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Thermodynamic uncertainty relations (TURs) bound the dissipation in nonequilibrium systems from
below by fluctuations of an observed current. Contrasting the elaborate techniques employed in existing
proofs, we here prove TURs directly from the Langevin equation. This establishes the TUR as an inherent
property of overdamped stochastic equations of motion. In addition, we extend the transient TUR to
currents and densities with explicit time dependence. By including current-density correlations we,
moreover, derive a new sharpened TUR for transient dynamics. Our arguably simplest and most direct
proof, together with the new generalizations, allows us to systematically determine conditions under which
the different TURs saturate and thus allows for a more accurate thermodynamic inference. Finally, we
outline the direct proof also for Markov jump dynamics.
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A defining characteristic of nonequilibrium systems is a
nonvanishing entropy production [1–8] emerging during
relaxation [7–12], in the presence of time-dependent (e.g.,
periodic [13–18]) driving, or in nonequilibrium steady
states (NESS) [19–26]. A detailed understanding of the
thermodynamics of systems far from equilibrium is in
particular required for unraveling the physical principles
that sustain active, living matter [27–31]. Notwithstanding
its importance, the entropy production within a nonequili-
brium system beyond the linear response is virtually
impossible to quantify from experimental observations,
as it requires detailed knowledge about all dissipative
degrees of freedom.
A recent and arguably the most relevant method to infer a

lower bound on the entropy production in an experimen-
tally observed complex system is via the so-called thermo-
dynamic uncertainty relation (TUR) [25,26,32–39], which
relates the (time-accumulated) dissipation Σt to fluctuations
of a general time-integrated current Jt. For overdamped
systems in a NESS it reads [23,24]

Σt

kBT
≥ 2

hJti2
varðJtÞ

; ð1Þ

with variance varðJtÞ≡ hJ2t i − hJti2 and thermal energy
kBT, which will henceforth be dropped for convenience and
replaced by the convention of energies measured in units of

kBT. The TURmay be seen as the natural counterpart of the
fluctuation-dissipation theorem [40] or a more precise
formulation of the second law [41]. Notably, it may also
be interpreted as gauging the “thermodynamic cost of
precision” [42], and it was found to limit the temporal
extent of anomalous diffusion [43].
Since its original discovery [23] and proof [24] for

systems in a NESS, a large number of more or less general
variants of the TUR were derived. In particular, for
paradigmatic overdamped dynamics and Markov jump
processes, such generalized TURs have been found for
transient systems (i.e., nonstationary dynamics emerging,
e.g., from nonsteady-state initial conditions) in the absence
[44–46] and presence of time-dependent driving [17,18].
Moreover, an extension to state variables (which we will
refer to as “densities”) instead of currents has been
formulated [18], and recently correlations of densities
and currents have been incorporated to significantly
sharpen and even saturate the inequality for steady-state
systems [41]. Note, however, that the validity of the TUR is
generally limited to overdamped dynamics, as it was shown
to break down in systems with momenta [47].
Many different techniques have been employed to derive

TURs, including large deviation theory [24,33,40,48,49],
bounds to the scaled cumulant generating function
[18,45,50], as well as martingale [2] and Hilbert-space
[51] techniques. Most notably, the TUR has been derived as
a consequence of the generalized Cramér-Rao inequality
[46,52] which is well known in information theory and
statistics. However, while providing valuable insight, the
proof via the Cramér-Rao inequality includes quantifying
the Fisher information of the Onsager-Machlup path
measure [52] and involves a dummy parameter that “tilts”
the original dynamics. Thus, it may not be faithfully
considered as being direct. In fact, the TUR and its
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generalizations seem to be an inherent property of over-
damped stochastic dynamics and are thus akin to quantum-
mechanical uncertainty, expected to follow directly from
the equations of motion.
Here, we show that no elaborated concepts beyond the

