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Abstract

The laws of nature encompass the small, the large, the few, and the many. In this thesis we
are concerned with classical (i.e. not quantum) many-body systems, which refers to any
microscopic or macroscopic system that contains a large number of interacting entities.
The nearest-neighbor Ising model, originally developed in 1920 by Wilhelm Lenz, forms
a cornerstone in our theoretical understanding of collective effects in classical many-body
systems, and is to date a paradigm for statistical physics.

Despite its elegant and simplistic description, exact analytical results in dimensions equal
and larger than two are difficult to obtain. Therefore, much work has been done to con-
struct methods that allow for approximate, yet accurate, analytical solutions. One of these
methods is the Bethe-Guggenheim approximation, originally developed independently by
Hans Bethe and Edward Guggenheim in 1935. This approximation goes beyond the well-
known mean field approximation, and explicitly accounts for pair correlations between the
spins in the Ising model. In this thesis, we embark on a journey to exploit the full capacity
of the Bethe-Guggenheim approximation, in non-uniform and non-equilibrium settings.

After we formally introduce the original Bethe-Guggenheim approximation for uniform
systems, we will extend its scope to non-uniform systems, and derive a Cahn-Hilliard free
energy functional. Here we find that the one-dimensional equilibrium concentration profile
undergoes a delocalization-induced broadening transition at interaction strengths near and
above the thermal energy. The broadening transition arises from a decreasing amplitude
of capillary wave fluctuations, and is not accounted for in the mean field approximation.

Finally, going beyond equilibrium properties, we also study the kinetics of the Isingmodel in
and out of equilibrium. First, based on firm theoretical and experimental evidence, we con-
struct an Ising-like minimal model for interacting cellular adhesion molecules. Here we find
a dynamical critical point where adhesion cluster dissolution and formation are the fastest,
and undergo a qualitative change in dynamics. Second, we demonstrate the existence of
a finite-time dynamical phase transition for disordering quenches in the nearest-neighbor
Ising model. Starkly different from the mean field approximation, the time at which the
dynamical phase transition occurs, is bounded from below by a speed limit.

Altogether, in this thesis, we unveil the non-trivial and a priori non-intuitive effects of pair
correlations in the classical nearest-neighbor Ising model, which are taken into account in
the Bethe-Guggenheim approximation, and neglected in the mean field approximation.
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Samenvatting

De natuurwetten omvatten het kleine, het grote, het weinige en het vele. In dit proefschrift
houden wij ons bezig met klassieke (d.w.z. niet kwantum) systemen die bestaan uit een
enorm aantal vrijheidsgraden. Voor dit soort systemen vormt het Ising model, oorspronke-
lijk ontwikkeld in 1920 door Wilhelm Lenz, een hoeksteen in ons theoretisch begrip, en is
tot op heden een paradigma voor de statistische fysica.

Ondanks de elegante en simplistische beschrijving van het Ising model, zijn exacte analyti-
sche resultaten in dimensies gelijk aan en groter dan twee moeilijk te verkrijgen. Daarom
is er veel werk verricht om methoden te construeren waarmee men benaderende, maar
nauwkeurige, analytische oplossingen kan verkrijgen. Eén van deze methoden is de Bethe-
Guggenheim benadering, oorspronkelijk onafhankelijk ontwikkeld door Hans Bethe en
Edward Guggenheim in 1935. Deze benadering gaat verder dan de gemiddelde veldbena-
dering, en houdt expliciet rekening met directe correlaties tussen de vrijheidsgraden in het
Ising model. In dit proefschrift zullen we de Bethe-Guggenheim benadering toepassen op
systemen die zowel inhomogeen als uit evenwicht zijn.

Nadat we de oorspronkelijke Bethe-Guggenheim benadering voor homogene systemen heb-
ben geïntroduceerd, breiden we het toepassingsgebied uit naar inhomogene systemen, en
deriveren een Cahn-Hilliard vrije energie functie. Hier vinden we dat het eendimensio-
nale evenwichtsconcentratieprofiel een verbredingsovergang ondergaat bij interactiesterk-
tes dichtbij en boven de thermische energie. De verbreding komt voort uit een afnemende
amplitude van capillaire golffluctuaties, en is afwezig in de gemiddelde veldbenadering.

Ten slotte bestuderen we de kinetiek van het Ising model in en uit evenwicht. Eerst constru-
eren we, op basis van theoretisch en experimenteel bewijsmateriaal, een minimaal model
voor interacterende cellulaire adhesiemoleculen. Hier vinden we een dynamisch kritiek
punt waar adhesieclusters het snelst (ont)binden, en een kwalitatieve verandering in de
dynamiek ondergaan. Ten tweede bewijzen we de existentie van een dynamische fase-
overgang in het Ising model. Het tijdstip van de faseovergang is van onderen begrensd
door een snelheidslimiet, hetgeen niet voorkomt in de gemiddelde veldbenadering.

Al met al onthullen wij in dit proefschrift de niet-triviale en a priori niet-intuïtieve effecten
van directe correlaties in het klassieke Ising model, die expliciet worden meegenomen in
de Bethe-Guggenheim benadering.
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Chapter 1

Introduction

Starting around 1925, a change occurred: With the work of Ising, statistical

mechanics began to be used to describe the behavior of many particles at once.

L. P. Kadanoff [1]

From the smallest subatomic scales to the largest extragalactic scales, it is eminent that the
physical principles governing the dynamics of a single isolated particle are inadequate to
understand the world around us. Interacting many-body systems are rather the rule than
the exception, and therefore a large part of statistical physics is devoted to this topic. Of
all interacting many-body systems in statistical physics on which exact calculations have
been conducted, the Ising model is by far the most thoroughly studied [2], with every year
around 700-900 published on the subject [3]. However, despite the vast amount of exact
results in one- and two-dimensions, there is still uncovered groundwhere exact calculations
have not reached. In this Chapter we present a brief history of the Ising model, show its
application to biological systems, and reveal the questions addressed in this thesis.

1.1 The Ising model: a brief history

Covering the full history of the Ising model would be worth a Ph.D. thesis on its own. Here
we highlight the most prominent results which are important for this thesis. To be precise,
any detailed discussion related to critical exponents, magnetic frustration, the Hubbard-
Stratonovich transformation, relations to conformal field theory, the renormalization group,
Yang-Lee zeros, or dimensions equal or higher than three, are omitted from this section.
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1 Introduction

1.1.1 Spontaneous magnetization in one dimension (1920)
The Ising model was originally developed in 1920 by the German Wilhelm Lenz [4] and
later analyzed by his student Ernst Ising1 [6] to explain the mechanism behind ferromag-
netism2. Ferromagnetism is the phenomenon by which certain materials spontaneously
become magnetic when the temperature drops below a critical value, known as the Curie
temperature [7]. An example is iron, which is magnetic below 1043 Kelvin [8]. Lenz and
Ising were inspired by the work of Pierre Weiss who assumed that every atom in a ferro-
magnetic material possesses a microscopic magnetic dipole σi, also called a "spin", which
can point in one of two directions: up (σi = +1) or down (σi = −1) [9]. These spins
are located on a lattice and interact with their immediate neighbors through a coupling
strength J . Furthermore, Lenz and Ising introduced an external magnetic field h which
points in the up (h > 0) or down (h < 0) direction. The well-known Hamiltonian of the
Ising model with N spins {σ} = {σ1, σ2, ..., σN} reads

H({σ}) = −J
∑
〈ij〉

σiσj − h
∑
i

σi, (1.1)

where the sum 〈ij〉 goes over nearest neighbor interactions. For a ferromagnetic coupling
with J > 0, two aligned nearest-neighbor spins with σiσj = +1 decrease the energy.
Similarly, two anti-aligned nearest-neighbor spins with σiσj = −1 increase the energy.
Therefore, a ferromagnetic coupling J drives spins to an aligned configuration where the
energy is lowest. For an antiferromagnetic coupling with J̃ < 0 we have the opposite
scenario, and the ground state is set by the staggered configuration where each spin is
anti-aligned with its neighbor. Being in contact with an equilibrium heat bath at finite
temperature T , the spins undergo random state fluctuations. The equilibrium probability
for a configuration {σ̂} is given by p({σ̂}) = exp (−βH({σ̂}))/Z , where β = 1/kBT with
kB the Boltzmann constant, and Z is the canonical partition function given by a sum over
all possible 2N states

Z =
∑
{σ}

e−βH({σ}). (1.2)

In his celebrated work, Ising computed the partition function for a one-dimensional chain
composed of N spins analytically [6]. Furthermore, he computed analytically the average
magnetization per spinM(h) ∈ [−1, 1], which is defined as

M(h) ≡ (NZ)−1
∑
{σ}

e−βH({σ})
N∑
i=1

σi. (1.3)

1Ernst Ising studied Mathematics and Physics in Göttingen in 1919 [5].
2Comes from the word ferro + magnetic: behaving like iron in a magnetic field.
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Since Eq. (1.1) is invariant under the transformation (h, σi)→ −(h, σi), it follows directly
that M(h) = −M(h), which implies that M(0) = 0. However, upon taking the thermody-
namic limit, M(h) is not guaranteed to be analytic at h = 0 [2]. The non-analyticity of
M(h) follows from the infinite number of terms inside the sum of Eq. (1.3). Spontaneous
magnetization is therefore defined as

lim
h→0±

lim
N→∞

±M(h) > 0. (1.4)

Ising found no spontaneous magnetization at non-zero temperatures for the one-
dimensional chain and concluded [6]: "... wir finden also keine Hysteresiserscheinungen und
keine spontane Magnetisierung." (page 256). Hence, for the one-dimensional Ising model
there is no spontaneous magnetization at non-zero temperature in the thermodynamic
limit. But Ising went further, and erroneously concluded , in the same paper, that there is
no spontaneous magnetization in two dimensions or higher: "Auch bei einem räumlichen
Modell, das den oben aufgestellten Annahmen genügt, gelangt man nicht zu einem anderen
Ergebnis." (page 257). This statement baffled the physics community, and started a long-
standing scientific pursuit for spontaneous magnetization in two dimensions.

1.1.2 The Bragg-Williams approximation (1934)

In 1934 an approximate analysis for the critical temperature in two dimensions was devel-
oped by Sir William Lawrence Bragg and Evan James Williams [10]. Their work focused
on binary alloys3, but there is a close analogy with the Ising model as alluded by them-
selves [10]: "The general conclusion that order sets in abruptly below a critical temperature
Tc has a close analogy in ferromagnetism, ..." (page 707). Interest in binary alloys came forth
from the hypothesis of Gustav Tamann, who stated that atoms in an alloy segregate under
annealing4 [11]. Considering two types of atoms A and B with fixed concentrations and a
repulsive interaction, Bragg and Williams calculated the probability to interchange an A-B
pair with an A-A or B-B pair. To do so, they assumed that the concentration of pairs is given
by the product of respective A and B concentrations. This is also known as the zeroth-order
or mean field (MF) approximation. The temperature where the mixed state with equal A
and B concentration becomes unstable matches the critical temperature. Below this tem-
perature a transition occurs, where the A and B atoms segregate into macroscopic clusters.
Most surprisingly, Bragg and Williams found a critical temperature in two dimensions. Un-
fortunately, their approximation also predicted the existence of a critical temperature in

3Binary alloys are metals composed of two species. An example is cupronickel=cupper+nickel.
4Annealing refers to a heat treatment which reduces the stiffness of metals.

5



1 Introduction

one dimension, contradicting the exact results by Ising, and rendering their conclusion for
two dimensions untrustworthy.

1.1.3 The Bethe-Guggenheim approximation (1935)

Hans Bethe [12] and Edward Armand Guggenheim [13] independently published an im-
provement of the Bragg-Williams approximation in 1935. Interestingly, Guggenheim did
not work on binary alloys, but on the theory of liquids with short-range interactions. The
main improvement of their method was that the concentration of A-B pairs is not exclu-
sively determined by the product of A and B concentrations, but in addition by the work
required to convert an A-A and B-B pair into two A-B pairs. This improvement eradicated
the fallacious critical temperature in one dimension. Moreover, their approximation pro-
vided the first evidence for spontaneous magnetization in the two-dimensional Ising model,
as pointed out by Sir Rudolf Ernst Peierls [14]: "Although the good convergence of Bethe’s
method is reassuring, it is worth while to give a rigorous proof for the ferromagnetic behaviour
at low temperatures." (page 478). At present, the Bethe-Guggenheim (BG) approximation
is also known as the Bethe-Peierls or quasi-chemical approximation, based on the work of
Peierls [15] and Guggenheim [16]. Nonetheless, in compliance with the historical order,
we will refer to the BG approximation. In this thesis the BG approximation will be used in
various settings, and in Chapter 2 we provide a more detailed explanation.

1.1.4 Spontaneous magnetization in two dimensions (1936)

In 1936, twelve years after the erroneous conclusion made by Ising, Peierls proved that
for sufficiently low temperatures the two-dimensional Ising model on a square lattice has
spontaneous magnetization [14]5. However, the exact critical temperature where M(h)

becomes non-analytic was unknown. Five years later, in 1941, Hendrik Anthony Kramers
and Gregory Hugh Wannier introduced the transfer matrix method and showed that the
critical temperature was given by sinh (2βJ) = 1 [18]. Subsequently, in a second publica-
tion, they obtained highly accurate approximate closed-form expressions for the partition
function per spin Z1/N with zero field h = 0 [19]. Lars Onsager was inspired by the trans-
fer matrix method [20], and considered the anisotropic two-dimensional Ising model with
ferromagnetic couplings (Jx, Jy) and zero field h = 0. In 1943 he published his seminal
work [21], with exact closed-form expressions for the partition function per spin and critical
temperature sinh (2βJx) sinh (2βJy) = 1, generalizing the result of Kramers and Wannier.

5The original proof by Peierls turned out to be incorrect and was later refined in [17].
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The spontaneous magnetization remained undetermined, until Onsager unveiled his result
five years later at a conference in Cornell in 1948 [20]:

lim
h→0±

lim
N→∞

±M(h) =
(
1− sinh−2 (2βJx) sinh−2 (2βJy)

)1/8
. (1.5)

A derivation was never published by Onsager nor by his collaborator Bruria Kaufman with
whom he had correspondence [22,23]. Eventually, Chen Ning Yang re-derived and verified
his result in 1951 [24]6. Of honourable mention is the derivation of the partition function
using dimer coverings, introduced by Mark Kac and John Clive Ward in 1952 [26].

1.1.5 Intermezzo: The fixed-magnetization ensemble

Considering its long standing history, one might be tempted to think that most properties
of the two-dimensional Ising model are currently known. However, the BG approximation
provides information where the exact methods developed by Kramer, Wannier, and Onsager
cannot reach. Furthermore, the BG approximation becomes exact on the Bethe lattice [27].
Recall that in the MF and BG approximation the concentration of A and B atoms was fixed.
Identifying the distinct atoms with a spin up and down state, this is equivalent to fixing
the magnetization in the system. Let N↓({σ}) ∈ [0, N ] be the number of down spins for
a given configuration σ. As will be detailed in Chapter 2, both the MF and BG approxi-
mation provide a procedure to evaluate the partition function in the fixed-magnetization
ensemble, given by

Zk =
∑
{σ}

e−βH({σ})δN↓({σ}),k, (1.6)

where δa,b is Kronecker’s delta function, i.e. δa,b = 1 when a = b and 0 elsewhere. The
partition function Zk contains all states with k down spins, and therefore a fixed magneti-
zation per spin of M = 1− 2k/N . Obtaining Zk through exact methods would be a pièce
de résistance, as it automatically gives an expression for the canonical partition function
with an external magnetic field (h 6= 0) through the relation Z =

∑N
k=0Zk. For the two-

dimensional square lattice Ising model this remains an unsolved problem [28–32], and
exact expressions have only been derived for a triangular lattice [33], Kagome lattice [34],
and the 3-12 lattice [35]. Thus, whereas Z is well-known for the two-dimensional square
lattice, Zk is not, and the BG approximation provides an accurate method to derive the lat-
ter. In the Chapters 2-6 we shall see that Zk plays a dominant role in many of the questions
we will tackle in this thesis.

6According to Yang "the longest calculation in my career" (page 371) in [25].
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1.1.6 The lattice gas (1952)

First introduced by Tsung-Dao Lee and Cheng Ning Yang in 1952 [36], the lattice gas is
a model where each lattice site can either be empty (bi = 0) or occupied (bi = 1) by an
atom. For an attractive interaction between nearest-neighbor atoms, there exists a critical
temperature below which the atoms condense into a macroscopic phase, also known as a
phase transition. Lee and Yang showed that the lattice gas and Isingmodel are isomorphic,
by relating the number of atoms in the lattice gas to the number of down (or up) spins in the
Ising model7. The Grand partition function of the lattice gas is therefore mathematically
identical to the partition function of the Ising model in the presence of a magnetic field.
Similarly, the partition function in the lattice gas corresponds to the fixed-magnetization
partition function in the Ising model. This translation allowed Lee and Yang to study the
nature of phase transitions through the exact results obtained by Onsager.

1.1.7 Kikuchi’s cluster variation approximation (1952)

The methods established by Bragg, Williams, Bethe, and Guggenheim culminated in a
systematic approach for the fixed-magnetization partition function, developed by Ryoichi
Kikuchi in 1952 [37]. The so-called cluster variation approximation (CVA) cleared the
way for more accurate evaluations of the critical temperature for any kind of lattice including
higher dimensions, and has been extremely successful ever since (Google Scholar: 2353
citations at 02/10/2022). The CVA establishes an approximation to the partition sum in
Eq. 1.6 by approximating the number of distinct lattice configurations at a fixed energy;
i.e. the degeneracy of states. By counting the filling statistics of pre-defined spin clusters in
the lattice, one can approximate the degeneracy of states in a controlled way. The larger the
clusters, the more accurate the approximation. With the resulting degeneracy factor, the
partition sum in Eq. 1.6 is evaluated through a variational approach. Notably, the CVA also
applies to multicomponent systems, and can be extended to long-range interactions [38].

1.1.8 Cahn-Hilliard free energy for non-uniform systems (1958)

Until 1958, the spatial organization of up and down spins in the Ising model was unknown
territory. This changed when John Cahn and John Hilliard introduced a free energy formal-
ism for non-uniform systems, providing insight into the spatial structure of non-uniform
binary mixtures8 [39]. If we ought to be historically precise, we should emphasize that

7This can be established through the mapping σi = 2bi − 1.
8Binary mixtures are mixtures composed of two components, as for example the Ising model.
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Johannes Diderik van der Waals introduced an identical formalism in 1893 [40]9. Unfor-
tunately, due to the First World War, van der Waals did not receive much credit for his
work [42]: "Like most of his work, it was well-received at the time, but grievously neglected
in the forty years after 1914." (page 198). With the work of Cahn, Hilliard, and van der
Waals, it became possible to study concentration profiles, surface tension, spinodal de-
composition, and nucleation phenomena, within one general framework. Although a
connection with the Ising model is not mentioned in [39], we will show in Chapter 3 that
this formalism can be obtained directly from the partition function of the Isingmodel. Going
beyond the MF approximation employed in [39], we will derive the free energy functional
of a non-uniform Ising model which explicitly takes into account pair correlations. The
resulting (and surprising) outcomes of this theory are further discussed in Chapter 4.

1.1.9 Stochastic dynamics of the Ising model (1963)

Where Cahn, Hilliard, and van der Waals introduced a spatial analysis of the Ising model,
Roy Jay Glauber introduced a temporal analysis in 1963 [43]: "We have attempted, there-
fore, to devise a form of the Ising model whose behavior can be followed exactly, in statistical
terms, as a function of time." (page 294). Considering single-spin flip dynamics, Glauber
constructed a continuous-timemaster equationwith the transition rates uniquely specified
by symmetry, and the detailed balance (DB) relation10. Solving the master equation for a
one-dimensional ring, he obtained the average magnetization, spin-spin correlation func-
tion, and time-delayed correlation function, for finite and infinite systems. Additionally,
he considered a time-varying external magnetic field, and provided the first fluctuation-
dissipation theorem11 for the Ising model.

