BG approximation. '

Nonuniform degeneracy of states. To account for a
nonuniform concentration profile we need to construct the de-
generacy of states for each of the individual blocks b;;. Similar
to Eq. (19) we introduce a pair-approximation ansatz for the
degeneracy of states. The difference, however, is that we now
distinguish between intrablock and interblock contributions.
Furthermore, we want to express the degeneracy of states in
terms of Egs. (10)—(12). This results in

W (i, 65 &) ~ N (. 67, 65F). (0)

where N (g;;) is a normalization constant left to be deter-
mined. The unnormalized degeneracy of states reads as

A P X,y a1 x,yt
V= \Ijinnz'a((pij’ é‘ij}) l_[ ‘"I'[mler((pl]’ 'i:z/y )’ (21)
+
which is divided into intrablock and interblock contributions
Eﬁx(fpiijij,{fj)lﬂy(fpijwpij,égvj), (22)
Wineer = V(i @121 Sfji)l/fy(%j, fpi,jil,f,'-vji), (23)

and the auxiliary functions v, ,(a, b, c) are given by

\pintra =

1pxy(a b,c)= y(l _a_C)va(b_C)

x ['yy(@a—b+ o)l y(c),

with f‘x,y(w) = F(zx,nyw/2 + 1), and T'(w) being the
gamma function. Equation (20) can be derived similarly to
Eq. (19) by counting the number of degenerate configura-
tions upon distributing spin pairs over a lattice. The functions
Yy (@ijs @i gl’;"’) account for distributing spin pairs inside a
single block in the horizontal and vertical direction, respec-
thC]y Slm]larly’ Wx(fﬂu, ¢1:|:1]s élji) and % (‘ﬂzp PijE1, i:,j )
account for distributing spin pairs between two neighboring
blocks in the horizontal and vertical direction, respectively.

F. Evaluation of normalization constant

The normalization constant N (¢; ]) in Eq. (20) is deter-
mined by Eq. (18) To evaluate the six sums over the lattice
observables (¢;” 7 l’;y ) we take the thermodynamic limit of
the spins, rendering the observables continuous, and employ
the maximum term method (i.e., saddle-point approximation).

This gives the following maximizing arguments (henceforth

'Equation (19) is exact when there are no closed loops in the lattice.
Therefore, the BG approximation is exact on the Bethe lattice.
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indicated with a hat):

P . _ 1
I (@ij) = arg sup,» {lim®[(N?) 'In (Vs (91, 9ij: ¢ i ]} = e (1 = @),

A _ _1

EF(piv1j, 9ij) = arg SUpgx {tim{~[(N2) 'In [Vi (@), @ix1). & jE)]]} = @ix1;(1 — @ij), (24)

A _ _1
E*(gija1, ¢ij) = arg Supg {lim{~ [(N7) 'In [y “(¢ij> ij1, & )]]} = @ijx1(1 — @ij).

To obtain Eq. (24) we used Stirling’s approximation for the gamma function InI'(x) = E(x) — x + O(Inx) for Re(x) > 0 with
E(x) = x In (x). Plugging Eq. (24) into Eq. (20), and finally solving Eq. (18) for the normalization constant yields

Nb
N(gij) = (

Vi i xv gx,yt
(pl]Nb> ((pj E )

G. Evaluation of partition function

With the normalization constant evaluated explicitly, we can now determine the partition function given by Eq. (17) in
combination with (20). Again, we take the thermodynamic limit of the spins and approximate the six inner sums over ({x Y El);y )
in Eq. (17) with the maximum term method, giving the following extremizing arguments (henceforth indicated w1th a hat +
dagger T):

£ ) = angsupgy [ (V)™ In [ g i £5)e 055 4]} = 28572400, 80,

é:i((ﬂiﬂ:ljv gplj) = arg Supéf/-i {l]mls\l” [(Né))_] In [w;i ((pijv Gitljs éfjﬁ:)e*&]ré—f}il\’g/z]]} — 2§Xi/9x(‘ﬂij_(ﬂi:tlj, éxi), (25)

a . —1 _1 , _ yE b P Ay
é?i(wij:tl: ¢ij) = arg supg= {im [(N2) ™" In [y ¥ (@i @ijer Efji)e ahS N2} = 28 /(91— ¢ijx1, §7),
where we introduced the auxiliary function

Q. (@, D=1+ aye, + [8a0+sen(@]([1 + aye, ]’ + 4by. )2,

with sgn(x)= = 1 for £x>0, sgn(0)=0, and y, ,=e**»—1. For (J;, J,)=(0, 0) we have {;”=¢*> and é;‘"’izéxvyi, as expected
from their definition. With the six inner sums in Eq. (17) evaluated, we are left with the sum over ¢;;. To evaluate the last sum
we introduce the free-energy density in the thermodynamic limit of the spins

(it 0ij, 0ij£1)

= lim™ [—(N?)” " In (W(gyj, ng’gx)’i)efN;’[lex(f.‘?Hé?*%f}/2)+(X<—>y)fc])]

= (/)Y _[B( — g;j — E) + Egisrj — &%) + Bloyj — @iy + &) + BE®) — BU — gi1)) — B(@izr))]
+
+ (Zy/S)Z[E(l —@ij — E) + E(pijar — é'{i) + E(@ij — @ij+1 + éi'i) + E(é}"i) — B — @;j+1) — E(@ijx1)]
+

+ {z/DIE — @i — &) + Egi; — &) + 2ECH]+ (x <> )} + (1 = 32/ [E(g;) + B — ¢;))]

+ (e GHETHE YD+ o} - (26)

where (x <> y) always applies directly to its preceding term, and we recall that E(x) = x In (x). To optimize Eq. (26) over ¢;;,
we can employ two different strategies:

(1) Optimize f(¢;+1;, i}, ¢ij+1) and apply HimY*[].

(2) Take im*[f(@iz1;, ¢ij, ¢ij+1)] and then optimize.

In Appendix C 2 we apply the first strategy, and here we proceed with the second. Upon evaluating the thermodynamic limit
of the blocks in Eq. (26) we need to keep track of various terms, which is done explicitly in Appendix C 3. Here we fastforward
to the final result. Restoring the product over the spin blocks in Eq. (16), and expressing X in units of the block lengths (I, I, ),

we obtain
Ny N

1
F=1mY | (V)™ Y it @i pijer) | = /A dx[f(go(x))+§V¢<x>ﬂc(¢(x>wso(x>], @7

i=1 j=1
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FIG. 4. In all panels we consider a square-lattice Ising strip with {z,, z,} = {2, 2}. Red, blue, and black solid and dashed lines correspond to
ME, BG, and exact and SOS results, respectively. (a) x component of the gradient-energy coefficient «,, given by Eq. (29) as a function of ¢ for
J € {0.1,0.5, 1}. (b), (c) Interface steepness ¢'(0) = 3,¢|,—o of the equilibrium concentration profile as a function of J for fixed L, € {3, 5, oo}
(b), and as a function of L, for fixed J = 5 (c). Inset of (c): rescaled steepness L,¢’(0). (d) Interface stiffness A defined in Eq. (32) as a function
of J on a logarithmic scale. The exact result (black line) is given by Eq. (1). (e) 1/L,¢’(0) as a function of J for fixed L, € {10, 20, 30, 40}.
Blue lines converge to the value Agg =~ 0.835, corresponding to the instantaneous interface width [see also Eq. (35)]. Inset: blowup of the MF
result. (f) Critical stability wavelength Ay = 27 [—«,(1/2)/f"(1/2)]'/? as a function of J; the blue arrow indicates JT in Eq. (37) where A
attains a minimum. Inset I: curvature of the free-energy barrier f”(1/2). Inset II: bulk correlation length £ defined in Eq. (38).