equations of motion are indeed required. Using only
stochastic calculus and the well known Cauchy-Schwarz
inequality we prove various existing TURs (including the
correlation TUR [41]) for time-homogeneous overdamped
dynamics in continuous space directly from the Langevin
equation. Thereby we both unify and simplify proofs of
TURs. Moreover, we derive, for the first time, the sharper
correlation TUR for transient dynamics without explicit
time dependence. This improved TUR can be saturated
arbitrarily far from equilibrium for any initial condition and
duration of trajectories, which we illustrate with the
example of a displaced harmonic trap. Our simple proof
offers several advantages and we therefore believe that it
deserves attention even in cases that have already been
proven before. Most notably it enables immediate insight
into how one can saturate the various TURs and allows for
easy generalizations. Beyond the results for overdamped
dynamics, we illustrate the analogous direct proof of the
steady-state TUR also for Markov jump dynamics.
Setup.—We consider d-dimensional [53] time-

homogeneous (i.e., coefficients do not explicitly depend
on time) overdamped dynamics described by the stochastic
differential (Langevin) equation [54,55]

dxτ ¼ FðxτÞdτ þ σðxτÞ ⊛ dWτ; ð2Þ

where the anti-Itô product ⊛ assures thermodynamical
consistency in the case of multiplicative noise [i.e., space
dependent σðxτÞ] [2,26,56–58]. The choice of the product
is irrelevant in the case of additive noise σðxτÞ ¼ σ. The
increment dWτ of the Wiener process has zero mean
hdWτi ¼ 0 and is due to its covariance hdWτ;idWτ0;ji ¼
δðτ − τ0Þδijdτdτ0 known as delta correlated or white noise.
The noise amplitude is related to the diffusion coefficient
via DðxÞ≡ σðxÞσðxÞT=2 where σ and D are d × d matri-
ces. Let Pðx; τÞ be the probability density to find xτ at a
point x given some initial condition Pðx; 0Þ. Then the
instantaneous probability density current jðx; τÞ is given by

jðx; τÞ ¼ ½FðxÞ − DðxÞ∇�Pðx; τÞ; ð3Þ

and the Fokker-Planck equation [55,59] for the time
evolution of Pðx; τÞ follows from Eq. (2) and reads [54]

∂τPðx; τÞ ¼ −∇ · jðx; τÞ: ð4Þ

In the special case that FðxÞ is sufficiently confining a
NESS is eventually reached with invariant density PsðxÞ≡
Pðx; τ → ∞Þ and steady-state current jsðxÞ≡ ½FðxÞ −
DðxÞ∇�PsðxÞ with ∇ · jsðxÞ ¼ 0 [55]. The mean total

(medium plus system) entropy production in the time
interval ½0; t� is given by [3,4]

Σt ¼
Z

dx
Z

t

0

jTðx; τÞD−1ðxÞjðx; τÞ
Pðx; τÞ dτ: ð5Þ

Let Jt be a generalized time-integrated current with some
vector-valued Uðx; τÞ defined via the Stratonovich stochas-
tic integral (only for x-dependentU the convention matters)

Jt ≡
Z

τ¼t

τ¼0

Uðxτ; τÞ · ∘dxτ: ð6Þ

Note that for any integrand U this current and its first
two moments are readily obtained from measured trajec-
tories ðxτÞ0≤τ≤t. Therefore, a TUR involving such Jt is
“operationally accessible.” For dynamics in Eq. (2) the
current may be equivalently written as the sum of Itô
integrals and dτ integrals, Jt ¼ JIt þ JIIt , with [26]

JIt ≡
Z

τ¼t

τ¼0

Uðxτ; τÞ · σðxτÞdWτ;

JIIt ≡
Z

t

0

½Uðxτ; τÞ · FðxτÞ þ∇ · ½DðxτÞUðxτ; τÞ��dτ

≡
Z

t

0

Uðxτ; τÞdτ: ð7Þ

By the zero-mean and independence properties of
the Wiener process hJIti ¼ 0 and thus hJti ¼ hJIIt i ¼R
t
0 dτ