Three years later, Kyozi Kawasaki established another approach to study time-dependent
behavior of the Ising model [44]. Instead of single-spin flip dynamics, Kawasaki consid-
ered two-spin exchange dynamics where two spins can interchange their position, hence
conserving the total magnetization. Similar to Glauber, Kawasaki constructed a continuous-
time master equation with a unique expression for the transition rates. Consecutively, he
determined the diffusion coefficient near the critical temperature, where it converges to
zero. This is known as critical slowing down, as the dynamics slows down and comes to a
halt at the critical temperature.

9This work is in Dutch. An English translation is provided in [41].
10DB is a sufficient condition for the rates to approach equilibrium in the long time limit.
11This is a relation between the response function and equilibrium correlation function.
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The work of Glauber and Kawasaki opened the door for kinetic studies on the Ising model,
and in Chapters 5 and 6 we will study their formalism in more detail. Present-day, Glauber
and Kawasaki dynamics on the coarse-grained continuum level also go under the name
Model A and Model B, respectively, based on the classification made by Bert Halperin
and Pierre Claude Hohenberg [45]. In Fig. 1.1 some biological examples of Glauber and
Kawasaki dynamics are given.

1.1.10 Intermezzo: continuous and discrete-time dynamics

In Chapter 5 we will encounter the discrete-time variant of Glauber and Kawasaki dynam-
ics, whereas in Chapter 6 we consider continuous-time dynamics. Both types of dynamics
are related through their generators, which evolve the corresponding probability vectors
Pd(n), n ∈ N (discrete-time) and Pc(t), ∀t ≥ 0 (continuous-time). To see this, let Qd

and Qc be the respective (finite-dimensional) generators of the discrete and continuous-
time Markov process, such that Pd(n + 1) = QdPd(n) and ∂tPc(t) = QcPc(t). For the
Ising model, the generators are two-dimensional matrices of size 2N × 2N , where N is
the number of spins. Taking the equilibrium steady-state Pss

d,c, whose existence is guar-
anteed by DB [46], we obtain (Qd − 1)Pss

d = 0 and QcP
ss
c = 0, where 1 is the identity

matrix. Enforcing equal equilibrium steady-states for continuous and discrete time dy-
namics, i.e. Pss

c = Pss
d , we obtain the following non-unique solution for the generators

Qd−1 = Qc
12. Hence, if the generators for discrete and continuous-time dynamics are

related by Qd−1 = Qc, then they have the same equilibrium steady state [46].

1.1.11 Kadanoff’s block spin method (1966)

In 1966 Leo Kadanoff devised a scheme to obtain a relation between critical exponents13 in
the Ising model, through the so-called block spin method [47]. The basic idea behind the
block spin method is to group spins together, and coarse-grain them to a new variable, the
so-called block spin. The partition function attains a new form under the coarse-grained
block spins. However, the old form can effectively be restored upon introducing a new effec-
tive interaction strength J ′. The relation between the new effective interaction strength J ′
and old interaction strength J induces a flow, the so-called renormalization flow. Although
we are not concerned with critical exponents and the renormalization group, in Chapter 3
we will apply a similar block spin technique to derive a Cahn-Hilliard free energy functional
from the fixed-magnetization partition function of the Ising model.

12Note that Qd−1 = Qc ⇒ (Qd − 1)Pss = QcP
ss, but (Qd − 1)Pss = QcP

ss ; Qd−1 = Qc.
13Critical exponents are universal scaling factors of observables around a critical point.

10



Introduction 1

1.1.12 The Ising model at present day (2000-2022)

In modern-day physics the Ising model remains to play an active role. Ranging from high-
energy physics [48, 49] to econophysics [50, 51], it is clear that the model has entered
a diverging set of disciplines. Recent works discovered a finite-time dynamical phase
transition in the MF Curie-Weissmodel [52–55]. The dynamical phase transition appears
for disordering quenches in the Ising model, whereby the coupling J or temperature T is
abruptly changed to a new value J → J ′ < J or T → T ′ > T , which induces a temporal
evolution of the spins towards a state with less ferromagnetic order. In Chapter 6 we will
analyze disordering quenches within the BG approximation, and find that the finite-time
dynamical phase transition is also present in the nearest-neighbor Ising model.

1.2 Biological applications of the Ising model

In the field of (molecular) biology the Ising model has found many applications. The list
of examples is extensive, and include: bacterial chemotaxis proteins [56, 65, 66], cell ad-
hesion [59,67–75], chemical sensing [76–78], biomolecular condensates [79–82], cancer
[83–85], allosteric proteins [86–88], cooperative ligand binding [89–91], cooperative gat-
ing in ion channels [62–64,92], chromosome folding [93,94], DNA folding [95–98], pro-
tein folding [99], microtubules [100–102], genomics [103,104], neuroscience [105–108],
epidemic modeling [109–111], and even phenotypic traits of reptiles [60]. In most of these
applications there exist a cooperative degree of freedomwhich can attain two states, i.e. the
presence and absence of a hydrogen bond in a DNA molecule. These degrees of freedom
are written as Ising spins (σi = ±1) or lattice gas variables (bi = 0 ∨ 1), which provides
a map to the Ising model. A subset of examples is depicted in Fig. 1.1. It should be em-
phasized that not every application of the Ising model is well-justified, and some appear to
be rather unorthodox14. However, the abundance of examples underlines the widespread
usage of the model outside the field of physics. Below, we provide a short introduction of
one specific application relevant for Chapter 5; cell adhesion.

1.2.1 Cell adhesion

An adult human body consists of approximately 3 × 1013 eukaryotic cells, of which 10%
belong to solid tissue. These cells are physically attached through a process known as cell
adhesion. Cell adhesion refers to the specific binding of cells to neighboring cells or the

14An example here would be the application to love [112].
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Figure 1.1: Biological applications of the Ising model. (a) Hexagonally ordered methyl-
accepting chemotaxis proteins (MCP) cluster into trimers and localize at bacterial cell
poles, forming a highly structured hexagonal array. In [56] trimers are modeled as discrete
lattice gas variables (based on [57]) with attractive trimer-trimer coupling βJ ≈ 3. (b) Cel-
lular adhesion molecules coupled to a fluctuating membrane. The nanometric membrane
fluctuations mediate a lateral interaction between nearest-neighbor adhesion states [58],
which can be mapped onto an Ising model [59]. (c) Ocellated lizard (Timon lepidus) with
black and green monochromatic skin scales. The scale patterns on the back of the reptile
are well-captured by an Ising model with antiferromagnetic coupling βJ ≈ −0.457 and
magnetic field βh ≈ −0.51 [60]. (d) Ion channels are pore-forming membrane proteins
enabling transmembrane ion transport. Cooperative gating refers to a coupling of gating
states between neighbouring ion channels, which has been observed in various experi-
ments [61]. In [62–64] the Ising model with open (σi = 1) and closed (σi = −1) gating
states is utilized to model the effect of cooperative gating.
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extracellular matrix, and plays a major role in cell regulation [113], intercellular com-
munication [114], immune response [115], wound healing [116], morphogenesis [117],
cellular function [118], and tumorigenesis [119,120].

Cellular adhesion domains form as a result of the association of transmembrane cellular
adhesion molecule (CAM)s that are interacting with the actin cytoskeleton [121] and can
translocate over the membrane [122]. There are four major superfamilies of CAMs: the
immunoglobulins, integrins, cadherins, and selectins. Throughout we generically refer to
them as CAMs. Adhesion bonds are typically non-covalent, with binding energies on the
order of a few kBT corresponding to forces on the order of ' 4 pN ·nm at T ' 300K [123,
124]. As a result of thermal fluctuations, these bonds have finite lifetimes – they can break
and re-associate depending on the receptor-ligand distance, their respective conformations
and local concentrations, and depending on internal and external mechanical forces [124,
125].

While it was originally thought that adhesion strength is determined by the biochemistry of
adhesion molecules alone, more recently, cellular mechanics [126] and membrane-induced
adhesion bond interactions [59,127–130] emerged as essential physical regulators of cel-
lular adhesion. In fact, there exists an exact mapping between cell adhesion and the lattice
gas, where the coupling strength J̃ is set by the membrane properties and binding affinities
of the receptors [59,71–73] (see also Fig. 1.1b). In Chapter 5 we will employ this mapping
between cell adhesion and the Ising model, to study the equilibrium and kinetic properties
of adhesion clusters in the absence and presence of an external force.

1.3 Scope and outline of the thesis

Having introduced the paradigmatic Ising model, its relevance in cellular biological sys-
tems, and the notion of the MF and BG approximation, we now lay forth the structure of
the forthcoming chapters:

• In Chapters 2 and 3 we introduce the technical background needed for the remaining
Chapters 4-6. Here we employ the BG approximation to incorporate nearest neighbor
pair correlations into the fixed-magnetization partition function of the Ising model.
In Chapter 2 we apply the BG approximation to uniform systems, and in Chapter 3
to non-uniform systems. The latter results in a Cahn-Hilliard free energy functional
with a concentration dependent gradient energy coefficient.
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• In Chapter 4 we systematically analyze the resulting outcomes of Chapter 3. Here we
find that the Cahn-Hilliard free energy functional obtained with the BG approxima-
tion takes into account the effect of capillary waves, giving rise to a delocalization-
induced interface widening.

• Chapter 5 focuses on the role of cooperativity in cell adhesion. Using the mapping to
the lattice gas provided by [59], we construct an equilibrium and kinetic description
of cell adhesion under the presence of an external force. Focusing on the dynamics
of cluster formation/dissolution, we show the emergence of a dynamical critical
coupling in the thermodynamic limit, where formation/dissolution times are the
fastest.

• In Chapter 6 we use the BG approximation to analyze the non-equilibrium relaxation
of the Ising model under disordering quenches. Here we demonstrate the existence
of a finite-time dynamical phase transition in the nearest-neighbor Ising model,
and furthermore show that the appearance of the phase transition obeys a speed
limit.

• Finally, in Chapter 7 we conclude and provide an outlook into further extensions and
possible outcomes.
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Chapter 2

Bethe-Guggenheim approximation

for uniform systems

Obsession with partition functions maketh a dull man.

Lars Onsager to Joseph Hubbard [20] (page 457)

In this chapter we apply the BG approximation to uniform lattice systems. We consider an
Ising model defined on a general lattice with isotropic coupling J , and calculate the fixed-
magnetization partition function. Subsequently, we take the thermodynamic limit and
calculate the free energy density, phase diagram, and free energy minima. Finally, we
provide a comparison between the BG and MF results and show that qualitative differences
emerge in the strong coupling limit. For other accounts of the BG approximation, see
e.g. [131–133]. This chapter is based on the Supplementary Material (SM) of [69].

2.1 Initial setup and definitions

We consider an Ising model on a general lattice with average lattice coordination number
z̄. Examples are the one-dimensional line (z̄ = 2), two-dimensional square lattice (z̄ = 4),
hexagonal lattice (z̄ = 3), and triangular lattice (z̄ = 6). Note that different lattices can
have equal average coordination numbers. For example: the triangular, simple cubic, and
Bethe lattice with six neighbors all have z̄ = 6 as shown in Fig. 2.1. The MF and BG
approximation do not distinguish between these lattices, and only for the Bethe lattice it
provides an exact result. Let ϕ denote the fraction of down spins. The thermodynamic
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Figure 2.1: Example of different lattices with equal average coordination number z̄.
The (a) triangular, (b) simple cubic, and (c) Bethe lattice with six neighbors all have z̄ = 6.

limit is defined as the scaling limit where we take the number of spins N to infinity, while
simultaneously fixing the fraction of down spins, ϕ = k/N , i.e.

limN
s [·] ≡ limN→∞

ϕ=k/N=const. [·] . (2.1)

The fraction of down spins ϕ ∈ [0, 1] becomes a continuous variable in the thermodynamic
limit. The free energy density in units of thermal energy kBT (i.e. f̃ ≡ f/kBT ) for a given
fraction of down spins, is given by

f̃(ϕ = k/N) ≡ limN
s [−N−1 ln (Zk)], (2.2)

where Zk is the fixed-magnetization partition function defined in Eq. (1.6). The free en-
ergy density can subsequently be written as f̃(ϕ) = ũ(ϕ) − s̃(ϕ), with ũ(ϕ) the internal
energy density and s̃(ϕ) the entropy density. We now determine Zk within the BG ap-
proximation, and after that we evaluate f̃(ϕ) via Eq. (2.2).

2.2 Rewriting the Ising Hamiltonian
Before we evaluate Zk, it will be useful to rewrite the Ising Hamiltonian. The magnetic
field term coupled to h in Eq. (1.1) becomes constant upon fixing the magnetization, and
can therefore be omitted from further analysis. The sum in the Ising Hamiltonian goes over
nearest-neighbor terms, so we can rewrite Eq. (1.1) as

H({σ}) = −J
∑
〈ij〉

σiσj = J(N↑↓ −N↑↑ −N↓↓), (2.3)
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Figure 2.2: Example for the relations between N↓, N↑↓, N↑↑, N↓↓ given by Eq. (2.4).

where N↑↑, N↓↓, and N↑↓ denote the total number of up-up, down-down, and up-down
spin pairs, respectively. Every down-down spin pair consists of two down spins, and every
up-down spin pair consists of a single up and a single down spin; hence 2N↓↓+N↑↓ = z̄N↓,
whereN↓ is the total number of down spins. This relation is exact for lattices with a constant
coordination number per spin, e.g. for the Bethe lattice or a lattice with periodic boundary
conditions. A similar reasoning applies to up-up spin pairs, resulting in the general relations

N↑↑ = (z̄(N −N↓)−N↑↓)/2, N↓↓ = (z̄N↓ −N↑↓)/2, (2.4)

where we have used that N = N↑ +N↓. In Fig. 2.2 we provide an example for three spins
on a ring (z̄ = 2) where we can see that Eq. (2.4) is satisfied. Plugging Eq. (2.4) into
Eq. (2.3) we obtain

H({σ}) = J(2N↑↓ − z̄N/2), (2.5)

Hence, we have re-written the Ising Hamiltonian in terms of the number of up-down spin
pairs N↑↓, also known as defects, grain boundaries, or the short-range order [134].

2.3 Rewriting the partition function
Plugging Eq. (2.5) into Eq. (1.6) we obtain an expression for the fixed-magnetization parti-
tion function in terms of defects. Instead of taking the partition sum over all configurations
{σ} with N↑↓ defects, we may formally sum over all distinct values of N↑↓ and account for
their multiplicity by introducing a degeneracy of states Ψ(k,N↑↓) that counts the number
of configurations with a given N↑↓ at fixed k. This leads to the expression

Zk =
∑
{σ}

eJ̃(z̄N/2−2N↑↓)δN↓({σ}),k =
∑
N↑↓

Ψ(k,N↑↓)e
J̃(z̄N/2−2N↑↓), (2.6)
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where J̃ ≡ βJ . The last expression in Eq. (2.6) remains exact, given that the degeneracy
of states is evaluated exactly. For J̃ = 0 the degeneracy of states must obey the following
condition

Zk|J̃=0 =
∑
N↑↓

Ψ(k,N↑↓)
!

=

(
N

k

)
, (2.7)

since this is the number of different configurations with k down spins. This condition will
be used to construct an accurate approximation for the degeneracy of states, and thereby
for Zk.

2.4 Pair approximation Ansatz

We now employ the BG approximation to find a suitable expression for the degeneracy of
states. Let us consider placing pairs of spins randomly onto a given lattice. Then, the total
number of different lattice configurations for fixed (N↑↑, N↑↓, N↓↓) may be approximated
by

ΨBG(k,N↑↓) ≈ N (k)
(N↓↓ +N↑↓ +N↑↑)!

(N↓↓)! (N↑↓/2)!2 (N↑↑)!
, (2.8)

where N (k) is a normalization constant to be determined by Eq. (2.7). For a general
lattice, the number of defects can be odd, rendering (N↑↓/2)! ill-defined. Furthermore,
it will be useful to introduce the intensive variables (ϕ, ζ) ≡ (k/N,N↑↓/(z̄N)), which
are non-integers. Therefore, we replace the factorial with the Gamma function (i.e. the
generalized factorial), and substitute Eq. (2.4) for (N↓↓, N↑↑), which gives

ΨBG(ϕ, ζ) ≈ N (ϕ)Γ̂ (1)

Γ̂ (ϕ− ζ) Γ̂ (ζ)2 Γ̂ (1− ϕ− ζ)
, (2.9)

where we introduced the function Γ̂(x) ≡ Γ(z̄Nx/2 + 1) with Γ (n) = (n− 1)! for n ∈ Z+.

2.5 Evaluating the normalization constant

The normalization constant is determined by Eq. (2.7). To evaluate the sum over N↑↓(=
z̄Nζ) we apply an analytic continuation of the maximum term method [135, 136] to
real numbers. In other words, we approximate the sum by taking the largest term of the
respective summand. To evaluate the largest term, we apply the thermodynamic limit and
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use Stirling’s approximation for the Gamma function: ln Γ(w) = Ξ(w)− w +O(lnw) for
Re(w) > 0 with Ξ(w) ≡ w ln (w)1. This gives the following result for the largest argument

ζBG(ϕ) ≡ sup
ζ
{limN

s [N−1 ln (ΨBG(ϕ, ζ))]} = ϕ(1− ϕ). (2.10)

This result is intuitive, as it agrees with the fraction of defects for a random mixture with
a fraction of ϕ down spins. Evaluating the sum in Eq. (2.7) by the largest term, we obtain
the following expression for the normalization constant

N (ϕ)
!

=

(
N

Nϕ

)
Ψ−1

BG(ϕ, ζBG(ϕ)). (2.11)

This renders the degeneracy of states fully defined in terms of the variables (ϕ, ζ).

2.6 Evaluating the partition sum

Next we determine the partition sum over N↑↓(= z̄Nζ) in Eq. (2.6). Similarly as before,
we apply the maximum term method, yielding the largest argument

ζ†BG(ϕ) ≡ arg sup
ζ
{limN

s [N−1 ln (Ψ(ϕ, ζ)e−2z̄J̃Nζ)]} =
2ζBG(ϕ)

1+[1+4ζBG(ϕ)(e4J̃−1)]1/2
. (2.12)

Two remarks related to ζ†BG(ϕ) are in order: First, it gives the thermodynamically optimal
fraction of defects at a given coupling strength J̃ and fraction of down spins ϕ. For increas-
ing J̃ the number of defects decreases, which is expected, since defects increase the energy.
Second, for J̃ = 0 we obtain ζ†BG(ϕ) = ζBG(ϕ), as expected. With the largest argument
evaluated, the BG fixed-magnetization partition function becomes

ZBG
k=Nϕ =

(
N

Nϕ

)
ΨBG(ϕ, ζ†BG(ϕ))

ΨBG(ϕ, ζBG(ϕ))
e−2z̄NJ̃(ζ†BG(ϕ)−1/4). (2.13)

2.7 Free energy density

Inserting Eq. (2.13) into Eq. (2.2) we determine the BG free energy density. Again we
employ Stirling’s approximation to evaluate the logarithm of the Gamma function. For

1We therefore expect the accuracy of the BG approximation to increase with N .
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Figure 2.3: Free energy density and phase diagram of the BG approximation. In each
plot we consider a lattice with z̄ = 4 and vanishing external field h̃ = 0. (a) Decomposition
of the BG free energy density f̃BG(ϕ) (solid line) into the internal energy density ũBG(ϕ)
(dashed line) and entropy density s̃BG(ϕ) (dash-dotted line) given by Eq. (2.14). The cou-
pling is fixed at J̃ = 0.5. (b) Free energy density f̃BG(ϕ) for various values of J̃ below
(dash-dotted line), at (dotted line), and above (solid line) the critical coupling J̃BG

crit given
by Eq. (2.26). Above the critical coupling there exists two global minima, indicated with
the green dots. The red dots indicate the inflection points where f̃ ′′BG(ϕ) = 0. (c) Phase
diagram of the BG approximation in the (ϕ, J̃)-plane. The binodal (solid line), spinodal
(dash-dotted), and critical point (black dot) are given by Eqs. (2.20),(2.25), and (2.26),
respectively. The gray area indicates the 2-phase region inside the spinodal where a uni-
form phase de-mixes into a liquid and gaseous phase through spinodal decomposition. The
blue area indicates the region between the binodal and spinodal where uniform phases are
metastable and de-mix through nucleation. The green and red dots located at the binodal
and spinodal correspond to the green and red dots in (b).

completeness we also restore the magnetic field h̃ ≡ βh, and obtain the following expres-
sions for the internal energy and entropy density, i.e. f̃BG(ϕ) = ũBG(ϕ)− s̃BG(ϕ), with

ũBG(ϕ) = 2z̄J̃ [ζ†BG(ϕ)− 1/4]− h̃(1− 2ϕ), (2.14)
s̃BG(ϕ) = (z̄−1)[Ξ(ϕ)+Ξ(1−ϕ)]−(z̄/2)[Ξ(ϕ−ζ†BG(ϕ))+Ξ(1−ϕ−ζ†BG(ϕ))+2Ξ(ζ†BG(ϕ))],

where Ξ(ϕ) ≡ ϕ lnϕ. Eqs. (2.13)-(2.14) are the main results of the BG approximation for
a uniform system. In Fig. 2.3a the free energy density, internal energy density, and entropy
density are plotted for a lattice with z̄ = 4 and (J̃ , h̃) = (0.5, 0). Additionally, in Fig. 2.3b
the free energy density is shown for three increasing values of J̃ . We see that above a
critical value, which we denote as the critical coupling2 J̃BG

crit , the free energy density has
two global minima. The ϕ values of the minima deviate from the center ϕ = 0.5, indicating
that configurations with unequal up/down spin concentrations become thermodynamically
favourable. This is the origin of spontaneous magnetization, since unequal up/down spin
concentrations result in a non-vanishing average magnetization. We now determine the
location of the global minima (for h̃ = 0) and critical coupling, which are part of the so-
called phase diagram.