where A =[-L,/2,L,/2] x [-Ly/2,L,/2], and the Io-
cal free-energy density f(¢) and concentration-dependent
gradient-energy coefficient k(¢) are given by

f(p) = 20z/c 8 +2,y 8 —1/4]
+(1=2)[E(p) + E(1 — ¢)]
+(z/2IE(p—E) + E(1—p—EH+2E(E))]

+(x <), (28)

z(exp4J — 1)
[1 4 4(exp4) — Dol — ¢)]'/?’

with J = diag(J,, J,). Equations (27)—(29) are the main
result of the theoretical work presented here. The MF
analogs are obtained by taking the weak interaction limit
limy, 0 f(go):fMF((p)—}—O(Jiy) where fyp(p) is given by
Eq. (B10), and limy, .o K((p)zchp—i-O(Jiy) with kyp=z]J.
Similarly, fyr(@) can be obtained with the substitution
E;“y —&*Y in Eq. (28). Note that kv is independent of ¢,
in agreement with regular solution theory [1]. Figure 4(a)
displays «, as a function of ¢ for BG and MF theory (blue
and red lines, respectively). Here we observe a large entropic
penalty of inhomogeneities at ¢ — {0, 1} not accounted for in
MF theory.

k()= (29)

VI. ANALYSIS OF FREE-ENERGY FUNCTIONAL
ACCOUNTING FOR PAIR CORRELATIONS

A. Equilibrium interface profile

In subsequent analysis we consider an isotropic interaction
strength J, = J, = J. The equilibrium profile minimizes F,

i.e., it is the solution of §F /6¢(x) = 0. We now show that BG
and MF theories predict starkly different behavior for moder-
ate and strong interactions: MF theory fails to account for the
interface broadening explained in Sec. II. First, considering
Fig. 1, we focus on the square-lattice Ising strip (L, > L,)
where the magnetization varies only in the x direction, i.e.,
@(x) = @(x). The profile is obtained as the solution of a non-
linear second-order differential equation [see Eq. (C9)] that
we solve numerically. The boundary conditions are given by
©(—Ly/2)=¢min and @(Ly/2)=1—@mi, where
inf  f(¢p)

0<p<1/2

Pmin = arg (30)
is the coexisting state determined by the location of the left
minimum of f(¢). Note that f(¢) is mirror symmetric around
¢ = 1/2 in the absence of an external field. Above the critical
coupling J >J;, where [77]

JBG,cril =In (Z/[Z - 2])/27

f(¢) has two local minima resulting in a nonuniform ¢(x). For
J<Juie the profile is uniform. We fix the ensemble interface
location such that ¢(0) = 1/2.2

Qualitative differences between the profiles predicted by
BG and MF theory are seen already in Figs. 1(c) and 1(d).
In particular, BG concentration profiles depend nonmono-
tonically on J, which is confirmed by Monte Carlo (MC)

IME,crit = 1/2,

%Fixing the ensemble-averaged interface position is not equal to fix-
ing the position of instantaneous profiles. Thus, the interface location
along individual trajectories may still fluctuate.
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simulations of the Ising model (for simulation details see
Appendix A), whereas MF interfaces become monotonically
steeper. By comparing with Fig. 1(b) we observe that interface
broadening correlates with interface delocalization. This is
further analyzed systematically in Fig. 4.

First, we inspect in Fig. 4(b) the interface steepness
¢’(0). In stark contrast to MF theory predicting a steepen-
ing interface independent of lattice size L., BG profiles are
nonmonotonic in J beyond a sufficient L, due to interface
delocalization. To verify that this is no artifact, we com-
pare our results with the solid-on-solid (SOS) model for the
square-lattice Ising strip (z = 4), which becomes exact in the
limit J — oo, and is known to include interface delocalization
[60-64]. The SOS model yields [61,62,64]

Jlirn wsos(x) = 1/24x/L,+ sin(2nx/L,) /27, 31
—00

hence, lim;_, o ©5o5(0) = 2/L,. In Fig. 4(c) we show the in-
terface steepness as a function of L, for fixed J, and find that
the SOS and BG results display the same scaling with respect
to L, [see Fig. 4(c) inset], whereas the MF result is in fact
independent of L,.

Further verification is given by the interface stiffness,
which is the free-energy difference between the nonuniform
equilibrium profile ¢(x) and a uniform equilibrium profile
®min, and reads as [see Eq. (2.15) in [1]]

1 =¢min
A=2 f {k(@)If(p) — f(pmin) ]} 2do,  (32)

Pmin
which is depicted in Fig. 4(d). Note that surface tension is
related to surface stiffness via o = arcsinh(A) [61]. The exact
result is given by Eq. (1), while the SOS model yields Asos =
cosh (2J) — 1 [61], and converges to the exact result for large
J,i.e., lim;_ o In (Agps) =~ 2J. Notably, the BG result is con-
siderably more accurate than the MF prediction [compare blue
and red lines with the black line in Fig. 4(d), and also displays
a correct exponential scaling, lim;_, o In (Apg) = J, in stark
contrast to the square-root MF scaling lim;_, o In (Apmp) =

In (V).

B. Disentangling interface delocalization

By exploiting the mapping of instantaneous interface posi-
tions onto a Brownian excurison problem (see Sec. IV) we can
disentangle interface delocalization from the instantaneous
interface width A in the large-J limit where the instanta-
neous interface positions become asymptotically uniformly
distributed, i.e.,

lim pin(x;J) = L 1jyj<r, /2, (33)
J—o00

with 1.z, ,» equal to 1 when |x|<L,/2 and O other-
wise (see derivation in Sec. IVC). Let us assume that
for J > 1 each instantaneous profile ¢;(x) is given by
some continuous function f(x/A 4+ b;) : R — [0, 1] obeying
lim,_, +o f(x) = (1 & 1)/2, where A > 0 and b; describe the
width and position of the jth instantaneous interface. The
ensemble-averaged profile is then given by the convolution of
f(x) with the probability density to have a certain shift b, i.e.,

jim o) =L [ F6/8 D)L s, (34

We can now compute the interface steepness and find
im0 L' (0)=A"[f(L./2)— f (~L,/2)]. Finally, taking
the large-L, limit, we obtain

lim lim 1/L¢'(0) = A, 35)

x—>00 J—00
which thereby disentangles interface delocalization from the
instantaneous interface width A. For the Ising strip this yields
Asos = 0.5 within the SOS model obtained from Eq. (31),
and Apg = 0.835 with the BG approximation [see Fig. 4(e)].
Hence, while the ensemble-averaged steepness vanishes in the
large coupling limit due to interface delocalization, instan-
taneous realizations maintain a nonzero interface steepness
with uniformly distributed interface positions. Importantly,
MF theory does not account for delocalization-induced inter-
face broadening and therefore predicts Ay — 0 [see inset of
Fig. 4(e)].