R
dxUðx; τÞPðx; τÞ. Integrating by parts and using

Eq. (3) we obtain (see also [26])

hJti ¼
Z

t

0

dτ
Z

dxUðx; τÞ · jðx; τÞ: ð8Þ

The variance varðJtÞ can in turn be computed from
two-point densities [25,26,60,61], but is not required to
prove TURs.
We now outline our direct proof of TURs. First, we

rederive the classical TUR (1) and its generalization to
transients [45], whereby we find a novel correction term
that extends the validity of the transient TUR. Next, we
prove the TUR for densities [18] and thereafter the
correlation-improved TUR [41], for the first time also
for nonstationary dynamics. Finally, we explain how to
saturate the various TURs and illustrate our findings with
an example. The proof relies solely on the equation of
motion Eq. (2) and implied Fokker-Planck equation (4),
which is why we call the proof “direct.”
Direct proof of TURs.—The essence of the direct proof is

fully contained in the following equations (9)–(11). First,
we require a scalar quantity At with zero mean and whose
second moment yields the dissipation defined in Eq. (5),
i.e., hA2

t i ¼ Σt=2 [62]. Considering the “delta-correlated”
property of dWτ and D ¼ DT ¼ σðxÞσðxÞT=2 leads to the
“educated guess” (see [63])
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At ≡
Z

τ¼t

τ¼0

jðxτ; τÞ
Pðxτ; τÞ

· ½2DðxτÞ�−1σðxτÞdWτ; ð9Þ

where At cannot be inferred from trajectories since only dxτ

but notdWτ is observed.At can be understood as the “purely
random” part σðxτÞdWτ of the increment dxτ weighted by
the local velocity and inverse diffusion coefficient. Because
hAtJIti¼hJti and hAthJtii¼hAtihJti¼0 we have

hAtðJt − hJtiÞi ¼ hJti þ hAtJIIt i; ð10Þ

and the Cauchy-Schwarz inequality hAtðJt − hJtiÞi2 ≤
hA2

t ivarðJtÞ further yields

Σt

2
varðJtÞ ≥ ½hJti þ hAtJIIt i�2: ð11Þ

Compared to Eq. (10) the inequality (11) has the advantage
that varðJtÞ is operationally accessible and Σt (unlike At)
has a clear physical interpretation.
To obtain the TUR we are left with evaluating hAtJIIt i,

which involves the two-time correlation of dWτ and dτ0
integrals in Eqs. (9) and Eq. (7), respectively. For times
τ ≥ τ0 this correlation vanishes due to the independence
property of the Wiener process. However, nontrivial corre-
lations occur for τ < τ0 because the probability density of
xτ0 depends on dWτ. We quantify these correlations
including dWτ by writing hAtJIIt i as an average over the
joint density to be at points x;xþ dx;x0 at times
τ < τ þ dτ < τ0, respectively, and expanding

Pðx0; τ0jxþ dx; τ þ dτÞ
¼ Pðx0; τ0jx; τÞ þ dx ·∇xPðx0; τ0jx; τÞ þOðdτÞ: ð12Þ

Following this approach [26,61] (or alternatively via Doob
conditioning [2,66,67] as in Ref. [39]) one can formulate a

general calculation rule that in this case reads (for details,
see [63])

hAtJIIt i ¼ −
Z

t

0

dτ0
Z

dx0Uðx0; τ0Þ
Z

τ0

0

dτ
Z

dx

× Pðx0; τ0jx; τÞ∇x · jðx; τÞ: ð13Þ

For steady-state systems we have ∇ ·jðx;τÞ¼∇ ·jsðxÞ¼0

and thus hAtJIIt i ¼ 0, such that Eq. (11) immediately
implies the original TUR in Eq. (1).
To generalize to transients we use Eq. (4) ∇x · jðx; τÞ ¼

−∂τPðx; τÞ, integrate by parts twice (see [63] for details),
and define a second operationally accessible current

J̃t ≡
Z

τ¼t

τ¼0

τ∂τUðxτ; τÞ · ∘dxτ; ð14Þ

to obtain

hAtJIIt i ¼ ðt∂t − 1ÞhJti − hJ̃ti: ð15Þ

Thus, we have expressed the correlation hAtJIIt i in terms of
operationally accessible quantities. From this and Eq. (11),
the TUR for general initial conditions and general time-
homogeneous Langevin dynamics Eq. (2) reads