2Also known as the critical or Curie temperature, since one can write J̃BG
crit = βBG

critJ .
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2.8 Phase diagram
We calculate the phase diagram related to the BG free energy density in the (ϕ, J̃)-plane.
The phase diagram contains three parts: the binodal, the spinodal, and the critical point.

2.8.1 Binodal

The binodal J̃b(ϕ), also known as the coexistence curve, forms a line in the (ϕ, J̃)-plane
where two distinct phases with respective down-spin concentration ϕl and ϕg can coexist
through phase separation. Here ϕl and ϕg denote the liquid (i.e. high concentration) and
gas (i.e. low concentration) phase, respectively. The binodal applies when the total con-
centration of up and down spins is conserved3, and is determined by the common tangent
construction4, which is the solution of the coupled equations

f̃ ′(ϕl) = f̃ ′(ϕg),
f̃(ϕl)− f̃(ϕg)

ϕl − ϕg
= f̃ ′(ϕl), (2.15)

where f ′(ϕ) ≡ df(ϕ)/dϕ. The external field h̃ which couples linearly to ϕ trivially cancels
out in Eq. (2.15). This is expected, since the magnetic field becomes a constant when
the concentration of up and down spins is conserved. We therefore set h̃ = 0 for further
analysis. Due to the Z2 symmetry of the Ising model for h̃ = 0, the free energy obeys
f̃BG(ϕ) = f̃BG(1−ϕ), ∀ϕ ∈ [0, 1]. The solutions to Eq. (2.15) therefore follow ϕl = 1−ϕg,
resulting in the much simpler equation f̃ ′BG(ϕg,l) = 0. We solve this equation for ζ†BG(ϕ),
and then use the inverse relation of Eq. (2.12) given by

J̃ =
1

4
ln

(
(ϕ− ζ†BG(ϕ))(1− ϕ− ζ†BG(ϕ))

ζ†BG(ϕ)2)

)
, (2.16)

to obtain the binodal. To evaluate the total derivative of f̃BG(ϕ) w.r.t. ϕ we apply the chain
rule

f̃ ′BG(ϕ) = ∂ϕf̃BG(ϕ) + ∂
ζ†BG

f̃BG(ϕ) · ∂ϕζ†BG(ϕ). (2.17)

Since ζ†BG(ϕ) is derived from maximizing the partition summand, we have ∂
ζ†BG

f̃BG(ϕ) = 0.
Hence, the second term in Eq. (2.17) vanishes, while the first term yields

∂ϕf̃BG(ϕ) = (1− z̄) ln

(
ϕ

1− ϕ

)
+
z̄

2
ln

(
ϕ− ζ†BG(ϕ)

1− ϕ− ζ†BG(ϕ)

)
. (2.18)

3Hence the binodal applies to equilibrated Kawasaki dynamics.
4Also known as the Maxwell construction.
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Setting this equal to zero, and introducing the auxiliary variables χϕ ≡ ϕ/(1 − ϕ) and
α ≡ (z̄ − 1)/z̄, we find the solution for ζ†BG(ϕ) at the binodal

ζ†BG(ϕ)|J̃=J̃b
=

χϕ
1 + χϕ

1− χ2α−1
ϕ

1− χ2α
ϕ

. (2.19)

Plugging Eq. (2.19) into Eq. (2.16) finally yields the result for the binodal

J̃BG
b (ϕ) =

1

2
ln

(
1− χϕ

χ
1/z̄
ϕ − χ1−1/z̄

ϕ

)
, (2.20)

which is also reported in [131–133]. For z̄ = 2 the binodal diverges, since there is no phase
separation in one dimension. In Fig. 2.3c the binodal for a lattice with z̄ = 4 is shown with
the solid line.

2.8.2 Spinodal

The spinodal J̃s(ϕ), also known as the stability boundary, denotes the boundary be-
tween metastable and unstable uniform phases, and is determined by the inflection points
f̃ ′′(ϕ)=0. In between the binodal and spinodal a uniform concentration is metastable, and
can only undergo phase separation by nucleation. Within the spinodal a uniform concen-
tration is unstable, and will undergo phase separation by spinodal decomposition. We
calculate the second derivative of the BG free energy density, which reads

f̃ ′′BG(ϕ) =
1− z̄

ϕ (1− ϕ)
+
z̄

2

[1− 2ζ†BG + 2 (2ϕ− 1) (ζ†BG)′]ζ†BG + [2ϕ(1− ϕ)− ζ†BG](ζ†BG)′2

ζ†BG(ϕ− ζ†BG)(1− ϕ− ζ†BG)
,

(2.21)
where we suppressed the argument of ζBG(ϕ) for convenience. Similarly to the binodal,
we want to solve for the root of Eq. (2.21) in terms of ζ†BG(ϕ). Unfortunately, Eq. (2.21)
contains ζ†BG(ϕ)′, which we have to express in terms of ζ†BG(ϕ) and ϕ. Differentiating
Eq. (2.16) w.r.t. ϕ at fixed J̃ gives

ζ†BG(ϕ)′ =
ζ†BG(ϕ) (1− 2ϕ)

2ϕ (1− ϕ)− ζ†BG(ϕ)
. (2.22)

Inserting Eq. (2.22) into Eq. (2.21) results in the much simpler expression

f̃ ′′BG(ϕ) =
1− z̄

ϕ (1− ϕ)
+

z̄

2ϕ (1− ϕ)− ζ†BG(ϕ)
. (2.23)
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Setting Eq. (2.23) equal to zero and solving for ζ†BG(ϕ) yields

ζ†BG(ϕ)|J̃=J̃s
= (z̄ − 2)ϕ(1− ϕ)/(z̄ − 1). (2.24)

Finally, we insert Eq. (2.24) into Eq. (2.16), yielding the following result for the spinodal

J̃BG
s (ϕ) =

1

4
ln

(
(1 + (z̄ − 2)ϕ)(z̄ − 1− (z̄ − 2)ϕ)

(z̄ − 2)2ϕ(1− ϕ)

)
. (2.25)

Similarly to the binodal, we find that the spinodal also diverges for z̄ = 2. In Fig. 2.3c the
spinodal is shown with the dash-dotted line for a lattice with z̄ = 4.

2.8.3 Critical point

The critical point (ϕcrit, J̃crit) denotes the onset of phase separation, and is the point
where the binodal and spinodal meet. Formally, the critical fraction is determined from
f̃ ′′′(ϕcrit)=0. However, based on the Z2 symmetry of the Ising model, we know that the
critical fraction should be at ϕcrit = 1/2. Plugging this result into Eq. (2.20) or (2.25)
finally gives the BG critical coupling

J̃BG
crit =

1

2
ln

(
z̄

z̄ − 2

)
. (2.26)

Again, we find that for z̄ = 2 the critical coupling diverges. In Fig. 2.3c the critical point
for a lattice with z̄ = 4 is indicated with the black dot.

2.9 Free energy minima

Figure 2.4: The difference between
the binodal and free energy minima
for h̃ 6= 0.

When h̃ = 0 the binodal given by Eq. (2.20) coin-
cides with the minima of f̃BG(ϕ). For h̃ 6= 0 this
is no longer true, since the free energy minima are
now shifted while the binodal remains at the same
location as shown in Fig. (2.4). Here we calculate
the free energy minima in the presence of an ex-
ternal field. Based on the analysis in Sec. 2.8.1 we
can derive an equation for f̃ ′BG(ϕ) = 0 including the
external field, which reads

χϕ − e2J̃
(

e−2h̃/z̄χ1−1/z̄
ϕ − e2h̃/z̄χ1/z̄

ϕ

)
− 1 = 0, (2.27)
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where χϕ ≡ ϕ/(1 − ϕ). For z̄ = {2, 3, 4} we can solve Eq. (2.27) analytically. In the next
subsections we focus specifically on z̄ = {2, 4}.

2.9.1 One-dimensional line with z̄ = 2

Equation (2.27) can readily be solved for z̄ = 2. Using the backwards transformation
ϕ = χϕ/(1 + χϕ), we obtain the following result for the free energy minimum, denoted by
ϕBG

min

ϕBG
min =

1

2

1− sinh (h̃)√
e−4J̃ + sinh (h̃)

2

 . (2.28)

This result is well-known, and agrees with the exact result obtained by Ising in [6] (see
Eq. (8) therein), which confirms that the BG approximation is exact on the Bethe lattice5.

2.9.2 Square and Bethe lattice with z̄ = 4

Upon introducing the auxiliary variable ξ ≡ χ1/4
ϕ Eq. (2.27) becomes a quartic equation

ξ4 − e2J̃
(

e−h̃/2ξ3 − eh̃/2ξ
)
− 1 = 0. (2.29)

The roots of a quartic equation are known, and result in the following solution for Eq. (2.29)

ξ1,2 =
Y+

4
− S ± 1

2

√
3

4
Y2

+ +
Y− − 1

8Y
3
+

S
− 4S2, (2.30a)

ξ3,4 =
Y+

4
+ S ± 1

2

√
3

4
Y2

+ −
Y− − 1

8Y
3
+

S
− 4S2, (2.30b)

where we used the following auxiliary variables

S =
1

2

√
1

4
Y2

+ +
1

3

(
W +

∆0

W

)
, (2.31)

W =

(
∆1 +

√
∆2

1 − 4∆3
0

2

)1/3

, (2.32)

∆0 = 3e4J̃ − 12, ∆1 = 54e4J̃∆h̃, ∆h̃ = sinh(h̃), Y± = e2J̃∓h̃/2. (2.33)

5The Bethe lattice for z̄ = 2 is the one-dimensional line
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Figure 2.5: Stationary points of the BG free energy density, given by Eqs. (2.30a) and
(2.30b), as a function of the coupling strength J̃ . From left to right we consider increasing
negative values of the external field h̃. The gray shaded lines correspond to the free energy
minima given by Eq. (2.38) for h̃ = 0 (a), and Eq. (2.37) for h̃ 6= 0 (b and c). The coupling
value J̃∆=0, given by Eq. (2.35), indicates the coupling strength where all four solutions
become real, and denotes the first appearance of a local maximum given by ϕ4.

Not all four solutions given by Eqs.(2.30a)-(2.30b) correspond to the free energy minimum,
and therefore we have to carefully analyze them, starting with the discriminant given by

∆ =
1

27

(
4∆3

0 −∆2
1

)
= 4(e4J̃ − 4)3 − 108e8J̃∆2

h̃
. (2.34)

For ∆ < 0 there are two distinct real roots and two complex conjugate roots, whereas for
∆ > 0 there are either four real roots or four imaginary roots, with the former scenario
applying here. The discriminant changes sign at the coupling value

J̃∆=0 =
1

4
ln (3∆2

h̃
(9∆2

h̃
+ 8)Φ−1/3 + 3Φ1/3 + 9∆2

h̃
+ 4), (2.35)

with
Φ = 27∆6

h̃
+ 36∆4

h̃
+ 8∆2

h̃
[1 + (1 + ∆2

h̃
)1/2]. (2.36)

Increasing the coupling strength above J̃∆=0 gives rise to a local maximum in the free
energy landscape, its position being ϕBG

max = ξ4
4/(1 + ξ4

4) as shown with the purple lines in
Fig. 2.5. Furthermore, we find that for h̃ 6= 0 the free energy minimum is given by

ϕBG
min|h̃6=0 =


ξ4

1

1 + ξ4
1

, 0 ≤ J̃ ≤ ln min {
√

2, s0}

ξ4
3

1 + ξ4
3

, J̃ ≥ ln min {
√

2, s0},
. (2.37)

where ln s0 ≡ ln
√

2
√

2eh̃/2 is the coupling strength that solves for the root of S in
Eq. (2.31). In Fig. 2.5b-c the free energy minimum is indicated with the gray shaded blue
and red line. For h̃ = 0 the four solutions (2.30a) and (2.30b) simplify substantially, and
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result in the following outcome for the minima (see also Fig. 2.5a)

ϕBG
min|h̃=0 =


1

2
, 0 ≤ J̃ ≤ ln

√
2

1

2

[
1± e2J̃

√
e4J̃ − 4

e4J̃ − 2

]
, J̃ ≥ ln

√
2

. (2.38)

Equation (2.38) disagrees with Onsager’s exact result for the square lattice given by
Eq. (1.5), but agrees with the spontaneous magnetization on the Bethe lattice with z̄ = 4.

2.10 Mean field approximation
Here we list the results obtained with the MF approximation for sake of completeness.
Notably, the BG results converge to the MF results for J̃ → 0 or z̄ → ∞, where they are
both exact.

2.10.1 Fixed-magnetization partition function

The MF fixed-magnetization partition function is easily obtained from the BG expression
by setting ζ†BG(ϕ) = ζBG(ϕ) in Eq. (2.13), which gives

ZMF
k=Nϕ =

(
N

Nϕ

)
e−2z̄NJ̃(ϕ(1−ϕ)−1/4). (2.39)

2.10.2 Free energy density

Inserting Eq. (2.39) into Eq. (2.2) we obtain the MF free energy density (where Ξ(ϕ) ≡
ϕ lnϕ)

f̃MF(ϕ) = 2z̄J̃ [ϕ(1− ϕ)− 1/4]− h̃(1− 2ϕ) + Ξ(ϕ) + Ξ(1− ϕ). (2.40)

2.10.3 Phase diagram

The binodal, spinodal, and critical point obtained with the MF approximation read

J̃MF
b (ϕ) =

1

2z̄(2ϕ− 1)
ln

(
ϕ

1− ϕ

)
, J̃MF

s (ϕ) =
1

4z̄

1

ϕ (1− ϕ)
, J̃MF

crit =
1

z̄
. (2.41)

These results are well known and are extensively reported in the literature [81,131–133,
137].
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Figure 2.6: Qualitative differences between the MF and BG free energy density. In
each plot we consider a lattice with z̄ = 4 and vanishing external field h̃ = 0. Red lines
correspond to the MF approximation and blue lines to the BG approximation. (a) Free
energy density as a function of the concentration of down spins ϕ at fixed J̃ = 0.5. ∆f̃ ≡
f̃(1/2)− f̃(ϕmin) denotes the free energy barrier between the twominima, and f̃ ′′(1/2) is the
curvature of the free energy barrier. (b) ∆f̃ as a function of J̃ . The MF free energy barrier
diverges to +∞, whereas the BG barrier converges to limJ̃→∞∆f̃BG = (z̄ − 2) ln (2)/2. (c)
f̃ ′′(1/2) as a function of J̃ . The MF curvate diverges to −∞, whereas the BG curvature
converges to limJ̃→∞ f̃ ′′BG(1/2) = 2(2− z̄).

2.10.4 Free energy minima

The free energy minima of the MF free energy density can be written as ϕMF
min = (1 + s)/2,

where s are the non-zero solutions of the transcendental equation

s = tanh (z̄J̃s− h̃). (2.42)

For h̃ = 0, and below the critical coupling J̃ ≤ 1/z̄, the only solution to Eq. (2.42) is given
by s = 0. For J̃ > 1/z̄ there exists two nonzero solutions resulting in ϕMF

min 6= 1/2.

2.11 Qualitative differences between MF and BG ap-

proximation

2.11.1 Free energy barrier and curvature

It has already been stated in Chapter 1 that the MF approximation erroneously predicts
spontaneous magnetization in one dimension. Yet, there are more subtle differences be-
tween the BG and MF approximation, which become apparent in the strong coupling limit.
In Fig. (2.6)a we plot the MF (red) and BG (blue) free energy density for z̄ = 4 with
(J̃ , h̃) = (0.5, 0). Two characteristic differences between the two free energy densities are
the height of the free energy barrier ∆f̃ ≡ f̃(1/2)− f̃(ϕmin), and the curvature of the bar-
rier f̃ ′′(1/2), indicated with the black arrows. In Fig. (2.6)b-c both ∆f̃ and f̃ ′′(1/2) are plot-
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ted w.r.t. J̃ , and we find that the MF results diverge in stark contrast to the BG results. The
barrier and curvature determine nucleation times, stable wavelengths in spinodal decom-
position, stability of uniformmixtures, and the shape of concentration profiles [39,69,138].
Therefore, based on Fig. (2.6)b-c, we find that these physical observables should have clear
distinct qualitative behavior between the BG and MF approximation, which will be further
discussed in Chapters 4-5. To obtain the free energy barrier and curvature for J̃ → ∞ we
use limJ̃→∞ ϕmin = 0 ∨ 1 for z̄ ≥ 3 (6) and h̃ = 0, which gives the following results using
Eqs. (2.14) and (2.40)

limJ̃→∞∆f̃BG = (z̄ − 2) ln (2)/2, limJ̃→∞∆f̃MF = z̄J̃/2,

limJ̃→∞ f̃ ′′BG(1/2) = 2(2− z̄), limJ̃→∞ f̃ ′′MF(1/2) = −4z̄J̃ . (2.43)

Figure 2.7: Relative error of the free en-
ergy density for h̃=0 obtained with the
(a) BG and (b) MF approximation as a
function of the system size. Up to N=36
each point is calculated for a square lat-
tice of size

√
N×
√
N with free boundary

conditions and ϕ=1/2. For N=42 a rect-
angular lattice of size 6×7 is considered.

Both results are displayed in Fig. (2.6)b-c
above their respective lines.

2.11.2 Error analysis

To systematically asses the accuracy of the MF
and BG approximation, we want to compare
them with exact results. Let f̃N (ϕ) be the free
energy density for a finite system composed of
N spins. Using Eqs. (2.2) and (1.6), we can
calculate f̃N (ϕ) numerically exact by brute-
force summation of the fixed-magnetization
partition function. In Fig. 2.7 we compare
the accuracy of the BG (a) and MF (b) ap-
proximations by means of the relative error
εBG,MF
N (ϕ) ≡ 1−f̃

BG/MF
N (ϕ)/f̃N (ϕ) for a square

lattice (z̄ = 4) with ϕ = 1/2 closed bonds and
varying size N . We find that the BG approxi-
mation approaches the numerically exact free
energy density with increasing N , regardless
of the coupling strength J̃ . Conversely, the MF
approximation diverges with both, increasing
system size N and coupling strength J̃ .

6For the MF approximation this statement also holds for z̄ = 2.
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Chapter 3

Bethe-Guggenheim approximation

for non-uniform systems
Well, I come down in the morning and I take up a pencil and I try to THINK.