C. Spinodal decomposition

Having established the physical consistency of Eqs. (27)—
(29), we now address phase separation, and determine
the length scales on which inhomogeneities are stable by
performing a linear stability analysis on the total free-
energy density around a uniform concentration profile, i.e.,
@(x)=@o~+a sin (gx) with |a|<< min (¢o, 1 — ¢p) (the symme-
try of the problem imposes odd inhomogeneities). Stable
perturbations lower the total free-energy density AF =
Flox)] — Fleo] <0, yielding an upper bound on stable
wave vectors g < ¢t With the critical wave vector given by
(see Appendix E)

erit =/ —1" (o) /kx(¢0)

\/Z(Z — )1 +4(e¥ —Dgo(1-g0)]* — 22
zpo(1 — go)(e¥ — 1)

where " (¢g) = dzf(<p)/dg02|¢,:¢0 is the curvature of the free-
energy barrier. The critical wave vector translates into a
critical wavelength Acii = 27 /qgcrit, above which perturba-
tions are stable. Figure 4(f) depicts A for a square lattice
with ¢g = 1/2 as a function of J. Similar to the results shown
in Fig. 4(b), At displays a nonmonotonic trend within BG
theory (blue lines)® that is contrasted by a monotonic atten-
uation in the MF theory (red lines). The interaction strength
minimizing A in the BG theory, i.e., the interaction strength
J allowing for the widest range of stable wavelengths, can be
determined exactly and reads as [see blue arrow in Fig. 4(f)]

22+ z—-1)=2 ’ 37)
(z = 2)*¢o(1 — o)

. (36

. 1
J(go)=71n (1+

with the corresponding A™! = A (J7) given by the recip-
rocal of Eq. (E8). The nonmonotonicity of A can be
understood by inspecting how the curvature of the barrier
depends on J. In particular, the BG curvature converges,

limy_, o f7(1/2)=2(2—z) [see Fig. 4(f), inset I], whereas

3The nonmonotonic dependence of A5$ on J in fact persists for any
background concentration 0 < ¢y < 1 [see Fig. 8(c)].
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FIG. 5. Numerical simulations of critical nuclei of the radi-
ally symmetric Cahn-Hilliard equation with the BG (blue) and
MF (red) free energy for a hexagonal coordination {z, z,} = {6, 4}.
(a) Free-energy difference AE between the critical nucleus and the
homogeneous state as a function of the interaction strength J. The
inset shows critical profiles ¢(r) for three values of J. (b) Radius
reie and (c) interface steepness ¢'(rir) of the critical nucleus as a
function of J.

the free-energy penalty of inhomogeneities increases expo-
nentially, eventually increasing M. MF overestimates the
curvature of the barrier, and underestimates the free-energy
penalty of inhomogeneities, leading a decrease in AMF. No-
tably, the bulk correlation length

§= V K (@min) /T (@min) (38)

[41] displays qualitatively the same behavior in both theories
[see Fig. 4(f), inset II] since the MF free-energy density is rel-
atively accurate near the local minimum ¢,;,, but inaccurate
near the barrier (see Appendix F and [77]).

D. Implications for nucleation

We next investigate, in Fig. 5, how interface broadening
affects nucleation, by determining minimal free-energy paths
(the reaction coordinate and method are described in Ap-
pendix G). The inset in Fig. 5(a) suggests that critical nuclei
become less dense and wider as J becomes larger. Indeed,
we find that correlations captured by BG theory lead to larger
critical nuclei [Fig. 5(b)], shallower interfaces [Fig. 5(c)], and
that the increasing trend with J is only captured by BG theory,
which is reminiscent of the results shown in Fig. 4. Most
importantly, BG theory predicts that the nucleation barrier
AE is approximately four times larger than predicted by MF
[Fig. 5(a)], implying a strong reduction of nucleation rates
[78-81].

To understand why interface delocalization affects nucle-
ation we note that shifting the interface position corresponds
to a growing or shrinking nucleus which alters the free energy.
Instantaneous interfaces are still affected by interface trans-
lation and capillary-wave fluctuations. However, in contrast
to the strip, distinct instantaneous interface configurations are
not isoenergetic. The weighting by the respective free energy
of the configuration ultimately gives rise to broadening, and
thus larger critical nuclei and higher nucleation barriers.

VII. CONCLUSION

By directly computing the thermodynamic limit of a
spatially inhomogeneous Ising model on general lattices
within the Bethe-Guggenheim approximation we derived
a Cahn-Hilliard-type phase-field free energy that accounts
for nearest-neighbor pair correlations. Strong interactions
were shown to give rise to (i) a delocalization-induced
interface broadening confirmed by exact results for the two-
dimensional Ising model, (ii) a strong reduction of nucleation
kinetics due to an amplification of the free-energy barrier
to nucleation, and (iii) a nonmonotonic dependence of crit-
ical nucleus size on interaction strength. These effects are
the result of an entropy-driven interplay between capillary-
wave and interface-position fluctuations at sufficiently strong
coupling, and pair correlations are required to correctly ac-
count for them. Pair correlations enforce a thermodynamically
optimal configuration of defects, and are thus an essential
determinant of interfaces and condensates in the strong inter-
action limit that so far have been overlooked. By neglecting
correlations, mean-field reasoning inherently disregards cor-
relations and thus cannot account for local defects and their
entropic stabilization, and is thus thermodynamically incon-
sistent in the intermediate- and strong-interaction regimes.
Our results allow for generalizations to three dimensions,
more than two constituents, and conservation laws, which will
be addressed in forthcoming publications.
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APPENDIX A: MONTE CARLO SIMULATIONS
OF THE ISING MODEL

Here we provide details on the Monte Carlo (MC) sim-
ulations which we used to determine the ensemble-averaged
concentration profile and histograms of instantaneous inter-
face locations displayed in Fig. 1.

1. Lattice setup and initial configuration

We performed MC simulations of the nearest-neighbor
interacting ferromagnetic Ising model on the square lattice
of size (N = 40)x (N, € {80, 90, 100, 110, 120, 130}) with
single spin-flip dynamics in the bulk and two-spin-exchange
dynamics at the boundary columns located at i = £N7 /2. We
considered various values of NJ to benchmark our simulations
against known theoretical predictions (see Appendix A 5). We
imposed periodic boundary conditions in the vertical direc-
tion (i.e., along the columns) and free boundary conditions
in the horizontal direction (i.e., along the rows), whereby
we constrained the total magnetization on the left and right
boundaries (see below). Let Nil withi e {—=N7/2,...,N}/2}
denote the number of down spins in column i. To induce
a nonuniform concentration profile, and in anticipation of
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known exact results for the bulk concentration values [82],
we fixed the number of down spins at the boundaries to be
Ny
thNg/z = 7[1 + Re([1 — sinh ™ (27)]/%)], (A1)
where J is the coupling strength in units of kg7". Spins located
at the boundaries can exchange only within the same column,
and therefore the total number of up and down spins at the
boundaries is conserved throughout the simulation. Spins in
the bulk are initially prepared in a high-coupling configura-
tion (i.e., aligned) with a vertical interface placed at some
random horizontal location in the lattice. Starting from a high-
coupling configuration has the advantage that the simulations
do not get stuck in frozen suboptimal states where multiple
interfaces are created [83,84].

2. Acceptance rate

For single spin-flip dynamics let {o;}; denote the spin
configuration obtained by flipping spin i while keeping
the configuration of all other spins fixed, ie., {o;};=
(=0, {o}j+i}). Moreover, let p;({o;}) denote the acceptance
rate from {0} to {0;}; and AH;({o;}) = H({o}};)) — H({o;})
the energy difference (in units of kg7) associated with the
transition. Using the Metropolis algorithm the acceptance rate
for the single spin-flip takes the form [85]

pi({o;}) = min(1, e~ Moy, (A2)

For two-spin-exchange dynamics let {o;}}, denote the spin
configuration upon interchanging the spins o; and o} while
keeping the configuration of all other spins fixed, i.e., {0}, =
(0; <> oy, {0j£3iKn}). We denote with py({o;}) the accep-
tance rate from {o;} to {o;}}, and AH;({o;}) = H({o;}}) —
H({o;}) denotes the energy difference associated with the
transition. Using the Metropolis algorithm the two-spin-
exchange acceptance rate reads as

pix({o;}) = min(1, e~ Aoy, (A3)

3. Simulation parameters

For each value of the coupling strength J and verti-
cal length N2 € {80, 90, 100, 110, 120, 130} we performed
Nye = 10° MC simulations, where each individual run con-
tained 5x 108 MC steps. At each 1.9x 10th MC step we took
a snapshot of the configuration and stored the total energy,
resulting in 26 (including the initial configuration) snapshots
for each simulation run.