ΣtvarðJtÞ ≥ 2½t∂thJti − hJ̃ti�2: ð16Þ

The fact that the TUR for transient dynamics (16) follows
from the original TUR (1) upon replacing hJti → t∂thJti is
well known [44,46] and was first derived in continuous
space in Ref. [45]. However, the novel correction term hJ̃ti
extends the validity of the TUR to currents with an explicit
time dependenceUðx; τÞ. We show below and in Fig. 1 that
this additional freedom in choosing U is crucial for
saturating the transient TUR under general conditions.
To highlight that end-point derivative t∂t and the correction

FIG. 1. (a) Brownian particle in a one-dimensional harmonic trap with stiffness a, φðx; τÞ ¼ aðx − x0τ Þ2=2D displaced from x0τ<0 ¼ z to
x0τ≥0 ¼ 0. Upon being initially equilibrated in φðx; τ < 0Þ ¼ aðx − zÞ2=2D (i.e., from the initial condition p0ðxÞ ∝ exp½−aðx − zÞ2=2D�)
the particle evolves for τ ≥ 0 due to D∂xφðx; τ ≥ 0Þ ¼ ax according to dxτ ¼ −axτdτ þ

ffiffiffiffiffiffiffi
2D

p
dWτ toward an equilibrium

pτ→∞ðxÞ ∝ expð−ax2=2DÞ. (b) Illustration of the evolution of Pðx; τÞ for z ¼ 5
ffiffiffiffiffiffiffiffiffi
D=a

p
. (c) Quality factors defined as the ratio of right-

and left-hand side of the TURs as a function of the dimensionless quantity at. All quality factors turn out to be independent of z,D and only
depend on a, t through at; explicit analytic expressions are given in [63]. Except for Jt ¼

R
1∘dxτ ¼ xt − x0 (blue line) we always choose

the current defined with UðτÞ ¼ νðτÞ and density defined with Vðx; τÞ ¼ −xνðτÞ.
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term hJ̃ti are strictly necessary we provide explicit counter-
examples (see [63]).
We note that Eq. (16) in one-dimensional space and for

additive noise can be deduced from restricting the result in
[18], where an explicit time dependence was introduced
via a speed parameter v, to a time-homogeneous drift,
translated to time-integrated currents, and noting that
v∂vUðx; vτÞ ¼ τ∂τUðx; vτÞ. The form without the speed
parameter has the advantage that the correction term hJ̃ti is
accessible from a single experiment while the ∂v correction
requires perturbing the speed of the experiment. However,
the result in [18] even holds for an explicitly time-
dependent drift.
Notably, generalizing this proof to explicitly time-

dependent drift or diffusion, although probably possible,
is not straightforward because it requires perturbing the
dynamics (see [18]), and therefore all relevant information
is no longer contained in a single equation of motion.
TUR for densities.—We define general, operationally

accessible densities (the term “density” is motivated by the
analogy to “current” as, e.g., in [25,26,60,68])

ρt ¼
Z

t

0

Vðxτ; τÞdτ;

ρ̃t ≡
Z

t

0

τ∂τVðxτ; τÞdτ: ð17Þ

Since in the proof above we did not use the explicit form of
U, the density can be treated analogously to Jt in Eq. (7) by
replacing U → V and omitting the JIt term. Analogously to
Eqs. (10) and (15) we thus obtain

hAtðρt − hρtiÞi ¼ hAtρti ¼ ðt∂t − 1Þhρti − hρ̃ti; ð18Þ

and analogously to Eq. (11) the transient density-TUR

ΣtvarðρtÞ ≥ 2½ðt∂t − 1Þhρti − hρ̃ti�2: ð19Þ

Note that due to the absence of the JIt term, the right-hand
side vanishes in steady-state systems. As in the discussion
of Eq. (16) above, Eq. (19) is in some sense contained in the
results of [18]. However, Eq. (19) allows for multidimen-
sional space and multiplicative noise, and does not require a
variation in protocol speed.
Improving TURs using correlations.—It has been

recently found [41] that the steady-state TUR can be
eminently improved, and even saturated arbitrarily far from
equilibrium, by considering correlations between currents
and densities as defined in Eq. (17). To rederive this sharper
version we rewrite Eq. (11) for the observable Jt − cρt (the
constant c is in fact technically redundant since it can be
absorbed in the definition of ρt)