Hans Bethe in Hans Bethe: Prophet of Energy

Building upon the previous chapter, we here apply the BG approximation to non-uniform
lattice systems. We consider an Ising model with anisotropic coupling (Jx, Jy) in the hori-
zontal and vertical direction and calculate the partition function for a fixed magnetization
per spin block. Upon taking the thermodynamic limit, we obtain a Cahn-Hilliard free
energy functional with a concentration-dependent gradient energy coefficient. Subse-
quently, we determine the equilibrium concentration profile and stable wavelength pertur-
bations within the spinodal region. Here, we encounter a remarkable new feature of the
BG concentration profile named interface broadening. This phenomenon is not present in
the MF approximation, and will be further investigated in Chapter 4. In the final section we
provide a comparison between the BG and MF results, and show how their concentration
profiles differ qualitatively in the strong coupling limit. The work presented in this chapter
is based on the SM of [138].

3.1 Initial setup and definitions

3.1.1 Lattice specification and the thermodynamic limit

In this chapter the horizontal and vertical direction are indicated with x and y, respectively.
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Figure 3.1: Lattice specification and the thermodynamic limits. (a-b) Lattice configu-
ration of the spins (a), and spin blocks (b). (Lx,y, lx,y, δx,y) are the lattice length, spin block
length, and lattice spacing, respectively. The number of spins and spin blocks are denoted
with (Nx,y

σ , Nx,y
b ). Here we consider an example with sixteen spins and four spin blocks.

(c-d) Thermodynamic limit of the spins (c) and spin blocks (d) defined in Eq. (3.1). The
circles display a magnification of individual spins (c) and spin blocks (d).

Spins

We consider N = Nx
σ ×N

y
σ spins σij = ±1 with (i, j) ∈ ({1, ..., Nx

σ}, {1, ..., N
y
σ}) arranged

on a lattice with sides (Lx, Ly). In Fig. 3.1a we provide an example for a square lattice
with sixteen spins. The lattice spacings between spins are (δx, δy) = (Lx/N

x
σ , Ly/N

y
σ ). The

average lattice coordination number is denoted with z̄ = z̄x + z̄y, and z̄ = diag(z̄x, z̄y) is a
diagonal matrix containing the average lattice coordination numbers in the horizontal and
vertical direction, respectively. The square lattice in Fig. 3.1 has (z̄x, z̄y) = (2, 2) and z̄ = 4.

Spin blocks

Similar to Kadanoff’s block spin method [47] we place the spins into Nb = Nx
b ×N

y
b blocks

as shown in Fig. 3.1b. Let bij with (i, j) ∈ ({1, ..., Nx
b }, {1, ..., N

y
b }) denote such a block

containing dim bij = Nx
σ/N

x
b × N

y
σ/N

y
b spins. Consequently, the horizontal and vertical

length of each block is given by (lx, ly) = (Lx/N
x
b , Ly/N

y
b ). The blocks have the same

average lattice coordination number as the spins. In Fig. 3.1b each block consists of four
spins and is aligned with 2 blocks in the horizontal and vertical direction, respectively.

Thermodynamic limit

As in Chapter 2, we will construct a field theory for the fraction of down spins ϕ. To that aim
we introduce the following two scaling limits where we take the number of spins/blocks to
infinity while simultaneously keeping the block/lattice length fixed, i.e.

limNσ
s [·] ≡ lim

Nx
σ ,N

y
σ→∞

lx,ly=(Nx
σ/N

x
b )δx,(N

y
σ/N

y
b )δy=const.

[·] , limNb
s [·] ≡ lim

Nx
b ,N

y
b→∞

Lx,Ly=Nx
b lx,N

y
b ly=const.

[·] ,
(3.1)
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where Nσ and Nb denote the thermodynamic limit of the spins and blocks, respectively. In
Fig. 3.1c-d we give a schematic representation of both limits.

3.1.2 Coarse-grained lattice observables

Recall that dim bij denotes the number of spins inside each spin block. Let us define the
fraction of down spins in block bij as

ϕij(bij) ≡ (dim bij)
−1

∑
(m,n)∈bij

(1− σmn)/2. (3.2)

For a finite number of spins within each block ϕij is a rational number. Applying the first
scaling limit in Eq. (3.1) takes the number of spins within each block to infinity, rendering
limNσ

s [ϕij ] ∈ [0, 1] a continuous variable. The second limit takes the number of blocks to
infinity while simultaneously decreasing their distance, resulting in a continuous differen-
tiable field limNb

s

[
limNσ

s [ϕij ]
]

= ϕ(x, y) as depicted in Fig. 3.1d.

Additionally to Eq. (3.2), we need to define the fraction of intrablock defects inside bij in
the horizontal and vertical direction, which are respectively given by

ζxij(bij) ≡ (z̄xdim bij)
−1

∑
(m,n)∈bij

∑
(k,n)∈bij
〈mk〉

|σmn − σkn|/2,

ζyij({bij}) ≡ (z̄ydim bij)
−1

∑
(m,n)∈bij

∑
(m,k)∈bij
〈nk〉

|σmn − σmk|/2, (3.3)

where 〈nk〉 denotes nearest neighbors. Finally, we define the fraction of interblock defects
between neighbouring blocks in the horizontal and vertical direction, respectively given by

ξx±ij ({bij ,bi±1j}) ≡ (z̄xdim bij)
−1

∑
(m,n)∈bij

∑
(k,n)∈bi±1j

〈mk〉

|σmn − σkn|/2,

ξy±ij ({bij ,bij±1}) ≡ (z̄ydim bij)
−1

∑
(m,n)∈bij

∑
(m,k)∈bij±1

〈nk〉

|σmn − σmk|/2, (3.4)

where one needs to account for the boundary conditions upon summing over boundary
blocks. As an example, we calculate the fraction of intra- and interblock defects for the
lower left block in Fig. 3.1b, which gives for periodic boundary conditions: ζx,y11 = 1/8,
ξx+

11 = 1/8, ξx−11 = 2/8, ξy+
11 = 0, and ξy−11 = 1/8.
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3.2 Rewriting the Ising Hamiltonian over spin blocks

We nowwrite the nearest neighbour Ising Hamiltonian in terms of the coarse-grained inten-
sive lattice variables introduced in Eqs. (3.2)-(3.4). Our starting point is the representation
of the Ising Hamiltonian in terms of defects given by Eq. (2.5) in Chapter 2. Let the spin in-
teraction strength in the horizontal and vertical direction be given by (J̃x, J̃y) ≡ β(Jx, Jy),
where β ≡ 1/kBT is the inverse thermal energy. We decompose the Hamiltonian given by
Eq. (2.5) into a sum over inter- and intrablock contributions (recall that H̃ ≡ βH)

H̃(b) = dim bij

Nx
b∑

i=1

Ny
b∑

j=1

[H̃inter({bi±1j ,bij ,bij±1})/2 + H̃intra({bij})]− C

 . (3.5)

The respective contributions inside the sum are given by

H̃inter({bi±1j ,bij ,bij±1}) = z̄xJ̃x[ξx+
ij ({bij ,bi+1j}) + ξx−ij ({bij ,bi−1j})] + (x↔ y),

H̃intra({bij}) = z̄xJ̃xζ
x
ij({bij}) + (x↔ y), (3.6)

and the constant reads C ≡ (z̄xJ̃x + z̄yJ̃y)/2. The term (x ↔ y) in Eq. (3.6) denotes a
repetition of the preceding term with x and y interchanged. Note that the factor 1/2 for
H̃inter in Eq. (3.5) accounts for the double counting over interblock contributions.

3.3 Rewriting the partition function over spin blocks

Inserting Eq. (3.5) in combination with Eq. (3.6) into the partition function and restoring
the external field h̃ leads to the following exact expression

Z =
∑
{bij}

Nx
b∏

i=1

Ny
b∏

j=1

e−dim bij [H̃inter({bij ,bi±1j ,bij±1})/2+H̃intra({bij})−h̃(1−2ϕij({bij}))−C]. (3.7)

Note that we are currently not constraining the magnetization. The evaluation of the con-
figurational sum over all possible spin block configurations {bij} constitutes a difficult –
if not impossible – task. However, the Hamiltonian inside the sum solely depends on the
seven lattice variables (ϕij , ζ

x,y
ij , ξ

x,y±
ij ) (i, j) ∈ ({1, ..., Nx

b }, {1, ..., N
y
b }). Therefore, we can

interchange the configurational sum by a sum over all possible values of these seven lattice
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variables and introduce a degeneracy of states Ψ(ϕij , ζ
x,y
ij , ξ

x,y±
ij ) which accounts for the

multiplicity of configurations. Hence

Z=
∑
ϕij

∑
ζx,yij

∑
ξx,y±ij

Nx
b∏

i=1

Ny
b∏

j=1

Ψ(ϕij , ζ
x,y
ij , ξ

x,y±
ij )e−dim bij [z̄xJ̃x[ζxij+(ξx+ij +ξx−ij )/2]+(x↔y)−h̃(1−2ϕij)−C].

(3.8)
Equation (3.8) remains an exact expression as long as the degeneracy of states
Ψ(ϕij , ζ

x,y
ij , ξ

x,y±
ij ) is evaluated correctly. For (J̃ , h̃) = (0, 0) we know that the degeneracy

of states should obey the following relation

∑
ζx,yij

∑
ξx,y±ij

Ψ(ϕij , ζ
x,y
ij , ξ

x,y±
ij )

!
=

(
dim bij

ϕijdim bij

)
, (3.9)

since this is the amount of possible configurations to place ϕijdim bij down spins in a block
that contains dim bij spins in total. We will use Eq. (3.9) as a normalization condition to
consistently approximate the degeneracy of states.

3.4 Pair approximation Ansatz

Similar to Chapter 2, we introduce a pair-approximation Ansatz for the degeneracy of
states. The difference, however, is that now we account for the difference between intra-
and interblock contributions. This results in the following expression for the degeneracy of
states for a non-uniform system

ΨBG(ϕi±1j , ϕij , ϕij±1, ζ
x,y
ij , ξ

x,y±
ij ) =

NBG(ϕi±1j , ϕij , ϕij±1)Ψ̂BG(ϕi±1j , ϕij , ϕij±1, ζ
x,y
ij , ξ

x,y±
ij ), (3.10)

where NBG(ϕi±1j , ϕij , ϕij±1) is a normalization constant left to be determined. The un-
normalized degeneracy of states reads

Ψ̂BG(ϕi±1j , ϕij , ϕij±1, ζ
x,y
ij , ξ

x,y±
ij ) =

Ψ̂BG,intra(ϕij , ζ
x,y
ij )Ψ̂BG,inter(ϕi±1j , ϕij , ϕij±1, ξ

x,y±
ij ), (3.11)

which we have further split into intra- and interblock contributions, respectively, given by

Ψ̂BG,intra(ϕij , ζ
x,y
ij ) = ψx(ϕij , ϕij , ζ

x
ij)ψy(ϕij , ϕij , ζ

y
ij), (3.12)
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Ψ̂BG,inter(ϕi±1j , ϕij , ϕij±1, ξ
x,y±
ij ) =

∏
±
ψ

1
2
x (ϕij , ϕi±1j , ξ

x±
ij )ψ

1
2
y (ϕij , ϕij±1, ξ

y±
ij ). (3.13)

The functions ψx,y(a, b, c), which enter Eqs. (3.12) and (3.13), are given by

ψx,y(a, b, c) ≡ [Γ̃x,y(1− a− c)Γ̃x,y(b− c)Γ̃x,y(a− b+ c)Γ̃x,y(c)]
−1/2, (3.14)

with Γ̃x,y(w) ≡ Γ(z̄x,y(dim bij)w/2 + 1), and Γ(w) being the Gamma function (i.e. gen-
eralized factorial). Equation (3.14) can be derived similarly to Eq. (2.9) in Chapter 2 by
counting the number of degenerate configurations upon distributing pairs of spins over a
lattice. The functions ψx,y(ϕij , ϕij , ζx,yij ) account for distributing pairs of spins inside a sin-
gle block in the horizontal and vertical direction, respectively. Similarly, ψx(ϕij , ϕi±1j , ξ

x±
ij )

and ψy(ϕij , ϕij±1, ξ
y±
ij ) account for distributing pairs of spins between two neighbouring

blocks in the horizontal and vertical direction, respectively.

3.5 Evaluating the normalization constant

The normalization constantNBG(ϕi±1j , ϕij , ϕij±1) is determined by equation Eq. (3.9). To
evaluate the six sums over the lattice variables (ζx,yij , ξ

x,y±
ij ), we take the thermodynamic

limit of the spins, which renders the lattice variables continuous, and employ the maximum
term method. This results in the following arguments

ζBG(ϕij , ϕij) ≡ arg sup
ζx,yij

{limNσ
s [(dim bij)

−1 ln (ψx,y(ϕij , ϕij , ζ
x,y
ij ))]} = ϕij(1− ϕij),

ξx±BG(ϕi±1j , ϕij) ≡ arg sup
ξx±ij

{limNσ
s [(dim bij)

−1 ln (ψx(ϕij , ϕi±1j , ξ
x±
ij ))]} = ϕi±1j(1− ϕij),

ξy±BG(ϕij±1, ϕij) ≡ arg sup
ξy±ij

{limNσ
s [(dim bij)

−1 ln (ψy(ϕij , ϕij±1, ξ
y±
ij ))]} = ϕij±1(1− ϕij).

(3.15)

To acquire Eq. (3.15), we have used Stirling’s approximation for the Gamma function
ln Γ(w) = Ξ(w) − w + O(lnw) for Re(w) > 0 with Ξ(w) ≡ w ln (w). Plugging Eq. (3.15)
into Eq. (3.10), and finally solving Eq. (3.9) for the normalization constant yields

NBG(ϕi±1j , ϕij , ϕij±1) =

(
dim bij

ϕijdim bij

)
Ψ̂−1

BG(ϕi±1j , ϕij , ϕij±1, ζBG, ξ
x,y±
BG ), (3.16)
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where we have suppressed the arguments of ζBG and ξx,y±BG for convenience. With the
normalization constant evaluated explicitly, we can now determine the partition function
given by Eq. (3.8).

3.6 Evaluating the partition sum

Similarly to the previous section we take the thermodynamic limit of the spins and approx-
imate the six inner sums in Eq. (3.8) with the maximum term method, which yields

ζ̂x,yBG(ϕij , ϕij) ≡ arg sup
ζx,yij

{limNσ
s [(dim bij)

−1 ln (ψx,y(ϕij , ϕij , ζ
x,y
ij )e−z̄x,y J̃x,yζ

x,y
ij dim bij )]}

=
2ζBG

Ωx,y(0, ζBG)
, (3.17)

ξ̂x±BG(ϕi±1j , ϕij) ≡ arg sup
ξx±ij

{limNσ
s [(dim bij)

−1 ln (ψ
1
2
x (ϕij , ϕi±1j , ξ

x±
ij )e−z̄xJ̃xξ

x±
ij dim bij/2)]}

=
2ξx±BG

Ωx(ϕij−ϕi±1j , ξ
x±
BG)

, (3.18)

ξ̂y±BG(ϕij±1, ϕij) ≡ arg sup
ξy±ij

{limNσ
s [(dim bij)

−1 ln (ψ
1
2
y (ϕij , ϕij±1, ξ

y±
ij )e−z̄y J̃yξ

y±
ij dim bij/2)]}

=
2ξy±BG

Ωy(ϕij−ϕij±1, ξ
y±
BG)

, (3.19)

where we introduced the auxiliary function

Ωx,y(a, b) ≡ 1 + aγx,y + [δa,0 + sgn(a)]([1 + aγx,y]
2 + 4bγx,y)

1
2 , (3.20)

with sgn(x) = ±1 for ±x > 0, sgn(0) = 0, and γx,y ≡ exp (4J̃x,y) − 1. For J̃x,y = 0 we
have ζ̂x,yBG = ζBG and ξ̂x,y±BG = ξx,y±BG , as expected. Note that Eq. (3.17) equals Eq. (2.12) in
Chapter 2. With the six inner sums evaluated the BG partition function becomes

ZBG≡
∑
ϕij

Nx
b∏

i=1

Ny
b∏

j=1

ẐBG(ϕi±1j , ϕij , ϕij±1)

=
∑
ϕij

Nx
b∏

i=1

Ny
b∏

j=1

(
dim bij

ϕijdim bij

)
Ψ̂BG(ϕi±1j , ϕij , ϕij±1, ζ̂

x,y
BG, ξ̂

x,y±
BG )

Ψ̂BG(ϕi±1j , ϕij , ϕij±1, ζBG, ξ
x,y±
BG )

e−dim bij [HBG−h̃(1−2ϕij)−C],

(3.21)
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where we have suppressed the arguments ofHBG, ζ̂BG, and ξ̂x,y±BG for convenience. The BG
Hamiltonian reads

HBG(ϕi±1j , ϕij , ϕij±1)=z̄xJ̃x(ζ̂xBG(ϕij , ϕij)+(ξ̂x+
BG(ϕi+1j , ϕij)+ξ̂

x−
BG(ϕi−1j , ϕij))/2)+(x↔ y).

(3.22)
Finally, to determine the sum over ϕij in Eq. (3.21), we again use the maximum term
method. To that aim we introduce the BG free energy density in the thermodynamic limit
of the spins

f̃BG(ϕi±1j , ϕij , ϕij±1) ≡ limNσ
s

[
−(dim bij)

−1 ln (ẐBG(ϕi±1j , ϕij , ϕij±1))
]

= HBG(ϕi±1j , ϕij , ϕij±1)− h̃(1− 2ϕij)− C

+ (1− 3z̄/4)[Ξ(ϕij) + Ξ(1− ϕij)]

+ (z̄x/4)[Ξ(1− ϕij − ζ̂xBG) + Ξ(ϕij − ζ̂xBG) + 2Ξ(ζ̂xBG)]

+ (z̄x/8)
∑
±[Ξ(1− ϕij − ξ̂x±BG) + Ξ(ϕi±1j − ξ̂x±BG)]

+ (z̄x/8)
∑
±[Ξ(ϕij − ϕi±1j + ξ̂x±BG) + Ξ(ξ̂x±BG)]

− (z̄x/8)
∑
±[Ξ(1− ϕi±1j) + Ξ(ϕi±1j)] + (x↔ y), (3.23)

where the last term (x ↔ y) applies to all terms with the prefactor z̄x, and we recall that
Ξ(x) ≡ x ln (x). To optimize Eq. (3.23) over ϕij , we can employ two different strategies:

1. Optimize f̃BG(ϕi±1j , ϕij , ϕij±1) over ϕij and finally apply limNb
s [·].

2. Apply limNb
s [̃fMF(ϕi±1j , ϕij , ϕij±1)] and then optimize the free energy functional.

Below we carry out both strategies and show that they give equivalent results for the equi-
librium concentration profile. Only the second strategy, however, leads to a Cahn-Hilliard
type free energy functional.

3.6.1 Optimization w.r.t. ϕij → limNb
s [·]

Extremizing Eq. (3.21) over ϕij is equivalent to finding the local minima of the BG free
density given by Eq. (3.23), yielding the equation

∑
k=±1

∂ϕij [̃fBG(ϕ(i+k)±1j , ϕ(i+k)j , ϕ(i+k)j±1) + f̃BG(ϕi±1(j+k), ϕi(j+k), ϕi(j+k)±1)]

+∂ϕij f̃BG(ϕi±1j , ϕij , ϕij±1)
!

= 0. (3.24)
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Upon taking the derivative of the BG free energy density w.r.t. ϕij , we can use the following

∂ζ̂x,yBG
f̃BG(ϕi±1j , ϕij , ϕij±1) = ∂ξ̂x,y±BG

f̃BG(ϕi±1j , ϕij , ϕij±1)
!