4. Equilibration test: Energy fluctuations per spin

To assess whether the MC simulations reached equilib-
rium we analyzed the energy fluctuations per spin, and their
corresponding ensemble average. In Fig. 6 we display the
energy fluctuations per spin for a subset of 10* simula-
tions as a function of the MC steps (MCS) for various J €
{0.45,0.7,0.95, 1.2} and N € {80, 100, 120, 130}. In each
plot we observe that immediately after the initial snapshot the
energy is fluctuating around an average steady state denoted
with the black solid line, providing a first indication that
the simulations have reached equilibrium (already at the first

stored configuration). Note that in each plot all energies are
initially increasing from zero since we subtract the ground-
state energy and initialize the system in a high-coupling
configuration which is identical to the ground state.

5. Benchmark test: Interface width and roughening

To benchmark the performance of our MC simulations
we computed the interface width w?(Ny,J) and compared
our results with known theoretical results reported in [42,69].
The results from [69] predict w?(Ny, J) o N/ sinh (o) with
o = 2J + IntanhJ. Analogously, the results from [42] pre-
dict w>(N),J) = N3 /120 — ¢/2mo? with ¢ ~ 1. Below we
explain in detail how we determined the interface width and
how it compares to the theoretical predictions. The resulting
outcomes are shown in Fig. 7 and the comparison with the
theoretical results are shown in Figs. 7(e) and 7(f).

a. Ensemble-averaged concentration profile
and the boundary-shift method

To compare our results with [42,69] we need to apply the
so-called boundary-shift method [86] where we shift the inter-
face position of each instantaneous concentration profile to the
center of the lattice. As a scientific exercise we also consider
the resulting outcomes without applying the boundary-shift
method, for which the results are depicted in the top row of
Fig. 7. Let ; ; be the equilibrated and boundary-shifted (from
now on indicated with a hat) concentration of down spins in
column i of the kth MC simulation run. The ensemble-average
boundary-shifted concentration profile is given by

(@) =— ) Qix (A4)

From Eq. (A4) we can approximate the mean interface width
using the central difference method as follows:

NY¥/2—1 . A A
Y @) — (@im1)
N¥/2—1 A A~
Zi:diN;/2+1<(pi+l) —{®i-1)

W (N2, J) =
Ni2-1 R 2
Zisz;/erl i((@it1) — (@i-1))

(AS)
NX/2—1 N N
Z,’:ﬁiNg/zﬂ((ﬂi-&-l) —{(Pi—1)

A similar definition holds for the interface width with-
out applying the boundary-shift method, which we denote
as w>(Ny,J). In Figs. 7(a)-7(d) we plot w*(Ny,J) and
W?(NJ, J) with the green dots as a function of N; . Both results
show a clear linear trend with N}, providing a first validation
of the MC simulations. To obtain the variance of W*(N, J)
and w2(N2, J), which we will use in the next section, we used
the jackknife method which is explained below.

b. Interface width and weighted linear regression

To compare our results with those reported in [42,69]
we need to extract the interception point w?(J, 0) and slope
dw?*(J, N})/dN}. Both quantities are obtained with weighted
linear regression in combination with the jackknife method.
First, we determine ®%(0,J) and d®w*(NJ,J)/dN; while
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FIG. 6. Equilibration test: energy fluctuations per spin as a function of consecutively stored Monte Carlo (MC) configurations (see text).
In each plot we display the energy fluctuations per spin (E — Ey)/N where Ej is the ground-state energy conditioned on antisymmetric
boundary conditions and N = N*N? with N* = 40 for a subset of 10* MC simulations (colored lines). The black solid line indicates the
ensemble-average energy fluctuation per spin. Plots in the same column have equal N} € {80, 100, 120, 130}, and plots in the same row have

equal J € {0.45, 0.6, 0.95, 1.2}.

removing one point from the data pool, which gives

A3 (N3, J) }

~2

[+ BN — @2 (N, J)]°

= min Z a6
¢ D2 (N
By _is0...130) var(w2(Ny, J))
N3#T0+10x
where j = {1, ..., 6}. A similar definition holds for the inter-

section point and slope without applying the boundary-shift
method, which we denote as w?(O, J) and d w}(Ng, J)/dN3,
respectively. Finally, the jackknife ensemble averages and
variances are given by

6
1
.2 __ZAz

6

5
var(@*(0.0)) = = 3 [#3(0.) = 2% /)],
=1

di? (N3, 1) 1 dii(Ng,J)

dN} _6; dNy
Q2N D)\ 5 (diR(VLD)  darv. )]
Var( dN; )_E;( Ny dNy )

In Figs. 7(e) and 7(f) we plot @?(0, J) and d>*(N}, J)/dN)
together with the standard deviation as a function of J. The
theoretical results given by [42,69] are shown with the red
and blue lines, respectively. For J > 0.6 we find a very good
agreement between MC simulations and theoretical predic-
tions. Notably, for the slope in Fig. 7(f) we find a remarkable
agreement with the results of [69]. For J/ < 0.6 we approach
the critical coupling J.,i; & 0.441, where the MC results agree
less well with theoretical predictions due to finite-size effects.
This is expected since the correlation length diverges around
the critical coupling.
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FIG. 7. Benchmark test: results in the top and bottom rows are derived without and with applying the boundary-shift method, respectively.
(a)—(d) Scaling of the interface width (a) wz(Ng ,J) (no boundary shift) and (d) 12)2(N<-‘,', J) (boundary shift) with respect to the vertical number
of spins NJ. Each point is obtained by averaging over 2.5x10° equilibrated configurations. Dashed lines are obtained by weighted linear
regression. Colors from light green to dark green correspond to increasing coupling strength J. (b)—(e) Intersection point of the interface width
at N) = 0 as a function of J. The standard deviation of each point is estimated with the jackknife method. In (e) the red and blue lines are
the theoretical predictions for the intersection point given in [42,69], respectively. (c)—(f) Slope of the interface width with respect to N) as
a function of J. The standard deviation of each point is estimated with the jackknife method. In (f) the red and blue lines are the theoretical
predictions for the slope given in [42,69], respectively.

APPENDIX B: MEAN FIELD APPROXIMATION

Here we derive a Cahn-Hilliard free energy based on the
mean field (MF) approximation. Our aim is to evaluate the
coarse-grained partition function per spin block Z;; given by
Eq. (17).

1. Approximation of the fraction of defects

On the MF level we introduce the following approxima-
tion of the fraction of defects between two spin blocks b;;
and b,

EME(@ijs Pun) = [01j(1 = @n) + @ (1 — @i)1/2. (B1)

Thus, on the MF level we approximate the number of defects
between blocks b;; and b,,, by the product of the spin-down

J

. —1 N,
fur(@it1j, @ij» @ij+1) = lim}” {—(Nf,’) In [((p
ij

= E(gij) + E( — ¢ip) + {zde (bur + {EF + 851 /2) + (o »)) = C,

where we used Stirling’s approximation In (n!) = E(n) — n +

Olln (n)] with E(n) = n In(n) to evaluate the logarithm of

concentration in box b;; and spin-up concentration in box by,
and vice versa. Making the substitutions

ffj’y - 2MF(<Pij, ®ij),

£ — & = vz 9i),

E?}i — B = bur(@ije1, 9i)),
we see that Hiner and Hingra inside the exponent of Eq. (17)
become independent of the variables (¢;;”, ixj’yi) and only
depend on ¢;;. Therefore, we can directly use Eq. (18) to
perform the four inner sums in Eq. (17). This results in the
MF partition function

b R SR
ZMF _ Z < N )e—N:[szX(;MFHSWF+5§4F}/2>+(x«>y>—61
1 - Nb :
¥ij PijNo
(B2)
To evaluate the sum over ¢;; in Eq. (B2) we employ the
Pij q ploy
maximum term method, and take the maximum term of the
continuous summand in the thermodynamic limit [defined in

Eq. (9)]. To that end we introduce the MF free-energy density

b a 2 A
0\ o Nolad e+ )2+ o) ~C]
Ny

(B3)

(

the binomial coefficient. Comparing Eq. (B3) with Eq. (26)
we notice that the BG free-energy density has considerably
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more terms than its MF counterpart due to the functional
form of the degeneracy factor. Note that so far we have only
taken the thermodynamic limit of the spins. This makes ¢;; €
[0, 1] a continuous variable, as well as EMF € [0, 1/4] and
£33 € [0, 1/2]. Upon considering the thermodynamic limit
of the spin blocks, we can employ two different strategies (as
proposed in Sec. V G):

(1) First optimize fyme(@it1j, @ij. @ij+1) over ¢;; and fi-
nally apply lim™¢[-].