Σt

2
varðJt − cρtÞ ≥ ½hJti þ hAtðJIIt − cρtÞi�2: ð20Þ

Note that varðJt−cρtÞ¼varðJtÞþc2varðρtÞ−2ccovðJt;ρtÞ,
where cov denotes the covariance. Using the optimal choice
c ¼ covðJt; ρtÞ=varðρtÞ and recalling that for steady-state
systems hAtðJIIt − cρtÞi ¼ 0, Eq. (20) becomes the NESS
correlation TUR in [41]

ΣtvarðJtÞ½1 − χ2Jρ� ≥ 2hJti2;

χ2Jρ ≡ cov2ðJt; ρtÞ
varðJtÞvarðρtÞ

: ð21Þ

Since χ2Jρ ∈ ½0; 1�, Eq. (21) is sharper than Eq. (1) and, as
proven in [41] and discussed below, for any steady-state
system there exist Jt, ρt that saturate this inequality.
Our approach allows to generalize this result to transient

dynamics by computing hAtðJIIt − cρtÞi as in Eq. (15) to
obtain from Eq. (20) the generalized correlation TUR

ΣtvarðJt − cρtÞ
≥ 2ðt∂thJti − hJ̃ti − c½ðt∂t − 1Þhρti − hρ̃ti�Þ2: ð22Þ

One could again optimize the left-hand side over c to obtain
varðJt − cρtÞ ¼ varðJtÞ½1 − χ2Jρ�. However, since here the
right-hand side also involves c this may not be the optimal
choice. Thus, it is instead practical to keep c general (or
absorb it into ρt). The generalized correlation TUR (22)
represents a novel result that sharpens the transient TUR in
Eq. (16), and, as we show below and illustrate in Fig. 1,
even allows us to generally saturate the TUR arbitrarily far
from equilibrium.
Saturation of TURs.—For any choice U in the definition

of Jt in Eq. (6), the TUR allows to infer a lower bound
on the time-accumulated dissipation Σt from hJti and
varðJtÞ [25,26,32–38]. The tighter the inequality, the more
precise is the lower bound on Σt. It is therefore important to
understand when the inequality becomes tight or even
saturates, i.e., gives equality.
Because of the simplicity and directness of our proof, we

can very well discuss the tightness of the bound based on
the single application of the Cauchy-Schwarz inequality.
As elaborated in the Appendix, this approach reproduces,
and extends beyond, numerous existing results on asymp-
totic and exact saturation of TURs. Most importantly,
choosing Uðx; τÞ ¼ c0½jðx; τÞ=Pðx; τÞ� · ½2DðxÞ�−1 with ar-
bitrary c0 and cρt ¼ JIIt [see Eq. (7)] gives Jt − cρt ¼ JIt ¼
c0At which in turn implies equality in the Cauchy-Schwarz
argument leading to the correlation TURs Eqs. (21) and
(22). This directly implies exact saturation of the correla-
tion TURs which was so far achieved only in the steady-
state case [41]. Our generalization of the correlation TUR
in Eq. (22) for transient systems therefore allows to saturate
a TUR arbitrarily far from equilibrium for any t and for
general initial conditions and general time-homogeneous
dynamics in Eq. (2).
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Example.—To illustrate the novel results in Eqs. (16),
(19), and (22) and the new insight into the saturation, we
provide an explicit example of transient dynamics in Fig. 1,
that of a Brownian particle in a one-dimensional harmonic
potential φðx; tÞ ¼ aðx − x0t Þ2=2D displaced from x0τ<0 ¼ z
to x0τ≥0 ¼ 0, see Fig. 1(a). This setting, illustrated by the
color gradient in Fig. 1(a), can easily be realized exper-
imentally using optical tweezers [69–71]. The process
features a Gaussian probability density Pðx; τÞ with con-
stant variance D=a that moves with a space-independent
velocity νðτÞ ¼ jðx; τÞ=Pðx; τÞ ¼ −az expð−aτÞ toward
the equilibrium ∝ expð−ax2=2DÞ, see Fig. 1(b).
To quantify the tightness of the respective TURs we