= 0, (3.25)

since both ζ̂x,yBG and ξ̂x,y±BG are derived by minimization of the BG free energy density. This
renders the evaluation of Eq. (3.24) a relatively easy task and results in the following re-
current set of difference equations ∀(i, j) ∈ ({1, ..., Nx

b }, {1, ..., N
y
b })

z̄x
8

∑
±

[
ln

(
1−ϕij−ξ̂x±BG(ϕi±1j , ϕij)

ϕij−ϕi±1j+ξ̂
x±
BG(ϕi±1j , ϕij)

)
− ln

(
ϕij−ξ̂x±BG(ϕij , ϕi±1j)

ϕi±1j−ϕij+ξ̂x±BG(ϕij , ϕi±1j)

)]
+

z̄y
8

∑
±

[
ln

(
1−ϕij−ξ̂y±BG(ϕij±1, ϕij)

ϕij−ϕij±1+ξ̂y±BG(ϕij±1, ϕij)

)
− ln

(
ϕij−ξ̂y±BG(ϕij , ϕij±1)

ϕij±1−ϕij+ξ̂y±BG(ϕij , ϕij±1)

)]

=
z̄x
4

ln

(
ϕij − ζ̂xBG(ϕij , ϕij)

1− ϕij − ζ̂xBG(ϕij , ϕij)

)
+ (x↔ y) + (1− z̄) ln

(
ϕij

1− ϕij

)
−µ̃. (3.26)

For a one-dimensional concentration profile (i.e. ϕij → ϕi) a similar equation has been
derived in [139] – see Eqs. (31)-(33) therein. Here we take the thermodynamic limit of
the spin blocks, which transforms Eq. (3.26) into a partial differential equation (PDE). To
that aim we introduce the following notation:

limNb
s [ϕij = ϕ(ilx, jly)] ≡ ϕ(x, y), ∀(x, y) ∈ A,

limNb
s [ϕi±1j = ϕ(ilx ± lx, jly)] ≡ lim

lx→0
ϕ(x± lx, y), ∀(x, y) ∈ A,

limNb
s [ϕi±1j = ϕ(ilx ± lx, jly)] ≡ lim

ly→0
ϕ(x, y ± ly), ∀(x, y) ∈ A, (3.27)

where A = [−Lx/2, Lx/2]× [−Ly/2, Ly/2]. Applying Eq. (3.27) to the left-hand side (LHS)
of (3.26), we obtain the following limit for the numerators inside the first two logarithms:

lim
lx→0

(
∑
± ln(1−ϕ(x, y)−ξ̂x±BG(ϕ(x±lx, y), ϕ(x, y)))−2 ln(1−ϕ(x, y)−ζ̂xBG(ϕ(x, y), ϕ(x, y)))/l2x

=
ξ̂
x(1,0)
BG ∂2

xϕ(x, y)− ξ̂x(2,0)
BG (∂xϕ(x, y))2

ϕ(x, y) + ζ̂xBG − 1
−

(
ξ̂
x(1,0)
BG ∂xϕ(x, y)

ϕ(x, y) + ζ̂xBG − 1

)2

, (3.28)

lim
lx→0

(2 ln(ϕ(x, y)−ζ̂xBG(ϕ(x, y), ϕ(x, y)))−
∑
± ln(ϕ(x, y)−ξ̂x±BG(ϕ(x, y), ϕ(x±lx, y))))/l2x

=
ξ̂
x(0,1)
BG ∂2

xϕ(x, y) + ξ̂
x(0,2)
BG (∂xϕ(x, y))2

ϕ(x, y)− ζ̂xBG

+

(
ξ̂
x(0,1)
BG ∂xϕ(x, y)

ϕ(x, y)− ζ̂xBG

)2

, (3.29)
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where ξ̂x(m,n)
BG ≡ ∂ma ∂

n
b ξ̂

x
BG(a, b)|(ϕ(x,y),ϕ(x,y)). The second term in (3.28) and first term

in (3.29) are added manually, and therefore need to be added equally to the right-hand
side (RHS) of Eq. (3.26) by hand. Proceeding with the denominators inside the first two
logarithms of (3.26), we get:

lim
lx→0

(
∑
± ln(ϕ(x±lx, y)−ϕ(x, y)+ξ̂x±BG(ϕ(x, y), ϕ(x±lx, y)))−2 ln(ζ̂xBG(ϕ(x, y), ϕ(x, y))))/l2x

=
(ξ̂
x(0,1)
BG + 1)∂2

xϕ(x, y)− ξ̂x(0,2)
BG (∂xϕ(x, y))2

ζ̂xBG

−

(
(ξ̂
x(0,1)
BG + 1)∂xϕ(x, y)

ζ̂xBG

)2

, (3.30)

lim
lx→0

(2 ln(ζ̂xBG(ϕ(x, y), ϕ(x, y)))−
∑
± ln(ϕ(x, y)−ϕ(x±lx, y)+ξ̂x±BG(ϕ(x±lx, y), ϕ(x, y))))/l2x

=
(1− ξ̂x(1,0)

BG )∂2
xϕ(x, y)− ξ̂x(2,0)

BG (∂xϕ(x, y))2

ζ̂xBG

+

(
(ξ̂
x(1,0)
BG − 1)∂xϕ(x, y)

ζ̂xBG

)2

. (3.31)

Here the second term in (3.30) and first term in (3.31) are added manually. However,
since these terms cancel each other, they shall not be added to the RHS of Eq. (3.26).
Upon interchanging x↔ y the results of Eqs. (3.28)-(3.31) readily apply to the y-direction.
Summing up all the contributions, we obtain

z̄x
8

((3.28)+(3.29)+(3.30)+(3.31))=κBG,x(ϕ(x, y))∂2
xϕ(x, y)+

κ′BG,x(ϕ(x, y))(∂xϕ(x, y))2

2
,

(3.32)
where κBG,x(ϕ) is identified as the gradient energy coefficient given by

κBG,(x,y)(ϕ) ≡ z̄x,y(e
4J̃x,y − 1)

4

√
1 + 4(e4J̃x,y − 1)ϕ(1− ϕ)

, (3.33)

and κ′BG,x(ϕ) = ∂ϕκBG,x(ϕ). For a one-dimensional concentration profile the gradient
energy coefficient has been derived in [140] – see Eq. (2.12b) therein – and agrees with
our result. Plugging the result back into the LHS of Eq. (3.26), we obtain the following
PDE (recall that ζ̂x,yBG is given by Eq. (3.17))

l2x[κBG,x(ϕ(x, y))∂2
xϕ(x, y) + κ′BG,x(ϕ(x, y))(∂xϕ(x, y))2/2] + (x↔ y)

=
z̄x
2

ln

(
ϕ(x, y)−ζ̂xBG

1−ϕ(x, y)−ζ̂xBG

)
+(x↔ y) + (1−z̄) ln

(
ϕ(x, y)

1− ϕ(x, y)

)
−h̃(1−2ϕ(x, y)), (3.34)

which applies in the domain A = [−Lx/2, Lx/2]× [−Ly/2, Ly/2].
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3.6.2 limNb
s [·]→ optimization w.r.t. ϕ(x, y)

Here we proceed with the second strategy which results in a Cahn-Hilliard type free energy
functional. Applying the thermodynamic limit of the blocks to Eq. (3.23) in the x-direction,
we need to keep track of the following terms:

lim
lx→0

(
∑
±ξ̂

x±
BG(ϕ(x± lx, y), ϕ(x, y))− 2ζ̂xBG(ϕ(x, y), ϕ(x, y)))/l2x

P.I.
= [∂xϕ(x, y)ξ̂

x(1,0)
BG ]

x=Lx/2
x=−Lx/2 − (∂xϕ(x, y))2ξ̂

x(1,1)
BG , (3.35)

lim
lx→0

(
∑
±Ξ(ϕ(x± lx, y))− 2Ξ(ϕ(x, y)))/l2x

P.I.
= [∂xϕ(x, y)(ln (ϕ(x, y)) + 1)]

x=Lx/2
x=−Lx/2, (3.36)

lim
lx→0

(
∑
±Ξ(1− ϕ(x± lx, y))− 2Ξ(1− ϕ(x, y)))/l2x

P.I.
= −[∂xϕ(x, y)(ln (1− ϕ(x, y)) + 1)]

x=Lx/2
x=−Lx/2, (3.37)

lim
lx→0

(
∑
±Ξ(ξ̂x±BG(ϕ(x± lx, y), ϕ(x, y)))− 2Ξ(ζ̂xBG(ϕ(x, y), ϕ(x, y))))/l2x

P.I.
= [∂xϕ(x, y)ξ̂

x(1,0)
BG (ln (ζ̂xBG) + 1)]

x=Lx/2
x=−Lx/2 − (∂xϕ(x, y))2ξ̂

x(1,0)
BG ξ̂

x(0,1)
BG /ζ̂xBG

− (∂xϕ(x, y))2ξ̂
x(1,1)
BG (ln (ζ̂xBG) + 1), (3.38)

lim
lx→0

(
∑
±Ξ(ϕ(x±lx, y)−ξ̂x±BG(ϕ(x±lx, y), ϕ(x, y)))−2Ξ(ϕ(x, y)−ζ̂xBG(ϕ(x, y), ϕ(x, y))))/l2x

P.I.
= [∂xϕ(x, y)(1− ξ̂x(1,0)

BG )(ln (ϕ(x, y)− ζ̂xBG) + 1)]
x=Lx/2
x=−Lx/2 − (∂xϕ(x, y))2 (ξ̂

x(1,0)
BG − 1)ξ̂

x(0,1)
BG

ϕ(x, y)− ζ̂xBG

+ (∂xϕ(x, y))2ξ̂
x(1,1)
BG (ln (ϕ(x, y)− ζ̂xBG) + 1), (3.39)

lim
lx→0

(
∑
±Ξ(1−ϕ(x, y)−ξ̂x±BG(ϕ(x±lx, y), ϕ(x, y)))−2Ξ(1−ϕ(x, y)−ζ̂xBG(ϕ(x, y), ϕ(x, y))))/l2x

P.I.
= [−∂xϕ(x, y)ξ̂

x(1,0)
BG (ln (1− ϕ(x, y)− ζ̂xBG) + 1)]

x=Lx/2
x=−Lx/2−(∂xϕ(x, y))2 ξ̂

x(1,0)
BG [ξ̂

x(0,1)
BG +1]

1−ϕ(x, y)−ζ̂xBG

+ (∂xϕ(x, y))2ξ̂
x(1,1)
BG (ln (1−ϕ(x, y)−ζ̂xBG)+1), (3.40)

lim
lx→0

(
∑
±Ξ(ϕ(x, y)−ϕ(x±lx, y)+ξ̂x±BG(ϕ(x±lx, y), ϕ(x, y)))− 2Ξ(ζ̂xBG(ϕ(x, y), ϕ(x, y))))/l2x
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P.I.
= [∂xϕ(x, y)(ξ̂

x(1,0)
BG −1)(ln (ζ̂xBG)+1)]

x=Lx/2
x=−Lx/2−(∂xϕ(x, y))2 (ξ̂

x(1,0)
BG − 1)(ξ̂

x(0,1)
BG + 1)

ζ̂xBG

− (∂xϕ(x, y))2ξ̂
x(1,1)
BG (ln (ζ̂xBG) + 1), (3.41)

where we have immediately carried out partial integration – since each term arises inside
an integral – and identify the first terms after the equal sign in Eqs. (3.35)-(3.41) with
the surface contribution. Note that Eqs. (3.38)-(3.41) each contain three terms after the
equal sign, which we respectively denote with (3.38)i-(3.41)i, i = {1, 2, 3}. We now add up
the third terms (3.38)3-(3.41)3 which exactly cancel with Eq. (3.35) upon plugging them
back into Eq. (3.23). Adding up the second terms (3.38)2-(3.41)2 yields

z̄x
8

((3.38)2 + (3.39)2 + (3.40)2 + (3.41)2) =
1

2
κBG,x(ϕ(x, y))(∂xϕ(x, y))2. (3.42)

Upon interchanging x ↔ y the same results applies to the y-direction. Putting the results
back into Eq. (3.23) and adding/subtracting those terms which have been added by hand
in Eqs. (3.35)-(3.41), we finally obtain the BG free energy density

limNb
s

[
f̃BG(ϕi±1j , ϕij , ϕij±1)

]
= f̃BG(ϕ(x, y))+

l2x
2
κBG,x(ϕ(x, y))(∂xϕ(x, y))2+(x↔ y),

(3.43)
where κBG,x(ϕ) is defined in Eq. (3.33), and the BG local free energy density with
anisotropic coupling strength can be written as f̃BG(ϕ) = ũBG(ϕ) − s̃BG(ϕ) with the in-
ternal energy and entropy density given by

ũBG(ϕ) = 2[z̄xJ̃x(ζ̂xBG − 1/8) + z̄yJ̃y(ζ̂
y
BG − 1/8)]− h̃(1− 2ϕ),

s̃BG(ϕ) = (z̄ − 1)[Ξ(ϕ) + Ξ(1−ϕ)]− z̄x
2

[Ξ(ϕ−ζ̂xBG)+Ξ(1−ϕ−ζ̂xBG) + 2Ξ(ζ̂xBG)] + (x↔ y),

(3.44)

where (x ↔ y) applies to the second term of s̃BG(ϕ). Note that for J̃x = J̃y = J̃ we get
the isotropic free energy density given by Eq. (2.14). Finally, the BG free energy density
functional – including the surface contribution – is given by

F̃BG [ϕ(x, y)] ≡ limNb
s

(Nx
b N

y
b )−1

Nx
b∑

i=1

Ny
b∑

j=1

f̃BG(ϕi±1j , ϕij , ϕij±1)


=

1

lxly

∫
(x,y)∈A

[̃fBG(ϕ(x, y))+
l2x
2
κBG,x(∂xϕ(x, y))2+(x↔ y)]dxdy+ΦBG[ϕ(x, y)],

(3.45)
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where the BG surface contribution reads

ΦBG[ϕ(x, y)]=
z̄xlx
8ly

∫
y
[ln

(
2 exp (4J̃x)(1−ϕ(x, y))

Ωx(0, ζBG(ϕ(x, y)))−2ϕ(x, y)

)
∂xϕ(x, y)]

x=Lx/2
x=−Lx/2dy + (x↔ y),

(3.46)

with ζBG and Ωx,y(a, b) given by Eqs. (3.15) and (3.20), respectively. The profile ϕ(x, y)

which corresponds to a stationary point of Eq. (3.45), i.e. δF̃BG [ϕ(x, y)] /δϕ(x, y) = 0,
solves the corresponding Euler-Lagrange (E-L) equation

l2x[κBG,x∂
2
xϕ(x, y)+κ′BG,x(∂xϕ(x, y))2/2]+(x↔ y) = ∂ϕ(x,y)f̃BG(ϕ(x, y)), (3.47)

with boundary conditions ∂x,yϕ(x, y)|x,y=±Lx,y/2 = 0 and ϕ(x, y)|x,y=±Lx,y/2 = ϕBG
min

where ϕBG
min ≡ arg inf0≤ϕ≤1 f̃BG(ϕ). Plugging Eq. (3.44) into Eq. (3.47)

finally results in Eq. (3.34). This concludes our derivation of the
Cahn-Hilliard free energy functional within the BG approximation.

Figure 3.2: (a) One-dimensional
equilibrium profile ϕ(x) that solves
Eq. (3.47) for various values of J̃ .
(b) Interface steepness ϕ′(0) as a
function of J̃ . Colored dots re-
late to the lines in (a). The blue
shaded area corresponds to J̃ <
J̃BG

crit where the interface steepness
remains zero.

3.7 Equilibrium profile

Here we consider a concentration profile which only
varies in the x direction, i.e. ϕ(x, y) = ϕ(x), ∀ x ∈
[−Lx/2, Lx/2]. In subsequent analysis x is defined
in units of the block length lx. The equilibrium pro-
file ϕ(x) is an extremum of Eq. (3.45) and solves
Eq. (3.47). An example is given in Fig. 3.2a for
a lattice with z̄ = 4 obtained by numerically solv-
ing Eq. (3.47). Surprisingly, the interface steepness
ϕ′(0) ≡ dϕ(x)/dx|x=0 is a non-monotonic function
of J̃ as displayed in Fig. 3.2b. After a certain value
around J̃ ≈ 1 the steepness decreases, correspond-
ing to a broadening of the interface. In Chapter 4 we
will give a physical explanation behind the interface
broadening, whereas here we derive analytical ex-
pressions for the interface steepness, interface width
(according to the Cahn-Hilliard definition [39]), and
prove the broadening of the BG equilibrium profile
for any lattice with z̄ > 2.
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3.7.1 Interface steepness and width

For a one-dimensional concentration profile Eq. (3.47) reduces to a second order au-
tonomous ordinary differential equation (ODE). To evaluate the interface steepness, we
first rewrite the LHS of Eq. (3.47) as

κBG,xϕ
′′
BG(x) +

1

2
κ′BG,x(ϕ′BG(x))2 =

1

2ϕ′BG(x)

d

dx
[κBG,x(ϕ′BG(x))2]. (3.48)

Taking the term 1/ϕ′BG(x) to the RHS of Eq. (3.47) and using the fact that
ϕ′BG(x)(∂fBG(ϕBG(x))/∂ϕBG(x)) = dfBG(ϕBG(x))/dx by the chain rule, we can integrate
both sides over x, resulting in the first-order autonomous ODE

1

2
κBG,x(ϕ′BG(x))2 = f̃BG(ϕBG(x)) + C1, (3.49)

where C1 is an integration constant. From Eq. (3.49) we can directly readout the interface
steepness

ϕ′BG(x) = ±
√

2(f̃BG(ϕBG(x))− f̃BG(ϕBG
min))/κBG,x(ϕBG(x)), (3.50)

where the integration constant is set to C1 = −f̃BG(ϕBG
min). The integration constant is

chosen such that the term inside the square root on the RHS is always positive and to
impose a vanishing derivative at the boundaries.

Now let us focus specifically on the isotropic case with a vanishing external field, i.e. J̃x =

J̃y = J̃ and h̃ = 0. Based on the analysis in Sec. 2.9, we know that the location of the
global minimum can be written as ϕBG

min = χϕ/(1 + χϕ), where χϕ ∈ [0,∞) is given by the
nontrivial solutions (i.e. χϕ 6= 1) of Eq. (2.27). Above the critical coupling J̃ > J̃BG

crit there
exists two nontrivial solutions, resulting in ϕBG

min 6= 1/2. For z̄ = 4 the result is given by
Eq. (2.38), and for completeness we also give the results for z̄ = 3 and z̄ = 6, which reads

ϕBG
min|z̄=3

h̃=0
=

1

2

1± 1

2
Re

e2J̃
√

(e2J̃ + 1)(e2J̃ − 3)

e3J̃ sinh (J̃)− 1

 ,
ϕBG

min|z̄=6
h̃=0

= Re

(
(e2J̃ + (e4J̃ + 4)

1
2 +
√

2(e2J̃(e4J̃ + 4)
1
2 + e4J̃ − 6)

1
2 )6

4096+(e2J̃+(e4J̃+4)
1
2 +
√

2(e2J̃(e4J̃ + 4)
1
2 +e4J̃ − 6)

1
2 )6

)
, (3.51)

where Re(·) denotes the real part. For h̃ 6= 0 Eq. (2.27) is also explicitly solvable for
z̄ = {3, 4} but the final expression is less compact (see for example Eqs. (2.30a) and (2.30b)
for z̄ = 4). Plugging the expression for ϕBG

min into Eq. (3.50) and noting that ϕBG(0) = 1/2,
we have closed-form expressions for the interface steepness at x = 0. To get the interface
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width as defined by Cahn and Hilliard – see Eq. (2.25) in [39] – we simply take a line
tangential to the slope of the concentration profile at x = 0 and determine the crossing
points of this line with the bulk concentration values as depicted in Fig. 3.3a. This leads to
the expression

lBG,CH = |2ϕBG
min − 1|/|ϕ′BG(0)|. (3.52)

Similarly to the interface steepness, we see in Fig. 3.3b that the BG interface width (blue
line) is a non-monotonic function of J̃ . Beyond a certain threshold value the interface width
increases, resulting in a broadening of the interface.