(2) First apply lim}*[fur(¢is1;, ¢ij, ¢ij+1)] and then opti-
mize the resulting free-energy functional.

Below we carry out both, and show that they give equiv-
alent results for the resulting concentration profile. Only the
second strategy, however, leads to a Cahn-Hilliard—type free-
energy functional.

2. Evaluation of the partition function: Strategy 1

Using the maximum term method we need to find the loca-
tion ¢;; which renders fyp (@41, @;j, ¢ij+1) minimal, yielding
the equation

!
g,y | TME(@ix1)5 @ij» Pij1) + Z (EME(@iit1j, Qitkjs Piijr1) + IME( @ikt jk, Qijrie, Qijrkz1] | =0, (B4)

k==%1

where 8% = 0/0¢;;. Note that additionally to fyp(@i+1;, ¢ij, ¢ij+1), four extra terms enter Eq. (B4) which also contain an
explicit dependence on ¢;;. The solution to Eq. (B4) can be cast into the following set of difference equations:

2o (@iv1; — 2055 + @ic1j) + 2305 (@ijr1 — 205 + @ij—1) = 22y +250y) (1 = 2¢;5) —In(1/¢;; — 1), (BS)
for (i, j) e ({1,...,N;}, {1, ..., be}). Now we can carry out the scaling limit of the spin blocks, for which we introduce the
following notation:

m [¢ij = @il jl)] = @(x.y), V(X y) €A
mY [@ia1; = @Gl £ 1, jl)] =limop(x £1,,y), Y(x,y) €A
limljb [@ij+1 = @G, jl, £1)] = lim,}_%o px,y£l), Yy eA (B6)

where A = [-L,/2, L, /2]x[—-Ly/2, L,/2]. Applying limsNb[o] to both sides of Eq. (B5) we obtain the following partial differen-

tial equation:

Ll P2 0(x, y) + 2,505 0(x, y) = 2(zeds + 2 Jy)[1 — 20(x, )] — In[1/@(x,y) — 1], V (x,y) €A (B7)

where we used

limy,_olp(x + L, y) — 20(x, y) + ¢(x — L, y)] = 128%¢p(x, y)/0x%,

limy ole(x, y + 1) = 20(x, y) + 9(x,y — L) = ;9% (x, y)/9y°.
Upon specifying the boundary conditions the solution to Eq. (B7) gives the equilibrium concentration profile and maximizes the

MF partition function in the thermodynamic limit.

3. Evaluation of the partition function: Strategy 2

To apply the thermodynamic limit of the spin blocks to Eq. (B3) we first add and subtract z,.J,{yr inside the third term. Next,

we use Eq. (B6) and obtain the following intermediate results:

Jim [Gwr(p (e, ), @06 )= 200 (x, ), 0, ) +our(p (=L, ), 0, )] = L=, )17 p(x, ¥),

lim [Gvr(p(x, y4+1), 906 )=28mr(@(x, ), (8, ) +Eur(p(x y=1), 0 ) = LT =p(x, »10Te(x, ). (BY)

Inserting the outcome of Eq. (B8) into Eq. (B3) we obtain the following result in the thermodynamic limit:

Wl [fye (@ie1j @ij» @ij21)] = fue(o(x, 1) + 11— 0@, D1 [2delf070(x, y) + 241505 0 (x, )] /2, (B9)

where the MF local free-energy density is given by

fvr(p) = B(p) + B — @) + 2(zJy + zeJ)le(1 — @) — 1/4].

(B10)

Finally, we construct the MF free-energy functional which is given by (recall that N, = Nj xN;)

Ny N

Furle(x, )] = lim)’ | (V)™ Z ZfMF((piilja Gij» Pij1)

i=1 j=1

|
| —

=~

ly (x,y)€A

]
=
| -

~
~

Xty

/ [Eme (9, )2l e (x, 1)) /2 4 23,15 (350 (x, ¥)) /2] dx dy,
(x.y)eA

{fwr((x, ) + [1 — o(x, W[zl 207 0 (x, y) + 20,1507 0 (x, )] /2 }dx dy

(B11)
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where in the last line we carried out a partial integration (P.I.) and used zero-flux boundary conditions d,¢(x, £L,/2) =
0y¢(xL,/2,y) = 0 (which we will assume in later sections). The profile ¢ (x, y) which constitutes a stationary point of Eq. (B11),
i.e., Fvrle(x, ¥)]1/8¢(x,y) = 0, is obtained by solving the corresponding Euler-Lagrange equation

alJ079(x, ) + 2 707 0(x, ¥) = By fur(@(x, 1)),V (x,y) € A. (B12)
Plugging Eq. (B10) into Eq. (B12) finally results in Eq. (B7).

APPENDIX C: BETHE-GUGGENHEIM APPROXIMATION
1. Introduction

Our starting point within the BG approximation is the free-energy density given by Eq. (26). As with the MF calculation we
will consider two different strategies for evaluating the partition function. The second strategy has already been discussed in
Sec. V G, and here we provide some further details about the calculation.

2. Evaluation of the partition function: Strategy 1

The local minima of Eq. (26) with respect to ¢;; are given by the following equation:
!
g, | T(@ix1j» @ijs pij+1) + Z H(@ira1)s Civkj» Pivkjr1) + T @ikt jak> ijaks Cijrkx1)] | = 0. (C1)
k=1
Upon taking the partial derivative of the BG local free-energy density with respect to ¢;;, we can use the following:
a&_‘-«“f((/)iilj, ©ij, Qij£1) = 3§§»>'if(§0ii1j, @ij, @ij+1) =0, (€2)

since both 2;( ¥ and é‘,f 7% are obtained by minimization of the BG free-energy density. This renders the evaluation of Eq. (C1) a
relatively easy task and results in the following recurrent set of difference equations:

Zx 1—§0ij—§;(i(¢ii1j,</)ij) Qﬂij—é‘?i(%j,%iu)
— In — —1In e
8 7 @ij—Pit1j 8 (@ix1j, @ij) Pix1j—@ij T8 (@ijs Qiz1)

ot Ayt
+§Z n 1—ij =& (@ij+1, 9if) ' @ij—& (@ij> Qij+1)
8 L )

vt 2yt
Gij—@ij1+E (@ijx1, @i Gije1—@ij e (@ij Pija1)

>+(xey)+(1—z)1n<%), vi,pe({L....ML{L . N} (©3)
i

_ §0ij_24?((ﬂij, ®ij)
4 1=¢i;—¢X(@ij, @ij)
For a one-dimensional concentration profile (i.e., ¢;; — ¢;) a similar equation has been derived in [52] [see Eqgs. (31)—(33)

therein] where the solution is obtained (only) around the critical point. Here we proceed with applying the thermodynamic limit
of the spin blocks to Eq. (C3) using Eq. (B6). To obtain the thermodynamic limit we calculate the following terms:

Jim [(Z In[1—¢(x, )=EF (p0rtl, 1), @06 )1=2 In[l=g(x, )= & (9 (x, ), 9 (x, y))]) / zf}
x> :t