inspect quality factors—the ratio of the right- and left-hand
side of the TUR—shown in Fig. 1(c) as a function of the
dimensionless quantity at. The blue line represents the
transient TUR (16) for the current Jt ¼ xt − x0 where
Uðx; τÞ ¼ 1. Since this U does not feature explicit time
dependence the correction term J̃t does not contribute and
the transient TUR from the existing literature [45] applies.
The existing (as well as our) results allow varying the
spatial dependence of U but we refrain from considering
this for simplicity and since it is not necessary for saturation
(i.e., ν, D have no spatial dependence in our example).
Because of the novel correction term in Eq. (16) we may
choose a time-dependent U, and following our discussion
of the saturation we choose for all following examples Jt
withUðτÞ ¼ c0νðτÞ=2D ¼ νðτÞ (the prefactor c0 is arbitrary
as it cancels in quality factor) and the corresponding
ρt ¼ JIIt , i.e., with Vðx; τÞ ¼ Uðx; τÞ ¼ −axUðτÞ, see
Eq. (7). For this choice we evaluate the transient current
[Eq. (16)] and density-TUR [Eq. (19)], see light gray and
orange line in Fig. 1(c). Moreover, we evaluate the novel
generalized correlation TUR (22) for c ¼ 0.2 (dark gray
line), where we find that the current TUR is improved by
considering correlations with the a density, and for c ¼ 1
(black line), where we find the expected saturation. This
saturation means that the lower bound obtained for Σt from
this TUR is exactly Σt. Note that this exact saturation
requires the knowledge of the details of the dynamics for
the choice of U, V. However, even with very limited
knowledge one can simply consider different guesses or
approximations of the optimal U, V and each guess will
give a valid lower bound (given sufficient statistics).
Direct route for Markov jump processes.—Beyond over-

damped dynamics, one may employ the above direct
approach for deriving TURs to Markov jump dynamics
on a discrete state-space N with jump-rates ðrxyÞx;y∈N and
steady-state distribution ðpxÞx∈N . To illustrate this gener-
alization, we here provide the proof of the steady-state TUR
(1). Let τ̂x denote the (random) time spent in state x and n̂xy
the (random) number of jumps from x to y in the time interval
½0; t�. A general time-accumulated current in a jump process
is defined with antisymmetric prefactors dxy ¼ −dyx as the
double sum J ≡P

x≠y dxyn̂xy. The steady-state dissipation

in turn reads Σ≡t
P

x≠ypxrxy ln½pxrxy=pyryx�. Analogously
to At in Eq. (9) define

A≡X
x≠y

pxrxy − pyryx
pxrxy þ pyryx

ðn̂xy − τ̂xrxyÞ: ð23Þ

For this choice ofA one can check that hAi ¼ 0, hA2i ≤ Σ=2,
and hAJi ¼ hJi (a “direct” proof as above follows by
analogy of covariance properties of ∂tðn̂xy − τ̂xrxyÞ and
σðxtÞdWt, see [63] for details) which imply, via the
Cauchy-Schwarz inequality, equivalently to Eqs. (10) and
(11) the steady-state TUR for Markov jump processes

hAðJ − hJiÞi ¼ hJi ⇒ Σ
2
varðJÞ ≥ hJi2: ð24Þ

A discussion of possible generalizations of this proof
beyond steady-state dynamics is given in [63].
Conclusion.—Using only stochastic calculus and the

well known Cauchy-Schwarz inequality we proved various
existing TURs directly from the Langevin equation. This
underscores the TUR as an inherent property of over-
damped stochastic equations of motion, analogous to
quantum-mechanical uncertainty relations. Moreover, by
including current-density correlations we derived a new
sharpened TUR for transient dynamics. Based on our
simple and more direct proof we were able to systemati-
cally explore conditions under which TURs saturate. The
new equality (10) is mathematically even stronger than
TUR (11). Therefore, it allows us to derive further bounds,
e.g., by applying Hölder’s instead of the Cauchy-Schwarz
inequality which, however, may not yield operationally
accessible quantities. Our approach may allow for gener-
alizations to systems with time-dependent driving (see, e.g.,
[18]) which, however, are not expected to follow anymore
directly from a single equation of motion. The novel
correction term for currents with explicit time dependence
as well as the new transient correlation TUR and its
saturation are expected to equally apply to Markov jump
processes by generalizing the approach illustrated in
Eqs. (23) and (24).