3.7.2 Interface broadening for infinite coupling

To prove that broadening is a general effect regardless of the lattice we take the strong
coupling limit of Eq. (3.50). For z̄ > 2 and J̃ → ∞ the nontrivial solutions to Eq. (2.27)
are approaching χϕ → 0 and χϕ → ∞, resulting in ϕBG

min → 0 ∨ 1. Plugging this into
Eq. (3.50) together with ϕBG(0) = 1/2, we obtain

lim
J̃→∞

ϕ′BG(0) = lim
J̃→∞

±
√

2(2z̄J̃ − z̄ ln (e2J̃ + 1) + (z̄ − 2) ln (2))/z̄x sinh (2J̃) = 0. (3.53)

So we find a vanishing interface steepness at x = 0 for any lattice with z̄ > 2 in the strong
coupling limit. Similarly for the interface width, we find

lim
J̃→∞

lBG,CH = lim
J̃→∞

|2ϕBG
min − 1|/ϕ′BG(0) =∞. (3.54)

Hence, in the strong-interaction limit the interface width diverges for any lattice with z̄ > 2.

3.8 Linear stability analysis
Here we determine the length scales on which inhomogeneities of the concentration profile
are stable. We consider a concentration profile of the form ϕ(x) = ϕ0 + a sin (q · x) with
q = (qx, qy)

T and |a| � min(ϕ0, 1− ϕ0). A sinusoidal perturbation is taken to agree with
the odd boundary conditions which we imposed for Eq. (3.47). Expanding the local free
energy density and gradient energy coefficient around the homogeneous state up to second
order gives

f̃BG(ϕ(x)) = f̃BG(ϕ0) + a sin (q · x)̃f ′BG(ϕ0) +
1

2
a2 sin2 (q · x)̃f ′′BG(ϕ0) +O(a3), (3.55)

1

2
∇ϕ(x)TκBG(ϕ(x))∇ϕ(x) =

1

2
a2(qTκBG(ϕ0)q) cos2 (q · x) +O(a3), (3.56)
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Figure 3.3: (a) Example of the Cahn-Hilliard interface width lCH used in Eq. (3.52). (b)
Cahn-Hilliard interface width within the BG (blue) and MF (red) approximation. (c-d)
Critical wavevector within the BG (3.59) (c) and MF (3.72) (d) approximation. Brighter
colors correspond to larger values for qcrit. The black line represents the spinodal given by
(2.25) and (2.41), respectively. The black dot shows the BG and MF critical point.

where f̃ ′BG(ϕ0) ≡ ∂ϕf̃BG(ϕ)|ϕ0 and f̃ ′′BG(ϕ0) ≡ ∂2
ϕf̃BG(ϕ)|ϕ0 . Now we want to find out

when a sinusoidal perturbation decreases the total free energy compared to the uniform
concentration profile. Plugging Eqs. (3.55) and (3.56) into Eq. (3.45) and subtracting the
free energy density of the uniform concentration gives

F̃BG[ϕ(x)]− F̃BG[ϕ0] =
a2

4

(
f̃ ′′BG(ϕ0) + qTκBG(ϕ0)q

)
+O

(
a2

LxLy

)
, (3.57)

where we have taken the large system-size limit (Lx, Ly)→∞. To decrease the total free
energy, the RHS of Eq. (3.57) must be negative. Note that qTκBG(ϕ0)q ≥ 0, and therefore
only f̃ ′′BG(ϕ0) can make the RHS negative. The region where f̃ ′′BG(ϕ0) < 0 in the (ϕ0, J̃)-
plane is called the spinodal region (see also Sec. 2.8.2), and therefore this process is also
known as spinodal decomposition. When f̃ ′′(ϕ0) < 0 there is an upper bound on stable
wavevectors which is given by

qT
critκBG(ϕ0)qcrit = −f̃ ′′(ϕ0). (3.58)

For a one-dimensional perturbation (qy = 0) this translates to
qBG

crit = (−f̃ ′′BG(ϕ0)/κBG,x(ϕ0))1/2. The critical wavelength given by λBG
crit = 2π/qBG

crit
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provides a lower bound on stable wavelengths. Recall that the BG local free energy
density and square gradient coefficient are defined in Eqs. (3.44) and (3.33), respectively.
For convenience, we immediately take the isotropic interaction strength J̃x = J̃y = J̃ .
Plugging the results for the second derivative of the local free energy density – see
Eq. (2.23) – into qBG

crit gives

qBG
crit =

√
−

f̃ ′′BG(ϕ0)

κBG(ϕ0)
=

√√√√2(z̄ − 2)(1 + 4(e4J̃ − 1)ϕ0(1− ϕ0))
1
2 − 2z̄

z̄xϕ0(1− ϕ0)(e4J̃ − 1)
. (3.59)

In Fig. 3.3c we plot Eq. (3.59) for z̄ = 4. Inside the spinodal region the BG critical wavevec-
tor has a non-monotonic trend and for 0 < ϕ0 < 1 converges to the value

lim
J̃→∞

qBG
crit = 0. (3.60)

Similarly, the critical wavelength diverges, i.e. limJ̃→∞ λ
BG
crit = ∞. Hence for 0 < ϕ0 < 1

there exist no finite stable wavelength perturbations in the strong interaction limit. The
coupling strength J̃†(ϕ0) where qBG

crit is maximal – and therefore λBG
crit minimal – reads

J†(ϕ0) =
1

4
ln

(
1 +

z̄(2 +
√
z̄ − 1)− 2

(z̄ − 2)2ϕ0(1− ϕ0)

)
, (3.61)

with the corresponding λBG
crit(J̃

†(ϕ0)) given by

λBG
crit(J̃

†(ϕ0)) =
π
√
z̄x

|z̄ − 2|

√
z̄(2 +

√
z̄ − 1)− 2

(z̄(1 +
√
z̄ − 1 + z̄/4)− 1)

1
2 − z̄/2

, (3.62)

which is independent of the uniform background concentration 0 < ϕ0 < 1. In Chap-
ter 4 we will further elaborate on the non-monotonic nature of the critical wavevector and
wavelength in the BG approximation.

3.9 Mean field approximation

Here we list the results obtained with the MF approximation for sake of completeness.
Similarly to the results in Chapter 2, the BG results converge to the MF results for J̃x,y → 0

or z̄ →∞.
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3.9.1 Partition function

On the MF level we introduce the following approximation for the fraction of defects be-
tween two blocks bij and bmn:

ζMF(ϕij , ϕmn) ≡ (ϕij(1− ϕmn) + ϕmn(1− ϕij))/2. (3.63)

We thus approximate the number of defects between blocks bij and bmn by the product of
the spin down concentration in box bij and spin up concentration in box bmn, and vice versa.
This results in the following MF partition function

ZMF =
∑
ϕij

Nx
b∏

i=1

Ny
b∏

j=1

(
dim bij

ϕijdim bij

)
e−dim bij [H̃MF(ϕi±1j ,ϕij ,ϕij±1)−µ̃ϕij−C], (3.64)

where the MF Hamiltonian reads (omitting the arguments for convenience)

H̃MF = z̄xJ̃x[ζMF(ϕij , ϕij) + (ζMF(ϕi+1j , ϕij) + ζMF(ϕi−1j , ϕij))/2] + (x↔ y). (3.65)

3.9.2 Free energy functional

The MF free energy density functional is given by

F̃MF [ϕ(x, y)] =
1

lxly

∫
(x,y)∈A

[̃fMF(ϕ(x, y))+
l2x
2
κMF,x(∂xϕ(x, y))2+(x↔ y)]dxdy+ΦMF[ϕ(x, y)],

(3.66)
where the gradient energy coefficient is given by κMF,(x,y) ≡ z̄x,yJ̃x,y which is independent
of ϕ(x, y). The MF surface contribution is given by

ΦMF[ϕ(x, y)] =
z̄xJ̃xlx

2ly

∫
y
[(1− ϕ(x, y))∂xϕ(x, y)]

x=Lx/2
x=−Lx/2dy + (x↔ y), (3.67)

and finally the local free energy density entering in Eq. (3.66) reads

f̃MF(ϕ) ≡ 2(z̄xJ̃x + z̄yJ̃y) [ϕ(1− ϕ)− 1/4]− h̃(1− 2ϕ) + Ξ(ϕ) + Ξ(1− ϕ). (3.68)

Note that for J̃x = J̃y = J̃ Eq. (3.68) is equal to Eq. (2.40).
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3.9.3 Interface steepness and width

The MF interface steepness for a one-dimensional profile ϕ(x) reads

ϕ′MF(0) = ±
√

2(̃fMF(1/2)− f̃MF(ϕMF
min))/z̄xJ̃x, (3.69)

where ϕMF
min ≡ arg inf0≤ϕ≤ f̃MF(ϕ) is the global minimum of the free energy density given by

Eq. (2.42). The MF Cahn-Hilliard interface width can directly be obtained from Eq. (3.52)
upon substituting in the MF expressions. In Fig. 3.3c we see that the MF interface width
(red line) decreases monotonically with J̃ and does not broaden.

3.9.4 Absence of interface broadening

Let us consider an isotropic coupling J̃x = J̃y = J̃ . In the limit of infinite coupling strength
the solutions to Eq. (2.42) are given by ϕMF

min → 0 ∨ 1, ∀z̄ > 0, and therefore we get

lim
J̃→∞

ϕ′MF(0) = lim
J̃→∞

±
√

2(z̄J̃/2− ln (2))/z̄xJ̃ = ±
√
z̄/z̄x. (3.70)

Hence, in the infinite coupling limit the interface steepness converges to a maximum finite
nonzero value. Furthermore, the interface width decreases and converges to the value

lim
J̃→∞

lMF,CH = lim
J̃→∞

|2ϕMF
min − 1|/|ϕ′MF(0)| =

√
z̄x/z̄. (3.71)

3.9.5 Spinodal decomposition

Taking the MF local free energy density and square gradient coefficient and plugging them
into qcrit defined in Eq. (3.58) gives

qMF
crit =

√
−

f̃ ′′MF(ϕ0)

κMF
=

√
4(z̄xJ̃x + z̄yJ̃y)− 1/(ϕ0(1− ϕ0))

z̄xJ̃x
. (3.72)

For isotropic interaction strength J̃x = J̃y = J̃ and inside the spinodal region the MF critical
wavevector is monotonically increasing with J̃ and for 0 < ϕ0 < 1 converges to

lim
J̃→∞

qMF
crit = 2

√
z̄/z̄x. (3.73)

In Fig. 3.3d we plot Eq. (3.72) for z̄ = 4 with isotropic interaction strength. The critical
wavevector increases monotonically with J̃ and converges to the aforementioned result.
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3.10 Error analysis

Figure 3.4: Relative error be-
tween the exact and approxi-
mated partition function obtained
with the (a) MF and (b) BG approx-
imation for increasing number of
spins and various values of the cou-
pling strength J̃ = {0, 1, 2, 3}. The
relative error in Eq. (3.75) is deter-
mined for a square lattice composed
of (Nx

σ = 3) × (Ny
σ = {3, ..., 15})

spins with periodic boundary condi-
tions in the vertical and fixed bound-
ary conditions in the horizontal di-
rection, respectively. The total frac-
tion of down spins is fixed to ϕ̂=1/2.

To probe the accuracy of the MF and BG approxi-
mations, we compare their partition functions given
by Eqs. (3.64) and (3.21) with exact results for the
partition function of finite systems. For a uniform
system an error analysis between the MF and BG ap-
proximation is given in Sec. 2.11.2, and here we pro-
ceed with the non-uniform analysis. We limit our er-
ror analysis to a one-dimensional concentration pro-
file, conform with the majority of results discussed
in this chapter. For a lattice composed of Nx

σ × N
y
σ

spins, let ϕ = (ϕ1, ..., ϕNx
σ
) be a vector containing

the concentration of downs spins in each column of
the lattice. The total concentration of down spins in
the lattice is given by ϕ = ||ϕ||1/Nx

σ . The exact par-
tition function for a fixed concentration profile along
the columns is denoted with Z(ϕ) and can be com-
puted via

Z(ϕ̂) =
∑
σ

e−H̃(σ)

Nx
σ∏

i=1

1ϕ̂i [ϕi] , (3.74)

where we recall that σ denotes the matrix contain-
ing all spin configurations, 1x [z] is the indicator
function of x, and H(σ) is the Ising Hamiltonian.
The relative error between ZBG,MF(ϕ) and Z(ϕ) for
a fixed total concentration of down spins ϕ̂ is defined as

εN (ϕ̂) =

(∑
σ

Z(ϕ)

(
1−

ln (ZMF,BG(ϕ))

ln (Z(ϕ))

)
1ϕ̂ [ϕ]

)
/

(∑
σ

Z(ϕ)1ϕ̂ [ϕ]

)
. (3.75)

Equation (3.75) is defined such that differences between Z(ϕ) and ZMF,BF(ϕ) attain the
largest weight for thermodynamically stable configurations. In Fig. 3.4 we plot the rela-
tive error for the (a) MF and (b) BG approximation for a finite square lattice composed
of (Nx

σ = 3) × (Ny
σ = {3, ..., 15}) spins with fixed and periodic boundary conditions in

the horizontal and vertical direction, respectively. Upon increasing the number of spins in
the vertical direction, we see that the relative error of the BG approximation decreases to-
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wards zero, regardless of the coupling strength, whereas the MF approximation saturates
to a nonzero value (note that the small system size gives rise to a marked even-odd depen-
dency). For J̃ = 0 both approximations are exact and therefore have zero relative error. The
improvement of the BG approximation with increasingNy

σ is due to the fact that Eq. (3.21)
is obtained through a variational principle which is applied in the thermodynamic scaling
limit. The MF approximation on the other hand becomes worse with increasing Ny

σ due to
the approximation for the fraction of defects given by Eq. (3.63).
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Chapter 4

Delocalization-Induced Interface

Broadening in Strongly Interacting

Systems
When you are studying any matter, or considering any philosophy, ask
yourself only "What are the facts, and what is the truth that the facts bear out?".

Bertrand Russell, Message to Future Generations (1959)

In this chapter we illuminate unexpected effects of correlations on the structure and ther-
modynamics of interfaces and in turn phase separation, which are decisive in systems with
strong interactions. More specifically, in Chapter 3 we encountered an unexpected effect
of the BG concentration profile, which we named interface broadening. Based on the
derived Cahn-Hilliard field theory, we found that the one-dimensional equilibrium concen-
tration profile broadens upon increasing the coupling strength1 above and near the thermal
energy (see Fig. 3.2). Thus far we have not explained what the underlying physical mecha-
nism behind interface broadening is. In this chapter we show that interface broadening is the
result of an entropy-driven interface delocalization transition, which is not accounted
for in the widely adopted MF theory. Pair correlations enforce a thermodynamically opti-
mal configuration of defects, and profoundly affect nucleation and spinodal decomposition
at strong coupling. The work presented in this chapter is based on the main part of [138].

1Or similarly decreasing the temperature.
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4 Delocalization-Induced Interface Broadening in Strongly Interacting Systems

4.1 Introduction and motivation

Instigated by the seminal works of Cahn and Hilliard [39,141,142], phase separation—the
process through which distinct phases form from a homogeneous mixture—has attracted
considerable attention in a variety of fields, incl. physics [81,143–151], mathematics [152–
154], chemistry [155–158], material science [159–161], and recently biology [162–165].
Our basic understanding of phase separation in systems in [166, 167] and out [168, 169]
of equilibrium is mostly based on MF ideas [170], also known as regular solution [39],
Bragg-Williams [10] (see Sec. 1.1.2), or Flory-Huggins [171,172] theory (for recent works
see [52,148–151,163–165,173–177]). MF theory neglects correlations whose importance
grows with the strength of interactions [81] (see for example Sec. 2.11). Furthermore,
capillary wave fluctuations2 [177,178] (see Fig. 4.1) and interface delocalization [179–
190] are not captured in MF theories.

Various refined techniques have been developed beyond the MF approximation, incl. the
cavity method [191], random phase approximation [192,193], self-consistent field theory
[194], and field-theoretic approaches close to criticality [195]. Yet, these techniques do not
apply to non-uniform systems or are applicable in a limited range of interaction strengths.
As a result, the phenomenology of phase separation in the strong-coupling limit remains
largely unexplored and thus poorly understood.

Here we employ the BG approximation [12, 13, 140, 196] that takes into account
nearest-neighbor pair-correlations. In Chapter 3 we derived a Cahn-Hilliard field the-
ory for a spatially inhomogeneous two-dimensional nearest-neighbor Ising model, based
on the BG approximation. In this chapter we show that the derived field theory

Figure 4.1: Capillary wave
fluctuations (red) along an
interface in the Ising model.

effectively accounts for the effects of capillary wave fluc-
tuations. Upon a decrease in the capillary wave amplitude
at sufficiently strong interactions, the interface effectively
broadens due to translation invariance of the interface
position. We corroborate the broadening with computer
simulations and exact results in the infinite-interaction
limit. Furthermore, via numerical simulations of the Cahn-
Hilliard equation [197], we analyze nucleation kinet-
ics, and observe amplified nucleation barriers and a non-
monotonic dependence of the interface steepness and crit-
ical nucleus size on the interaction strength.

2Capillary waves are long-wavelength fluctuations of the interface profile (see Fig. 4.1)
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Figure 4.2: (a) Realizations of spin configurations (top) and corresponding instanta-
neous interfaces (bottom) in a 2D Ising strip with lattice constant ∆ and dimensions
(Lx, Ly) = (40, 120)∆ for different J̃ values obtained from Monte-Carlo (MC) simulations
(see Appendix A4.10 for simulation details); the circle and dashed line denote the position
of the instantaneous interface. (b) Statistics of interface positions derived from simulations
(green) and given by Eq. (A4.16) in Appendix A4.11 (line) via a mapping onto a Brown-
ian excursion problem. (c) Corresponding ensemble averaged concentration profile along
the x-axis alongside theoretical predictions of MF (red) and BG (blue) theory. (d) Scaled
interface steepness Lxϕ′(0) ≡ Lx∂xϕ(x)|x=0 as a function of J̃ .

4.2 Motivating example: Interface delocalization

An intriguing phenomenon in strongly interacting systems is interface delocalization [179–
190]. Consider a two-dimensional Ising model with ferromagnetic interaction strength
J̃ = J/kBT in a strip geometry (i.e. height� length) in the two-phase regime (see Fig. 4.1).
Imposing periodic boundary conditions in the vertical direction, and thermodynamically co-
existing phase compositions at the left/right edges, the instantaneous concentration of
down-spins3 projected onto the x direction, ϕi(x), develops an interface (see Fig. 4.2a),
whose position xi is defined implicitly via ϕi(xi) = 1/2. In the absence of boundary ef-

3The instantaneous concentration refers to the concentration of down spins for a single realiza-
tion at a single moment in time.
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fects shifting an instantaneous interface ϕi(xi) → ϕi(xi + dxi) costs no energy, rendering
translational invariance of the interface. However, xi near the left/right boundaries are
entropically penalized, as they allow only for a limited bandwidth of capillary wave fluc-
tuations (see Fig. 4.2a, top) [189,190,198,199]. As a result, we find at moderate J̃ that the
probability density of instantaneous interface positions xi, defined as pint(x; J̃), is peaked
at the center (see Fig. 4.2b, top), whereas at larger J̃ the amplitude of capillary waves di-
minishes (see Fig. 4.2a, center and bottom) and a transition occurs that delocalizes the in-
stantaneous interface (see Fig. 4.2b, center and bottom as well as [185–190]). A sharp but
delocalized instantaneous interface becomes effectively broader upon time- or ensemble-
averaging over respective interface positions (see Fig. 4.2c-d). Exact results in the regime
J̃ →∞ for the 2D Ising strip have confirmed the interface broadening [185–188], whereas
it is known that MF theories fail to account for it [189,200]. A comprehensive theory that
captures the broadening transition due to the instantaneous interface delocalization re-
mains elusive. This example therefore motivates a deeper and more systematic analysis of
interfaces and phase separation in the strong interaction limit.