é;c(l,O) (é.;r(l,O))z 5;6(2,0)
= —F——— |20, y) — . - - (3:p(x, ), (C4)
<¢(x,y)+g;_1) vy ((go(x,y>+;;f—1)2 w(x,y>+;;‘—1> vy
Jim [(2 Infg(x, y) = &, 3), 0e DI = Y Inlep(x, y) = EF (0 (x, 3), 9 £ 1, y))]) / 13}
x> 4
é‘.f.c(o’l) ) (é_f_‘(o’l))z 53(0’2) s
== -~ ax (’ )+ ~ + ~ (ax(’ ))1 (CS)
((p(x,y)—é;‘ PRI e &7 T &) 0
lim [(Z In[o(x £ L, y) — 9(x, y) + & (9(x, ), o(x £ L, )] — 2 I[E (p(x, ), o(x, y))]) / lf}
. +
é;c(O,l) +1 (5:(0,1) + 1)2 é;(O,Z)
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Jim [(2 I (@ (x, y), ¢, )] = Zlnko(x V) = o+ L, y) + EF (@ £ 1, ), w(x,y))])/lf}

g_.x(l 0) (é_.x(l 0y Ex<2 0)
= ——=— )%t + - (dep(x, y)), (er)
( é“-;— ()2 &
where E;‘(W’ ) = 3’”8”5,r (@, b)|(p(x,y).0(x.y)) and we have used that S’r *(a,a) = 2,;‘ (a, a). Upon interchanging x with y the results of

Egs. (C4)—(C7) also apply to the y direction. Note that the second term on the left-hand side in Eq. (C4) and the first term on the
left-hand side in Eq. (C5) are added ad hoc, and therefore also need to be added to the right-hand side of Eq. (C3). The second
and first term on the left-hand side in Egs. (C6) and (C7) directly cancel, and therefore do not need to be added to the right-hand
side. Summing up all the contributions we obtain the following expression:

K9 )@ (3. 7))
2 9
where the gradient energy coefficient «, is given by Eq. (29) and «(¢) = 9,k (¢). For a one-dimensional concentration profile

(only) this result has also been derived in [51] [see Eq. (2.12b) therein] but so far it has not been derived for a two-dimensional
system. Plugging the result back into the left-hand side of Eq. (C3) we obtain the following partial differential equation (PDE):

%[(C4) +(C5) + (C6) + (CN)] = ke (x, )9 (x, y) + (C)

PlidZo( ) + 6 (0up /2] + (6 1) = S n V8 N -9 (M> (©9)
I =, y)—&F 1 —o(x,y)

which applies in the domain (x, y) € A with A = [—L,/2, L, /2]x[—L,/2, L,/2]. Recall that (x <> y) denotes a repetition of the

preceding term with x substituted by y, and ;" is given in Eq. (25). Equation (C9) is the BG equivalent of the MF PDE given
by Eq. (B7).

3. Evaluation of the partition function: Strategy 2

Applying the thermodynamic limit to Eq. (26) in the x direction we need to keep track of the following terms:

lim [(Zs;ci(go(xilx,y) P(x, =28 (p(x,y), ¢(x, y))) / } = (B, ))PED, (C10)
Jim [(Z (p(x £ 1, y)) — 2E(p(x, y>)) / } = (B0 (x. ) /p(x, y) + 320, y)In (p(x, ) + 11 = 0, (C11)

lim [( D Ell—g(x £ L, y)]- 28[1—<p<x,y)]) / lf:|=(8x<p(x,y))2/[1—g0(x,y))]—af(p(x,y){ln[l—(p(x,y)]+1}Pi]' 0, (C12)

Jim [(Z [EF (p(x £ 1, ), 9, )] — ZE[E-?(w(x,y),w(x,y))]> /lf]

L gx(l O)Sx(O 1) . A
= —(dep(x, y)2 — (B, )PE P In (&) + 11, (C13)

T

lim [(Z [p(x £ L, Y)=57 (0 (x £ L, y), 9(x, )] = 2El@(x, ¥) — & (9, y), w(x,y))])/lf}

L~

(EX(I 0 )SX(O 1)

2 (hpx, )2 ) + (B, YE I [p(x, y) — 571+ 1, (C14)
’ - T
Jim [(Za[l — 9, y) = EF (@ £ L, y), (6, )] = 2Bl — (x, y) — & (9(x, ), (3, y))]) / 13]
Xﬁ i
- é_x(l 0)[%_x(0 1)
= —(30(x, ))”— + (B, Y)?E I [1 — (x, y) — &1+ 1}, (C15)

P, y) = &f
thZ [pCe, ) —p(x £ L, ) +EF (w(xizx,ym(x,y))]—2E[Eﬁ(¢<x,y>,w(x,y))]) / 13}

EY - DEY + 1)
&

= (Bp(x, ) — (B, )26 P In (8 + 11, (C16)
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where we have immediately carried out a partial integration,
since each term will arise inside an integral, and used zero-flux
boundary conditions d,¢(£L,/2,y) = 0 to express everything
in terms of (9,¢(x, y))2. Next, we add up the second terms
on the right-hand side in Egs. (C13)—(C16) and find that they
exactly cancel with Eq. (C10) upon plugging them back into
Eq. (26). Adding up the first terms in Egs. (C13)—(C17) and
multiplying by z,/8 gives the following result:

1
(e @, ). (C17)

Upon interchanging x with y the same results apply to the y
direction. Putting the results back into Eq. (26) and adding
or subtracting those terms which have been added by hand

J

12 [Kxa&p(x, y) + >

which is equivalent to Eq. (C9).

APPENDIX D: EQUILIBRIUM
CONCENTRATION PROFILE

Here we consider a concentration profile which only varies
in the x direction, i.e., ¢(x) = ¢(x), Vx € [—L,/2, L,/2]. The
equilibrium profile ¢(x) is an extremum of Eqs. (B11) and
(27) for the MF and BG approximation, respectively. Here we
will derive analytical expressions for the interface steepness,
interface width (according to the Cahn-Hilliard definition),
and prove the broadening of the BG equilibrium profile.

1. Results within mean field theory

For a one-dimensional concentration profile Eq. (B12)
reduces to a second-order autonomous ordinary differential
equation (ODE). Therefore, we can directly obtain the inter-
face steepness ¢y (x), which reads as

o) = /20 mr (OmE ()] — frE(OME min) /22

where we have set the integration constant to C; =
—fMF(@MF,min) With @mE min = arginfoge<i2 fmr(@) such
that the term inside the square root on the right-hand side
is always positive and lim,_, +o ¢yr(x) = 0. The location of
the global minimum of the uniform MF free-energy density
can be written as Qmr.min = (1 — |s])/2, where s € [—1, 1] is
given by the nonzero solutions to the so-called transcendental
mean field equation [77]

(DD

s = tanh ([z.J + 2,Jy]5). (D2)

Below the critical coupling for z,J; + z,J, < 1 the only solu-
tion to Eq. (D2) is given by s = 0, resulting in @mp min = 1/2.
Above the critical coupling for z,J, 4+ z,J, > 1 there exist
two nonzero solutions resulting in @mp min < 1/2. Now let us
focus on the isotropic case with a vanishing external field, i.e.,
Jy =Jy, =J, and consider the interface steepness at x = 0.
Based on the imposed boundary conditions we know that
omr(0) = 1/2, and therefore the interface steepness at x = 0

KL (Bxp(x, )

in Egs. (C10)—(C16) we finally obtain the BG free-energy
density in the scaling limit of the blocks

MY [f(@iti j, @iy @ij1)]
12
= f(p(x, 1)) + Fhelg e, Do (x, ")’