We thank David Hartich for insightful suggestions and
critical reading of the manuscript. Financial support from
Studienstiftung des Deutschen Volkes (to C. D.) and the
German Research Foundation (DFG) through the Emmy
Noether Program GO 2762/1-2 (to A. G.) is gratefully
acknowledged.

Appendix: Saturation of TURs.—Thanks to the
directness of our proof, we only need to discuss the
tightness based on the step from Eqs. (10) to (11),
where we applied the Cauchy-Schwarz inequality
hAtðJt − hJtiÞi2 ≤ hA2

t ivarðJtÞ to the exact Eq. (10).
Thus, the closer At and Jt − hJti are to being linearly
dependent (recall that the Cauchy-Schwarz inequality
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measures the angle φ between two vectors ðx⃗ · y⃗Þ2¼
x⃗ 2y⃗ 2cos2ðφÞ≤ x⃗ 2y⃗ 2), the tighter the TUR, with
saturation for Jt − hJti ¼ c0At for some constant c0.
Therefore, the TUR is expected to be tightest for the
choice Uðx;τÞ¼c0½jðx;τÞ=Pðx;τÞ� · ½2DðxÞ�−1 for which
JIt ¼ c0At [see Eq. (7)]. Note that for NESS this U
becomes time independent with jsðxÞ=PsðxÞ. This
choice is known to saturate the original TUR in Eq. (1)
in the near-equilibrium limit [2]. However, since the full
Jt ¼ JIt þ JIIt current cannot be chosen to exactly agree
with c0At, equality is generally not reached.
The original TUR (1) with this choice of Uðx; τÞ was

also found to saturate in the short-time limit t → 0 [35,36].
This result is in turn reproduced with our approach by
noting that JIt¼c0At and hAtJIIt i¼0 give hAtðJt − hJtiÞi2 ¼
hAtJIti2 ¼ hA2

t ihJIt2i, and in the limit t → 0 the integrals
in Eq. (7) asymptotically scale like a single time step,
such that hJIt2i ∼ ðWt −W0Þ2 ∼ t dominates all ∼t3=2;∼t2

contributions in varðJtÞ. In turn, hJIt2i →t→0
varðJtÞ which

yields hAtðJt − hJtiÞi2 →
t→0 hA2

t ivarðJtÞ. Thus, the Cauchy-
Schwarz step from the equality (10) to the inequality
(11) saturates as t → 0, in turn implying that the TUR
saturates.
More recently it was also found that including correla-

tions [see Eq. (21) and Ref. [41] ] allows us to saturate a
sharpened TUR for steady-state systems arbitrarily far from
equilibrium for any t, again for the same choice Uðx; τÞ as
above. Since our rederivation of the NESS correlation
TUR in Eq. (21) applied the Cauchy-Schwarz inequality
to At and Jt − cρt we see that choosing cρt ¼ JIIt yields
Jt − cρt ¼ JIt ¼ c0At, such that the application of the
Cauchy-Schwarz inequality becomes an equality. That is,
the correlation TUR (21) for this choice of Jt and ρt is
generally saturated. Notably, this powerful result follows
very naturally from the direct proof presented here.
Our generalization of the correlation TUR in Eq. (22) for

transient systems even allows us to saturate a TUR
(arbitrarily far from equilibrium for any t and) for general
initial conditions and general time-homogeneous dynamics
in Eq. (2). This result is strong but obvious, since as for the
NESS correlation TUR we can choose Jt and ρt such that
Jt − cρt ¼ c0At. Note that it is here crucial that we allowed
for an explicit time dependence in U and V, i.e., that we
found new correction terms [terms with tilde in Eqs. (16),
(19), and (22)].
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