4.3 Cahn-Hilliard theory including pair-correlations

Here we provide a brief summary of the derivation of the Cahn-Hilliard field theory shown
in Chapter 3. For simplicity, and without much loss of generality, we limit the discussion
to two-dimensional systems, i.e. x ∈ R2. We start from a two-dimensional Ising model
with Nx

σ × N
y
σ spins σij = ±1 on a general lattice with physical dimensions Lx and Ly,

respectively (see Fig. 3.1a). The Hamiltonian reads (in units of kBT )

H̃(σ) = −J̃
∑
〈kl,mn〉

σklσmn, (4.1)

where σ is the matrix containing all spin configurations, J̃ ≥ 0 is the (isotropic) interaction
strength, and 〈kl,mn〉 denotes a sum over nearest neighbors. In Chapter 3 we also consider
anisotropic interactions with horizontal and vertical interaction (J̃x, J̃y).

4.3.1 From the partition function to the field theory

We divide the lattice into Nx
b ×N

y
b boxes, with sides Lx/Nx

b and Ly/Ny
b , respectively and

centroids indexed by ij with i ∈ {1, . . . , Nx
b }, j ∈ {1, . . . , N

y
b } (see Fig. 3.1b). We divide

each spin configuration σ in Nx
b ×N

y
b blocks encoded in the matrices bij with dimension

dim bij = Nx
σ/N

x
b ×N

y
σ/N

y
b . Let ϕij(bij) ≡ (dim bij)

−1
∑

σmn∈bij (1 − σmn)/2 denote the
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concentration of down spins in block ij (see Fig. 3.1c). For any fixed trial configuration of
box concentrations ϕ̂ij ∈ [0, 1] which we write in the matrix ϕ̂, the constrained partition
function reads

Z(ϕ̂) =
∑
σ

e−H̃(σ)

Nx
b∏

i=1

Ny
b∏

j=1

1ϕ̂ij [ϕij(bij)] (4.2)

where 1x[z] is the indicator function of x. Generally, Z(ϕ̂) cannot be determined exactly.
BG theory provides a variational approach toZ(ϕ̂) on the nearest-neighbor pair-correlation
level that exactly accounts for the potential energy. Its accuracy is assessed in Sec. 3.10 for
system sizes that are amenable to exact solutions. The total free energy density is evaluated
as the twofold ordered scaling limit

F̃ [ϕ(x)] ≡ limNb
s

[
−1

Nx
b N

y
b

limNσ
s

[
lnZ(ϕ̂)

(Nx
σ/N

x
b )(Ny

σ/N
y
b )

]]
, (4.3)

where F̃ ≡ F/kBT and the scaling limit are defined in Eq. (3.1). The first limit takes
the number of spins to infinity while keeping the system Lx, Ly and box Lx/Nx

b , Ly/N
y
b

sizes constant (see Fig. 3.1c), making ϕij(bij) ∈ [0, 1] a continuous function in each box.
The second limit takes the number of boxes to infinity while keeping Lx, Ly constant (see
Fig. 3.1d), thereby making the boxes infinitesimally small and rendering ϕ̂ij → ϕ(x) a
continuum field. Evaluating Eq. (4.3) analytically within the BG approximation leads to a
Cahn-Hilliard functional (see Eq. (3.45))

F̃BG[ϕ(x)]=
1

V

∫
V

dx

[
f̃BG(ϕ(x)) +

1

2
∇ϕ(x)TκBG(ϕ(x))∇ϕ(x)

]
, (4.4)

with V being the system’s volume, f̃BG(ϕ) = ũBG(ϕ)−s̃BG(ϕ) the local free energy density
given by Eq. (3.44), and κBG(ϕ) the gradient energy coefficient given by Eq. (3.33). The
MF analogs are given by Eq. (3.68) for f̃MF(ϕ), and limJ̃→0 κBG(ϕ) = κMF + O(J̃2) with
κMF ≡ z̄J̃ , where z̄ = diag(z̄x, z̄y) encodes the average lattice coordination numbers in the
horizontal and vertical direction. Note that κMF is independent of ϕ, in agreement with
regular solution theory [39]. In Fig. 4.3a we plot κx (i.e. the x-component of the gradient
energy coefficient) for the BG and MF theory with the blue and red lines, respectively.
Notably, κBG,x(ϕ) displays a large entropic penalty of inhomogeneities at ϕ→ 0 and ϕ→ 1

that is not accounted for in MF theory.

The equilibrium profile of Eq. (4.4), i.e. the solution of δF̃CH/δϕ(x) = 0, solves Eq. (3.47).
We now show that BG and MF theories predict starkly different behavior for moderate and
strong interactions, and compare their outcomes with exact results.
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4.4 Equilibrium profile and exact results

We first focus on the square lattice Ising strip in Fig. 4.2c (Ly � Lx) where the magne-
tization varies only in the x direction, i.e. ϕ(x) = ϕ(x). The profile is obtained as the
solution to Eq. (3.47), that we solve numerically by imposing the boundary conditions
ϕ(±Lx/2) = ϕ±min, where ϕ−min ≡ arg min0<ϕ≤1/2 f̃(ϕ) and ϕ+

min = 1− ϕ−min denote the co-
existing states with compositions set by the left and right minimum of f̃(ϕ), respectively (see
Sec. 2.9 for closed-form expressions of ϕ±min). We fix the ensemble interface location such
that ϕ(0) = 1/2 4. Above the critical coupling J̃ > J̃crit, where J̃BG,crit ≡ ln (z̄/(z̄ − 2))/2

and J̃MF,crit ≡ 1/z̄ (see Sec. 2.8.3 and 2.10.3), the free energy density f̃(ϕ) has two local
minima resulting in a nonuniform ϕ(x). For J̃ ≤ J̃crit the profile is uniform.

4.4.1 Comparison with simulations

In Fig. 3.2 we have already seen that the BG interface steepness scales non-monotonically
w.r.t. J̃ . To better comprehend the origin of this unexpected scaling, we compare our
results with MC simulations of the two-dimensional Ising model (for simulation details
see Appendix A4.10). In Fig. 4.2c-d we find that the BG concentration profiles are very
close to the simulation results. Not only does the BG approximation correctly capture the
non-monotonic trend of the interface steepness (see Fig. 4.2d), it also captures remarkably
well the full concentration profile (see Fig. 4.2c). By comparing with Fig. 4.2b we observe
a strong correlation between interface broadening and interface delocalization. This is
further analyzed in Fig. 4.3.

4.4.2 Comparison with exact results

Scaling of interface steepness with the horizontal lattice side Lx

First, we inspect in Fig. 4.3b the interface steepness ϕ′(0) for various horizontal lattice
sides Lx. In stark contrast to MF theory predicting a steepening interface independent of
lattice size, BG profiles are non-monotonic in J̃ beyond a sufficient Lx due to interface
delocalization (Fig. 3.2 shows similar results). To verify that this is no artifact, we compare
our results with the solid-on-solid (SOS) model for the square lattice Ising strip (z̄ = 4),
which becomes exact in the limit J̃ →∞ and is known to include interface delocalization
[185–189]. The SOS model yields limJ̃→∞ ϕ(x) = 1/2 + x/Lx + sin(2πx/Lx)/2π [186,

4Fixing the ensemble averaged interface position is not equal to fixing the position of instanta-
neous profiles. Thus, the interface location along individual trajectories may still fluctuate.
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Figure 4.3: In all panels we consider an Ising strip with z̄ = 4 and z̄x = 2. Red, blue,
and black solid/dashed lines always correspond to MF, BG, and exact/SOS results, respec-
tively. (a) x-component of the gradient energy coefficient, κx, in Eq. (3.33) as a function
of ϕ for J̃ ∈ {0.1, 0.5, 1}. (b)-(c) Interface steepness ϕ′(0) = ∂xϕ|x=0 of the equilibrium
concentration profile as a function of J̃ for fixed Lx ∈ {3, 5,∞} (b) and as a function of
Lx for fixed J̃ = 5 (c). Inset of (c): Rescaled steepness Lxϕ′(0). (d) Interface stiffness Γ̃
defined in Eq. (4.5) as a function of J̃ on a logarithmic scale. (e) 1/Lxϕ

′(0) as a function
of J̃ for fixed Lx ∈ {10, 20, 30, 40}. Blue lines converge to the value δBG ≈ 0.835. Inset:
Blow-up of the MF result. (f) Critical stability wavelength λcrit = 2π[−κx(1/2)/f̃ ′′(1/2)]1/2

as a function of J̃ ; The blue arrow indicates J̃†(1/2) in Eq. (3.61), where λBG
crit attains a

minimum. Inset: Bulk correlation length ξ ≡ [κx(ϕ±min)/f̃ ′′(ϕ±min)]1/2.

187, 189], hence limJ̃→∞ ϕ
′(0) = 2/Lx. In Fig. 4.3c we show the interface steepness as a

function of Lx for fixed J̃ , and find that the SOS and BG results display the same scaling
(see Fig. 4.3c inset), whereas the MF result is in fact independent of Lx.

Interface stiffness

Further verification is given by the interface stiffness, which is the free energy difference
between the non-uniform equilibrium profile ϕ(x) and a uniform profile ϕ±min, and reads
(see Eq. (2.15) in [39])

Γ̃ = 2

∫ ϕ+
min

ϕ−min

[κx(ϕ)(̃f(ϕ)− f̃(ϕ±min))]1/2dϕ, (4.5)

which is depicted in Fig. 4.3d. Note that surface tension σ is related to surface stiffness via
σ = arcsinh (Γ) [186]. The exact result is Γ̃ = sinh (2J̃ + ln tanh J̃) [186], while the SOS
model yields Γ̃SOS = cosh (2J̃)− 1 [186] and converges to the exact result for large J̃ , i.e.
limJ̃→∞ ln (Γ̃SOS) ' 2J̃ . Notably, the BG result is not only considerably more accurate than
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the MF prediction, but also displays a correct exponential scaling, limJ̃→∞ ln (Γ̃BG) ' J̃ , in
stark contrast to the square-root MF scaling, limJ̃→∞ ln (Γ̃MF) ' ln (

√
J̃).

4.5 Disentangling interface delocalization
By exploiting the mapping of instantaneous interface positions onto a Brownian excurison
problem (see Appendix A4.11), we can disentangle interface delocalization from the in-
stantaneous interface width, δ, in the large J̃ limit where the instantaneous interface po-
sitions become asymptotically uniformly distributed, i.e. limJ̃→∞ pint(x; J̃) = L−1

x 1|x|<Lx/2

with 1|x|<Lx/2 equal to 1 when |x| < Lx/2 and 0 otherwise (see derivation in Appendix
A4.11.2). For J̃ � 1 each instantaneous profile ϕi(x) corresponds to some continuous
function f(x/δ + bj) : R→ [0, 1] obeying limx→±∞ f(x) = (1±1)/2, where δ > 0 and bj de-
scribe the width and position of the instantaneous interface j. The ensemble averaged pro-
file thus reads limJ̃→∞ ϕ(x) = L−1

x

∫
f(x/δ + b)1|b|<Lx/2db. We can now straightforwardly

compute the interface steepness and find limJ̃→∞ ϕ
′(0) = δ−1(f(Lx/2)−f(−Lx/2))/Lx.

Finally, taking the large-Lx, limit we obtain

lim
Lx→∞

lim
J̃→∞

1/Lxϕ
′(0) = δ, (4.6)

and have thereby disentangled interface delocalization from the instantaneous in-
terface width δ. This result holds for any continuous integrable f(x) obeying
limx→±∞ f(x)=(1± 1)/2. For the Ising strip this yields δSOS=0.5 within the SOS model,
and δBG≈0.835 with the BG approximation (see Fig. 4.3e). Hence, we conclude:

While interface delocalization causes the ensemble averaged steepness to vanish in the large
coupling limit, individual realizations maintain a nonzero interface steepness with uniformly
distributed instantaneous interface positions.

Importantly, MF theory does not account for delocalization-induced interface broadening
and therefore predicts δMF → 0 (see inset of Fig. 4.3e).

4.6 Spinodal decomposition
Having established the physical consistency of the BG field theory given by Eq. (3.45),
we now address phase separation, and determine the length scales on which inhomo-
geneities are stable by performing a linear stability analysis on the total free energy
density around the uniform concentration profile, ϕ(x) = ϕ0 + a sin (qx) with |a| �
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min(ϕ0, 1− ϕ0) (the symmetry of the problem imposes odd inhomogeneities). Stable per-
turbations lower the total free energy density, ∆F̃BG ≡ F̃BG[ϕ(x)] − F̃BG[ϕ0] ≤ 0, yield-
ing an upper bound on stable wavevectors q ≤ qBG

crit ≡ [−f̃ ′′BG(ϕ0)/κBG,x(ϕ0)]1/2 (see
derivation in Sec. 3.8), where f̃ ′′BG(ϕ) = d2f̃BG(ϕ)/dϕ2 is the curvature of the free en-
ergy barrier given by Eq. (2.43). The critical wavevector qBG

crit translates into a critical
wavelength λBG

crit = 2π/qBG
crit above which perturbations are stable. Fig. 4.3f depicts λcrit

as a function of J̃ for a square lattice with ϕ0 = 1/2 (for general ϕ0 see Fig. 3.3c-d).

Figure 4.4: Numerical simulations
of critical nuclei of the radially
symmetric Cahn-Hilliard equation
with the BG (blue) and MF (red)
free energy for a hexagonal coor-
dination (z̄ = 6, z̄x = 4). (a)
Free energy difference ∆E between
the critical nucleus and the homoge-
neous state as a function of the inter-
action strength J̃ . The inset shows
critical profiles ϕ(r) for three values
of J̃ . (b) Radius rcrit and (c) inter-
face steepness ϕ′(rcrit) of the critical
nucleus as a function of J̃ .

Similar to Fig. 4.3b, λcrit displays a non-monotonic
trend in the BG theory (blue lines) that is contrasted
by a monotonic attenuation in the MF theory (red
lines). The non-monotonicity of λBG

crit is explained
by inspecting how the curvature of the barrier de-
pends on J̃ . In particular, the BG curvature con-
verges, limJ̃→∞ f̃ ′′BG(1/2) = 2(2 − z̄) (see Fig. 2.6c,
blue line), whereas the free energy penalty of in-
homogeneities κBG,x increases exponentially, even-
tually increasing λBG

crit. MF theory overestimates the
curvature of the barrier (see Fig. 2.6c, red line),
and underestimates the free energy penalty of in-
homogeneities, leading to a decreasing λMF

crit . The
bulk correlation length ξ ≡ [κx(ϕ±min)/f̃ ′′(ϕ±min)]1/2

[177] displays qualitatively the same behavior in
both theories (see Fig. 4.3f, inset), since the MF free
energy density is relatively accurate near local min-
ima ϕ±min but inaccurate near the barrier.

4.7 Nucleation

We next investigate, in Fig. 4.4, how interface broad-
ening affects nucleation by determining minimal
free energy paths (the reaction coordinate and nu-
merical method are described in Appendix A4.12).
The inset in Fig. 4.4a suggests that critical nuclei
become less dense and wider as J̃ becomes larger.
Indeed, we find that correlations captured by BG
theory lead to larger critical nuclei (Fig. 4.4b), shal-
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lower interfaces (Fig. 4.4c), and that the increasing trend with J̃ is only captured by BG
theory, which is reminiscent of the results shown in Fig. 4.3. Most importantly, BG theory
predicts that the nucleation barrier ∆E is approximately four times larger than predicted
by MF (Fig. 4.4a), implying a strong reduction of nucleation rates [201–204].

To understand why interface delocalization affects nucleation, we note that shifting the in-
terface position corresponds to a growing/shrinking nucleus, which consequently alters the
free energy. Instantaneous interfaces are still affected by interface translation and capillary-
wave fluctuations. However, in contrast to the strip, distinct instantaneous interface config-
urations are not iso-energetic. The weighting by the respective free energy of the configura-
tion ultimately gives rise to broadening and thus larger critical nuclei and higher nucleation
barriers.

4.8 Concluding Remarks

In Chapter 3 we derived a Cahn-Hilliard field theory that accounts for nearest-neighbor
pair-correlations, by directly computing the thermodynamic limit of a spatially inhomo-
geneous two-dimensional Ising model within the BG approximation. Here we have shown
that strong interactions give rise to (i) a delocalization-induced interface broadening
confirmed by MC simulations and exact results for the two-dimensional Ising model, (ii)
a strong reduction of nucleation kinetics due to an amplification of the free energy bar-
rier to nucleation, and (iii) a non-monotonic dependence of critical nucleus size on
interaction strength. These effects are the result of an entropy-driven interplay between
capillary-wave and interface-position fluctuations at sufficiently strong coupling, and pair
correlations are required to correctly account for them. Pair correlations enforce a ther-
modynamically optimal configuration of defects, and are thus an essential determinant of
interfaces and condensates in the strong interaction limit that so far have been overlooked.
Our results allow for generalizations to three dimensions and more than two constituents
(i.e. ternary mixtures), which will be addressed in future work.

4.9 Appendices

The Appendices are organized in the order they appear in this chapter. First, we present
in Appendix A4.10, a detailed description of MC simulations that are shown in Fig. 4.2.
In Appendix A4.11 we proceed with a derivation of the probability density of instanta-
neous interface positions, based on the mapping onto the Brownian bridge problem (the
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results are briefly shown in Fig. 4.2b). Finally, in Appendix A4.12 we present details on
the numerical simulations of nucleation by means of the radially symmetric Cahn-Hilliard
equation which are shown in Fig. 4.4. Any information and detailed calculations related to
the Cahn-Hilliard free energy functional within the BG and MF approximation are provided
in Chapter 3.

A4.10 Monte-Carlo simulations of the Ising model

Here we provide details on theMC simulations we performed to determine the ensemble av-
eraged concentration profile and histograms of instantaneous interface locations displayed
in Fig. 4.2.

A4.10.1 Lattice setup and initial configuration

We performed MC simulations of the nearest-neighbor interacting ferromagnetic Ising
model on the square lattice with size (Nx

σ = 40) × (Ny
σ ∈ {80, 90, 100, 110, 120, 130})

with single spin-flip dynamics in the bulk and two-spin-exchange dynamics at the bound-
ary columns located at i = ±Nx

σ/2. We considered various values of Ny
σ to benchmark

our simulations against known theoretical predictions of the scaling behavior (see Ap-
pendix A4.10.5). We imposed periodic boundary conditions in the vertical direction (i.e.
along the columns), and free boundary conditions in the horizontal direction (i.e. along the
rows), whereby we constrained the total magnetization on the left/right boundary (see be-
low). LetN↓i with i ∈ {−Nx

σ/2, ..., N
x
σ/2} denote the number of down spins in column i. To

induce a non-uniform concentration profile, and in anticipation of known exact results for
the bulk concentration values [24], we fixed the number of down spins at the boundaries
to be

N↓±Nx
σ/2

=
Ny
σ

2

(
1± Re([1− sinh−4 (2J̃)]1/8)

)
, (A4.7)

where J̃ is the coupling strength and Re(·) denotes the real part. Spins located at the
boundaries can exchange only within the same column, and therefore the total number
of up/down spins at the boundaries is conserved throughout the simulation. Spins in the
bulk are initially prepared in a high-coupling configuration (i.e. aligned) with a vertical
interface placed at some random horizontal location in the lattice. Starting from a high-
coupling configuration has the advantage that the simulations do not get stuck in frozen
sub-optimal states where multiple interfaces are created [205,206].
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A4.10.2 Acceptance rate

For single spin-flip dynamics let {σj}′i denote the spin configuration obtained by flipping
spin i while keeping the configuration of all other spins fixed, i.e., {σj}′i ≡ (−σi, {σj 6=i}).
Moreover, let pi({σj}) denote the acceptance rate from {σj} to {σj}′i and ∆Hi({σj}) ≡
H({σj}′i) − H({σj}) the energy difference associated with the transition. Using the
Metropolis algorithm the acceptance rate for the single spin-flip takes the form [207]

pi({σj}) = min(1, e−∆Hi({σj})). (A4.8)

For two-spin-exchange dynamics let {σj}′ik denote the spin configuration upon interchang-
ing the spins σi and σk while keeping the configuration of all other spins fixed, i.e.,
{σj}′ik ≡ (σi ↔ σk, {σj 6=(i,k)}). We denote with pik({σj}) the acceptance rate from {σj} to
{σj}′ik and ∆Hik({σj}) ≡ H({σj}′ik) − H({σj}) denotes the energy difference associated
with the transition. Using the Metropolis algorithm the two-spin-exchange acceptance rate
reads

pik({σj}) = min(1, e−∆Hik({σj})). (A4.9)

A4.10.3 Simulation parameters

For each value of the coupling strength J̃ and vertical length
Ny
σ ∈ {80, 90, 100, 110, 120, 130} we performed NMC = 105 MC simulations, where

each individual run contained 5 × 108 MC steps. At each 1.9 × 107th MC step we took a
snapshot of the configuration and stored the total energy, resulting in 26 (including the
initial configuration) snapshots for each simulation run.