12

+ gfcy(w, W@yp(x, )2, (C18)

where k. ,(¢) is defined in Eq. (29), and the BG local free-
energy density f(p) is given by Eq. (28). Finally, the BG
free-energy density functional is given by Eq. (27). The profile
¢(x,y) which constitutes a stationary point of Eq. (27), i.e.,
8F[p(x,y)]/8¢(x,y) =0, is obtained by solving the corre-
sponding Euler-Lagrange equation

} Loy = Bf(w(x,y))7 €19)
dp(x,y)
[
reads as
orp(0) = £/2[fur(1/2) — fvp(@mEmin)l/ze.  (D3)

For a square lattice with {zy, z,} = {2, 2} Eq. (D3) is shown in
Fig. 4(b) with the red solid line. To obtain the interface width
as defined by Cahn and Hilliard [see Eq. (2.25) in [1]] we sim-
ply need take a line tangential to the slope of the concentration
profile at x = 0 and determine the crossing points of this line
with the bulk concentration values as depicted in Fig. 8(a).
This leads to the expression

Ive,ct = (1 — 20MF min)/@pp(0), (D4)

where we insert Eq. (D3) for ¢,:(0) with the positive sign.
We see that for zJ < 1 we have lvpcg — oco. Now let us
consider an infinite coupling strength. In this limit the nonzero
solutions to Eq. (D2) are trivially given by s = +1, V z > 0,
and therefore we obtain

Jim gp(0) = Jim /2[fyr(1/2) — fur(0))/2

= lim +/2[27/2 —In Q)] /2] = +/2/2.
(D5)

Hence, in the infinite coupling limit the interface steepness
converges to a maximum finite nonzero value. This value
for the MF interface steepness is also reported in Fig. 4(b).
Furthermore, the interface width decreases and converges to
the value

Jim Ivp.cn = lim (1 — 2Qmp.min)/ omr(0) = Vzo/z. (D6)

2. Results within Bethe-Guggenheim theory

Similar to the MF analysis Eq. (C19) reduces to a second-
order autonomous ODE for a one-dimensional concentration
profile. To obtain the interface steepness we first rewrite the
left-hand side of Eq. (C19) as

" o 2 _ 1 i ’ 2
Kx” (x) + K, (@' (x))7/2 = 20() dx [kx (@ (x))7]. (D7)
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0 %o 1 0 %o 1

FIG. 8. (a) Representation of the Cahn-Hilliard interface width Icy given by Eq. (D4). Here we used the concentration profile for a
hexagonal (z = 6) lattice obtained with the BG approximation. (b) Critical wave vector obtained with the MF approximation (E5) for a
square lattice. The black line represents the MF spinodal and the black dot the MF critical point J. mp = 1/4. (c) Critical wave vector
obtained with the BG approximation (36) for a square lattice. The black line represents the BG spinodal and the black dot the BG critical point
Jerits = In (2)/2.

Taking the term 1/¢’(x) to the right-hand side of Eq. (C19)
and using the fact that ¢’ (x)[9f (¢ (x))/d¢(x)] = df(p(x))/dx,
we can integrate both sides over x, resulting in the first-order
autonomous ODE

3kx(¢' (1)) = f(p(x)) + C1, (D8)
where C; is an integration constant. From Eq. (D8) we can
directly read out the interface steepness

¢'(x) = £/2[f(9(x)) — f(min)]/1x (9 (x)), (D9)

where we have set the integration constant C; = —f(@p;,) with
@min = infogy<1/2 f(@). The integration constant is chosen
such that the term inside the square root on the right-hand

J

side is always positive and to impose a vanishing derivative at
the boundaries. Now let us focus specifically on the isotropic
case with a vanishing external field, ie., J, =J, =J. The
location of the global minimum ¢y, of the local BG free-
energy density can be written as @min = X, /(1 + X,), where
Xo € [0, 00) is given by the nontrivial solutions (i.e., x, 7# 1)
to the transcendental equation (see also [77])

Xp — CZJ[X(;Z_I)/Z _ X;/Z] —1=0.

Below and at the critical coupling J < Jgg,crit» Eq. (D10) has
one trivial solution x, = 1, resulting in @mi, = 1/2. Above
the critical coupling there exist two nontrivial solutions,
resulting in ¢, < 1/2. Equation (D10) cannot be solved ana-
lytically for general z but is explicitly solvable for a triangular,
square, and hexagonal lattice, which gives

(D10)

L 0<J<In3)/2

Pminz=3 = 11— et J>1n(3)/2
L 0<J<In(2)/2

@minlz=4 = e ezf(eif:;ﬁ]’ J>1n()/2 (DI11)
1 0<J<In(@3/2)/2

Pminle=6 = 1 (4 (Y ra)b AP @V d eV —g) )0 J>1n(3/2)/2.

1 1 1
4096+ +(c¥ +4)2 +v/2[c¥ (¥ +4)2 e/ —6]2 )6

Plugging (D11) into Eq. (D9) and noting that ¢(0) = 1/2 we obtain closed-form expressions for the interface steepness at x = 0.
Similarly, using the definition given by Eq. (D4), we obtain the Cahn-Hilliard interface width for the BG approximation. Results
for the interface steepness are shown in Fig. 4(b) with the blue lines and display a strong nonmonotonic trend with respect to J.
The broadening of the profile is in sharp contrast to the conclusion drawn by Cahn and Hilliard who write in [1]: “The interface
between two coexisting phases is diffuse and its thickness increases with increasing temperature until at the critical temperature
(Tc) the interface is infinite in extent” (p. 266). Recall that J is expressed in units of kg 7', and therefore an increase in temperature
corresponds to a decrease in J. To prove that broadening is a general effect regardless of the lattice we take the strong coupling
limit of Eq. (D9). For z > 2 and J — oo the nontrivial solutions to Eq. (D10) are approaching x, — 0 and x, — oo, resulting
in @pmin — 0 (as with MF). Plugging this into Eq. (D9) together with ¢(0) = 1/2 we obtain

lim ¢/(0) = im +v/2[2z] —z In(e¥ + 1) + (z — 2)In (2)]/z, sinh (2J) = 0. (D12)
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So we find a vanishing interface steepness at x = 0 for any
lattice with z > 2 in the strong coupling limit. For the interface
width we find

Jim lgo.cn = lim (1 — 2¢min)/¢'(0) = oo. (D13)

Hence, in the strong-interaction limit the interface width di-
verges for any lattice with z > 2.

APPENDIX E: LINEAR STABILITY ANALYSIS

Here we determine the length scales on which inhomo-
geneities of the concentration profile are stable, as shown
in Sec. VIC. We consider a concentration profile of the
form ¢(x) = ¢y + a sin(q - x) with q = (¢, ¢y)" and |a| K
min(gy, 1 — ¢p). A sinusoidal perturbation is taken to agree
with the odd boundary conditions which we imposed for
Eq. (B12) and (C19). Expanding the local free-energy density
and gradient energy coefficient around the homogeneous state
up to second order gives

f(p(x)) = f(po) + a sin (q - x)f'(¢o)
+ 1a*sin® (q - x)f"(go) + O(a?), (El)

IVox) k(p(x))Ve(x)
= 1a’[q"k(po)q] cos® (q - x) + O(a’),  (E2)

where f'(po) = 9,f(¢)|y, and (@) = Béf(cp)lq,o. We want to
determine when a sinusoidal perturbation decreases the total
free energy compared to the uniform concentration profile.
Plugging Egs. (E1) and (E2) into Eq. (27) and subtracting the
free-energy density of the uniform concentration gives

Flo(x)] — Flgo]

L Ly
1 2 2 ) )
T 2L, /L;' /L;{za sin (q - ) (¢o)

+a[sin? (q - X)f" (9o)+ cos? (q - X)q k(¢o)ql}dx dy
2

{L.Ly[f"(90) + q" k(¢0)q]

T ALL,

— (gxqy)” " sin (g. L) sin (¢, L))" (90)—q" k(90)q]}
— az [f// + T ) ]+0 az E3
=7 (¢0) +q Kk(po)q <LxLy , (E3)

where in the last line we have taken the large system-size limit
(Ly, Ly) — oo. To decrease the total free energy the right-
hand side of Eq. (E3) must be negative. Note that q"x(¢)q >
0, and therefore only f”(¢g) can make the right-hand side
negative. The region where f”(¢) < 0 in the (¢, J) plane is
called the spinodal region, and therefore this process is also
known as spinodal decomposition. When {”(¢y) < O there is
an upper bound on stable wave vectors which is given by

QL 1 (00)qeric = —f(90). (E4)

For a one-dimensional perturbation with g, = 0 this translates
to Gerit = /—1"(90)/kx(@o). The critical wavelength given by
Acrit = 27 /qerie provides a lower bound on stable wavelengths.
We will now determine the properties of g and A for the
MF and BG approximations.

1. Results within mean field theory

Taking the MF local free-energy density and square gradi-
ent coefficient defined in Egs. (B9) and (B10) and plugging
them into gi¢ gives the following result:

Gcrit, MF = \/_fli;IF((pO) _ \/4(ij)€ +2,Jy) — 1/[po(1 — o)l

KMF, x Zxe
(E5)
For isotropic interaction strength J, = J, = J and inside the
spinodal region zJ > 1/[4¢o(1 — ¢p)] the MF critical wave
vector is monotonically increasing with J and for 0 < ¢y < 1
converges to

Jlggc Gerit MF = 2+/2/2x. (E6)

In Fig. 8(b) we plot Eq. (E5) for a square lattice with
isotropic interaction strength. The critical wavelength Acyit Mp
decreases monotonically with J and converges within the
aforementioned range to the value lim;_, oo Acrie ME=TT /22 /2.
In Fig. 4(f) we show the MF critical wavelength for a square
lattice with the red line.

2. Results within Bethe-Guggenheim theory

The BG local free-energy density and square gradient
coefficient are given by Eqs. (28) and (29). For convenience
we immediately take the isotropic interaction strength
Jy =J, = J. Plugging the results for the second derivative
of the local free-energy density [see Eq. (B17) with 7 = 0 in
[77]] into g.ri¢ gives Eq. (36). Inside the spinodal region J >
In {[z—1—¢o(z — 2)I[1 + ¢o(z — 2)I/[(z — 2)*po(1 — po)1} /4
[see Eq. (16) with & = 0 in [77]] the BG critical wave vector
has a nonmonotonic trend and for 0 < ¢y < 1 converges to
the value

lim Gerit = 0. (E7)
J—o0

In Fig. 8(c) we plot Eq. (36) for a square lattice with isotropic
interaction strength. Similarly, the critical wavelength di-
verges, i.e., lim;_, o Aqit = 00. Hence, for 0 < ¢y < 1 there
exist no finite stable wavelength perturbations in the strong-
interaction limit. The coupling strength J T(gpo) where ¢ 1S
maximal, and therefore A minimal, is given by Eq. (37). Re-
markably, the maximum of g, and therefore the minimum of
Acrit> 18 independent of the uniform concentration value ¢y and
reads as, upon plugging Eq. (37) into Eq. (36),

max _ 212 = 2| 21+ Vz —14+2z/4) = 1] —z/2
qult \/a Z(2+ ,—Z_l)_2 .

(E8)

The minimum wavelength is easily obtained by /\‘g;g =2/
g, In Fig. 4(f) we depict the BG critical wavelength for a
square lattice with the blue line. The coupling value where

Acrit attains a minimum is indicated with the blue arrow.
APPENDIX F: ERROR ANALYSIS OF THE APPROXIMATE
PARTITION FUNCTIONS IN FINITE SYSTEMS

To probe the accuracy of the MF and BG approximations
we compare their partition functions with exact results for the
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FIG. 9. Relative error between the exact and approximated partition functions obtained with the (a) MF and (b) BG approximations for
increasing number of spins and various values of the coupling strength J = {0, 1, 2, 3}. The relative error in Eq. (F2) is determined for a
square lattice composed of (N = 3)x (N} = {3, ..., 15}) spins with periodic boundary conditions in the vertical and antisymmetric boundary
conditions in the horizontal direction, respectively. The total fraction of down spins is fixed to ¢ = 1/2.

partition function of finite systems. We limit our error analysis
to a one-dimensional concentration profile, conforming with
the majority of results discussed in this paper. For a uniform
concentration profile an error analysis between the MF and
BG approximations is provided in [77] (see Fig. 11 therein).
For a lattice composed ongxNg spins, let @ = (¢y, .. ., ®n:)
be a vector containing the concentration of downs spins in
each column of the lattice. The total concentration of down
spins in the lattice is given by ¢ = ||¢@||i/N;. The exact
partition function for a fixed concentration profile along the
columns is denoted with Z(¢) and can be computed via

N;
Z@) =Y e [ 14lei,
[ i=1

where we recall that o denotes the matrix containing all spin
configurations, 1,[z] is the indicator function of x, and H (o)
is given by Eq. (13). The relative error between Zgg mr(¢) and
Z (@) for a fixed total concentration of down spins ¢ is defined
as

(FD)

Y, 2(e)(1 - el 1[p)
>0 Z(@)1ylp]

Equation (F2) is defined such that differences between Z(¢)
and Zyr pr(@) attain the largest weight for thermodynami-
cally stable configurations. In Fig. 9 we plot the relative error
for the (a) MF and (b) BG approximations for a finite square
lattice composed of (N} = 3)x(Ny = {3, ..., 15}) spins with
antisymmetric and periodic boundary conditions in the hor-
izontal and vertical direction, respectively. Upon increasing
the number of spins in the vertical direction we see that the
relative error of the BG approximation decreases towards
zero regardless of the coupling strength, whereas the MF
approximation saturates to a nonzero value (note that the small
system size gives rise to a marked even-odd dependency). For
J = 0 both approximations are exact and therefore have zero
relative error. The improvement of the BG approximation with

en(®) = (F2)

increasing N} is due to the fact that it is obtained through a
variational principle which is applied in the thermodynamic
scaling limit. The MF approximation, on the other hand, be-
comes worse with increasing N due to the approximation for
the fraction of defects given by Eq. (B1).

APPENDIX G: NUMERICAL SIMULATIONS OF THE
RADIALLY SYMMETRIC CAHN-HILLIARD EQUATION

We study nucleation based on radially symmetric concen-
tration profiles ¢(r) in two dimensions. Since critical profiles
correspond to stationary points of the free energy F given by
Egs. (B11) and (27), we next determine minimal free-energy
paths between the homogeneous state and large droplets. We
use a measure for the mass concentrated in the nucleus,
N[¢] = [tanh[w(p — 1/2)]dV with w = 10, as a reaction
coordinate and determine the profile ¢ () that minimizes F for
a given value N of the constraint using a Lagrange multiplier
A. We thus minimize the constrained free energy

File, Al = Fle] — A(N[e] — No)
by evolving the corresponding partial differential equations
SF;,

(GD

o = ApV>—=, (G2a)
S¢

oh = —n, OB (G2b)

t - L 5)\1 b

which corresponds to conserved and nonconserved dynamics
with mobilities Ap = 10%> and A; = 10*, respectively. Using
this procedure, we determine the profile ¢(r) with Neumann
boundary conditions that optimizes F; for each value Ny of
the constraint, which yields the minimal free-energy path. The
profile with the largest free energy F corresponds to the saddle
point and thus to the critical nucleus that we sought. The
corresponding profiles ¢(r) are shown and analyzed in Fig. 5.
Here, the nucleation barrier AE is given by the difference
of the energy of the critical nucleus to the energy of the
homogeneous state.
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