A4.10.4 Equilibration test: Energy fluctuations per spin

To assess whether the MC simulations reached equilibrium, we analyzed the energy fluc-
tuations per spin and their corresponding ensemble average. In Fig. A4.5 we display the
energy fluctuations per spin for a subset of 104 simulations as a function of the MC steps for
various J̃ ∈ {0.45, 0.7, 0.95, 1.2} and Ny

σ ∈ {80, 100, 120, 130}. In each plot we observe that
immediately after the initial snapshot the energy is fluctuating around an average steady
state denoted with the black solid line, providing a first indication that the simulations have
reached equilibrium (already at the first stored configuration). Note that in each plot all
energies are initially increasing from zero since we subtract the ground state energy and
we initialize the system in a high-coupling configuration which is identical to the ground
state.
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Figure A4.5: Equilibration test: Energy fluctuations per spin as a function of consecu-
tively stored MC configurations. In each plot we display the energy fluctuations per spin
(E−E0)/N , where E0 is the ground state energy conditioned on anti-symmetric boundary
conditions, and N = Nx

σN
y
σ with Nx

σ = 40 for a subset of 104 MC simulations (colored
lines). The black solid line indicates the ensemble average energy fluctuation per spin.
Plots in the same column have equal Ny

σ ∈ {80, 100, 120, 130}, and plots in the same row
have equal J̃ ∈ {0.45, 0.6, 0.95, 1.2}.

A4.10.5 Benchmark test: interface width and roughening

To benchmark the performance of our MC simulations, we computed the interface width
w2(Ny

σ , J̃) and compared our results with known theoretical results reported in [178,208].
The results from [208] predict w2(Ny

σ , J̃) ∝ Ny
σ/ sinh (σ) with σ = 2J̃ + ln tanh J̃ . Anal-

ogously, the results from [178] predict w2(Ny
σ , J̃) = Ny

σ/12σ − c/2πσ2 with c ≈ 1. Below
we explain in detail how we determined the interface width and how it compares to the
theoretical predictions. The resulting outcomes are shown in Fig. A4.6 and the comparison
with the theoretical results are shown in Fig. A4.6(e)-(f).
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Figure A4.6: Benchmark test: Results in the bottom and top row are derived with and
without applying the boundary-shift method, respectively. (a)-(d) Scaling of the interface
width (a) w2(Ny

σ , J̃) (no boundary shift) and (d) ŵ2(Ny
σ , J̃) (boundary shift) w.r.t. the

vertical number of spinsNy
σ . Each point is obtained by averaging over 2.5×106 equilibrated

configurations. Dashed lines are obtained by weighted linear regression. Colors from light
green to dark green correspond to increasing coupling strength J̃ . (b)-(e) Intersection point
of the interfacial width at Ny

σ = 0 as a function of J̃ . The standard deviation of each point
is estimated with the Jackknife method. In (e) the red and blue lines are the theoretical
predictions for the intersection point given in [178, 208], respectively. (c)-(f) Slope of
the interface width w.r.t. Ny

σ as a function of J̃ . The standard deviation of each point is
estimated with the Jackknife method. In (f) the red and blue lines are the theoretical
predictions for the slope given in [178,208], respectively.

Ensemble averaged concentration profile and the boundary-shift method

To compare our results with [178, 208], we need to apply the so-called boundary shift
method [209], where we shift the interface position of each instantaneous concentration
profile to the center of the lattice. As a scientific exercise we also consider the resulting
outcomes without applying the boundary shift method, for which the results are depicted
in the top row of Fig. A4.6. Let ϕ̂i,k be the equilibrated and boundary shifted concentration
of down spins in column i ∈ {−Nσ

x /2, ..., N
σ
x /2} of the kth MC simulation run. We define

the ensemble average boundary-shifted concentration profile as

〈ϕ̂i〉 =
1

NMC

NMC∑
k=1

ϕ̂i,k. (A4.10)
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From Eq. (A4.10) we can approximate themean interface width using the central difference
method as follows: Let δ2[〈ϕi〉] ≡ 〈ϕi+1〉 − 〈ϕi−1〉 then

ŵ2(Ny
σ , J̃)=

∑Nx
σ/2−1

i=−Nx
σ/2+1 i

2δ2[〈ϕi〉]∑Nx
σ/2−1

i=−Nx
σ/2+1 δ2[〈ϕi〉]

−

∑Nx
σ/2−1

i=−Nx
σ/2+1 iδ2[〈ϕi〉]∑Nx

σ/2−1
i=−Nx

σ/2+1 δ2[〈ϕi〉]

2

. (A4.11)

A similar definition holds for the interface width without applying the boundary-shift
method, which we denote as w2(Ny

σ , J̃). In Fig. A4.6 we plot w2(Ny
σ , J̃) and ŵ2(Ny

σ , J̃)

with the green dots as a function of Ny
σ . Both results show a clear linear trend with Ny

σ ,
providing a first validation of the MC simulations. To obtain the variance of w2(Ny

σ , J̃) –
which we use in the next section for weighted linear regression – we used the Jackknife
method which is explained below.

Interface width and weighted linear regression

To compare our results with those reported in [178, 208], we need to extract the inter-
ception point ŵ2(J̃ , 0) and slope dŵ2(J̃ , Ny

σ )/dNy
σ . Both quantities are obtained through

weighted linear regression in combination with the Jackknife method. First we determine
ŵ2(0, J̃) and dŵ2(Ny

σ , J̃)/dNy
σ for fixed J̃ while removing one point from the data pool,

which gives

{ŵ2
j (0, J̃),

dŵ2
j (N

y
σ , J̃)

dNy
σ

} = min
(α,β)

∑
Ny
σ={80,...,130}
Ny
σ 6=70+10×j

(α+ βNy
σ − ŵ2(Ny

σ , J̃))2

var(ŵ2(Ny
σ , J̃))

, (A4.12)

where j = {1, ..., 6}. A similar definition holds for the intersection point and slope without
applying the boundary shift method, which we denote as w2

j (0, J̃) and dw2
j (N

y
σ , J̃)/dNy

σ ,
respectively. Finally, the Jackknife ensemble averages and variances are given by

ŵ2(0, J̃) =
1

6

6∑
j=1

ŵ2
j (0, J̃), var(ŵ2(0, J̃)) =

5

6

6∑
j=1

(ŵ2
j (0, J̃)− ŵ2(0, J̃))2,

dŵ2(Ny
σ , J̃)

dNy
σ

=
1

6

6∑
j=1

dŵ2
j (N

y
σ , J̃)

dNy
σ

, var

(
dŵ2(Ny

σ , J̃)

dNy
σ

)
=

5

6

6∑
j=1

(
d[ŵ2

j (N
y
σ , J̃)−ŵ2(Ny

σ , J̃)]

dNy
σ

)2

.

In Fig. A4.6e-f we plot ŵ2(0, J̃) and dŵ2(Ny
σ , J̃)/dNy

σ together with the standard devia-
tion as a function of J̃ . The theoretical results given by [178, 208] are shown with the
red and blue lines, respectively. For J̃ ≥ 0.6 we find a very good agreement between MC
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simulations and theoretical predictions. Notably, for the slope in Fig. A4.6f we find a re-
markable agreement with the results of [208]. For J̃ < 0.6 we approach the exact critical
coupling J̃crit ≈ 0.441, where the MC results agree less well with theoretical predictions
due to finite-size effects. This is expected since the correlation length diverges around the
critical coupling.

A4.11 Statistics of instantaneous interface position

Neglecting overhangs, one can map the statistics of instantaneous interfaces onto a one-
dimensional confined Brownian bridge problem [190]. The idea is to treat the respective
bulk phases as “pure” (i.e. homogeneous) and the interface (i.e. domain wall) as a ran-
dom walk, which in the continuum limit becomes a Brownian motion where the vertical
coordinate y plays the role of time and the diffusion coefficient is proportional to 1/4Γ̃,
where Γ̃ = sinh (2J̃ + ln tanh J̃) is the exact interface stiffness for the two-dimensional
Ising model [208,210]. Periodic boundary conditions in the y-direction render the Brown-
ian trajectories Brownian bridges. Here we derive the probability density of instantaneous
interface positions, based on the analogy with Brownian bridges, used for Fig. 4.2b. Fur-
thermore, we show the convergence to a uniform distribution in the limit J̃ →∞, which we
used for Sec. 4.5 to disentangle interface delocalization from the instantaneous interface
width.

A4.11.1 Derivation

Let us assume that the instantaneous interface in the two-dimensional Ising strip always
separates two homogeneous thermodynamically co-existing phases and that the domain
wall behaves like a Gaussian polymer confined between hard walls located at x = 0 and
x = Lx with a height Ly >> Lx. We parameterize the domain wall as a Brownian motion
{xi

y}0,≤y≤Ly where y plays the role of time (or contour length in the polymer context).
Then, the Green’s function of the interface with diffusion coefficientD follows the Edwards
equation with absorbing boundary conditions at the walls

∂yG(x, y|x0) = D∇2
xG(x, y|x0),

G(x, 0|x0) = δ(x− x0),

G(0, y|x0) = G(Lx, y|x0) = 0, ∀ y ∈ [0, Ly]. (A4.13)
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The general solution to Eq. (A4.13) is

G(x, y|x0) =
2

Lx

∞∑
k=1

sin (kπx/Lx) sin (kπx0/Lx)e−π
2k2Dy/L2

x . (A4.14)

Particularly interesting is the mean squared displacement (MSD) which is given by

〈(x−x0)2〉= 1

Lx

Lx∫
0

dx

Lx∫
0

dx0(x−x0)2G(x, y|x0)=
4L2

x

π4

∞∑
k=1

(−1)k+1(k2π2−4)−4

k4
e−π

2k2Dy/L2
x .

For y << D/L2
x we can truncate the exponential inside the sum up to first order in y and

obtain 〈(x−x0)2〉 ' 2Dy, as expected for a freely diffusing one-dimensional particle. Now
we recall the exact results of Abraham [208] and Fisher [210] who found that for the two-
dimensional Ising strip the interface width should scale as 5 〈(x− x0)2〉 ∝ y/2Γ̃ where the
proportionality factor includes some lattice length scale and Γ̃ = sinh (2J̃ + ln tanh J̃) is
the surface stiffness as defined in Eq. (4.5). The outcome of [208,210] allows us to relate
the diffusion coefficient D to the surface stiffness

D ∝ 1

4 sinh (2J̃ + ln tanh J̃)
. (A4.15)

Under periodic boundary conditions in the y-direction the interfaces have an equal position
at y = 0 and y = Ly (also known as Brownian bridges). In this case the propagator is simply
given by G(x, Ly|x). We can now calculate the probability density to have an interface
located at position x, which upon normalization is given by

pint(x; J̃) =
G(x, Ly|x)∫ Lx

0 G(x, Ly|x)dx
=

1

Lx

ϑ3(0, e−αJ̃ )− ϑ3(πx/Lx, e
−αJ̃ )

ϑ3(0, e−αJ̃ )− 1
, (A4.16)

where αJ̃ ≡ π2DLy/L
2
x and ϑ3(a, x) is Jacobi’s elliptic theta of the third kind. The second

equality can be obtained directly from Eq. (A4.14) with the definition of Jacobi’s elliptic
theta of the third kind. Plugging Eq. (A4.15) for the diffusion coefficient into Eq. (A4.16),
we can compute the black dashed lines in Fig. (4.2)b. As long as J̃ � 1 we have Γ̃� 1 and
thus αJ̃ � 1. Accordingly, Eq. (A4.16) predicts instantaneous interfaces to be localized
with a probability density pint(x; J̃) ∝ sin(πx/Lx)2 (see Fig. 4.2b, top panel). Conversely,
for sufficiently large J̃ we find Γ̃� 1 and hence αJ̃ � 1, and the interface positions become
delocalized (see Fig. 4.2b, center and bottom panels).

5The vertical dimension in [208] is defined from y = [−Ly, Ly], hence in our terminology there
is an additional factor of 1/2 in the MSD.

67



4 Delocalization-Induced Interface Broadening in Strongly Interacting Systems

A4.11.2 Convergence to the uniform distribution

Next we prove that Eq. (A4.16) converges to the uniform distribution in the limit J̃ →∞.
We first introduce q ≡ e−αJ̃ and rewrite

ϑ3(πx/Lx, e
−αJ̃ ) = 1 + 2

∞∑
n=1

e−n
2αJ̃ cos (2πnx/Lx) =

∞∑
n=−∞

qn
2
(

ei2πx/Lx
)n
. (A4.17)

Since αJ̃ ≥ 0 and limJ̃→∞ αJ̃ = 0 (uniformly), we find that limJ̃→∞ e−αJ̃ is equivalent to
limq↑1 q in Eq. (A4.17). We now use the asymptotic result for q ↑ 1 [211]

∞∑
n=−∞

qn
2
(

ei2πx/Lx
)n
'
√

π

− ln q
exp

(
π2x2

L2
x ln q

)
, (A4.18)

where ' stands for asymptotic equality, i.e. A ' B stands for A/B → 1. Note that
Eq. (A4.18)� 1 since 0 < x < Lx. Let us now rewrite Eq. (A4.16) as

Lxpint(x; J̃) =
ϑ3(0, e−αJ̃ )−1−ϑ3(πx/Lx, e

−αJ̃ )+1

ϑ3(0, e−αJ̃ )− 1
= 1− ϑ3(πx/Lx, e

−αJ̃ )− 1

ϑ3(0, e−αJ̃ )− 1
(A4.19)

We can now evaluate the limit of Eq. (A4.19) using Eq. (A4.18), and find

lim
J̃→∞

Lxpint(x; J̃) ' 1− lim
q↑1

exp

(
π2x2

L2
x ln q

)
= 1− lim

αJ̃↓0
exp

(
− π

2x2

L2
xαJ̃

)
→ 1 (A4.20)

for 0 < x < Lx, while we have pint(0; J̃) = pint(Lx; J̃) = 0, ∀J̃ . Applying a translational
shift x→ x− Lx/2 yields the resulting uniform distribution mentioned Sec. 4.5.

Notably, when J̃ → ∞ a Casimir effect appears in addition (see e.g. [212, 213])
that is not captured in Eq. (A4.16), i.e. the entropy due to bulk fluctuations is enhanced
near the boundaries giving rise to “peaks” (see Fig. 4.2b, bottom panel).

A4.12 Simulating the radially symmetric Cahn-

Hilliard equation

We study nucleation based on radially symmetric concentration profiles ϕ(r) in two dimen-
sions. Since critical profiles correspond to stationary points of the free energy F̃ given by
Eqs. (3.66) and (3.45), we next determine minimal free energy paths between the ho-
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mogeneous state and large droplets [197]. We use a measure for the mass concentrated
in the nucleus, N [ϕ] =

∫
tanh(w(ϕ − 1/2))dV with w = 10, as a reaction coordinate and

determine the profile ϕ(r) that minimizes F̃ for a given value N0 of the constraint using a
Lagrange multiplier λ. We thus minimize the constrained free energy

F̃λ[ϕ, λ] = F̃ [ϕ]− λ(N [ϕ]−N0) (A4.21)

by evolving the corresponding partial differential equations

∂tϕ = ΛD∇2 δF̃λ
δϕ

(A4.22a)

∂tλ = −ΛL
δF̃λ
δλ

, (A4.22b)

which corresponds to conserved and non-conserved dynamics withmobilitiesΛD = 102 and
ΛL = 104, respectively. Using this procedure, we determine the profile ϕ(r) with Neumann
boundary conditions that optimizes F̃λ for each value N0 of the constraint, which yields
the minimal free energy path. The profile with the largest free energy F̃ corresponds to
the saddle point and thus to the critical nucleus that we sought. The corresponding profiles
ϕ(r) are shown and analyzed in Fig. 4.4. Here, the nucleation barrier ∆E is given by the
difference of the energy of the critical nucleus to the energy of the homogeneous state.
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Chapter 5

Criticality in Cell Adhesion
It ain’t what you don’t know that gets you into trouble.

It’s what you know for sure that just ain’t so.

Mark Twain in The Big Short

In this chapter we apply the Ising model to describe the statics and kinetics of cell adhesion.
We illuminate the many-body effects underlying the structure, formation, and dissolution
of cellular adhesion domains in the presence and absence of forces. We consider mixed
Glauber-Kawasaki dynamics of a two-dimensional model of nearest-neighbor interact-
ing diffusing adhesion bonds with intrinsic binding-affinity under the action of a shared
pulling or pushing force. Accurate analytical results are obtained by employing the BG ap-
proximation for the thermodynamics and kinetics of adhesion clusters of any size, including
the thermodynamic limit. A new kind of dynamical phase transition is uncovered — the
mean formation and dissolution times per adhesion bond change discontinuously with re-
spect to the bond-coupling parameter. At the respective critical points cluster formation and
dissolution are fastest, while the statistically dominant transition path undergoes a quali-
tative change. In the context of the Ising model the dynamical phase transition reflects a
first-order discontinuity in the magnetization-reversal time. Our results provide a potential
explanation for the mechanical regulation of cell adhesion, and suggest that the quasi-static
and kinetic response to changes in the membrane stiffness or applied forces is largest near
the statical and dynamical critical point, respectively. This chapter is based on [69]. Ana-
lytical results obtained with the MF approximation are omitted from this chapter and are
referred to in [69] and Sec. 2.10.
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5.1 Introduction

Most of our current understanding on the formation and stability of adhesion clusters de-
rives from the analysis of individual [123] and non-interacting adhesion bonds [214–216],
and studies of collective effects in biomimetic vesicular model systems with floppy mem-
branes [217,218] andmobile cellular adhesion molecules CAMs [219]. These results there-
fore do not necessarily apply to cells, where membranes are stiffened by the presence of,
and receptors are anchored to, the stiff actin cytoskeleton that can actively exert forces on
the membrane [121].

Diverse aspects of biological adhesion have been investigated experimentally by contact-
area fluorescence recovery after photobleaching [220], Förster resonance energy trans-
fer [221], metal-induced energy transfer [222], reflection interference contrast microscopy
[223], optical tweezers [224], flow-chamber methods [225, 226], centrifugation assays
[227,228], biomembrane force probe [229,230], micropipette techniques [231,232], and
atomic force microscopy (AFM) [99, 125, 233–237] (see Fig. 5.1 for some examples). Ex-
periments unraveled a collective behavior of clusters of adhesion bonds that cannot be
explained as a sum of their individual behavior [58,115,221,238,239] that is meanwhile
well understood (see e.g. [240, 241]). More specifically, the opening/closing of adhesion
bonds is profoundly affected by membrane fluctuations even if their amplitude becomes as
small as 0.5 nm – smaller than the thickness of the membrane itself [242,243].

These observations imply many-body physics to be at play, i.e. an interplay between the
coupling of nearby adhesion bonds through deformations of the fluctuating membrane and
mechanical forces acting on the membrane [58, 59, 115, 127–130, 218, 242–247]. Sup-
porting the idea are experimental observations of cells changing the membrane flexibility
and/or membrane fluctuations through ATP-driven activity [248–251], decoupling the F-
actin network [252] or remodelling the actomyosin cytoskeleton [251], and through aci-
dosis [243], in order to alter adhesion binding rates and strength [58,243,253–256] or to
become motile [257]. There is also a striking correspondence between membrane stiffness
and the metastatic potential of cancer cells – the stiffness of cancer cells was found to de-
termine their migration and invasion potential [257]. The effect is not limited to cells; the
elastic modulus was similarly found to significantly affect the specific adhesion of polymeric
networks [258].

Notwithstanding all theoretical efforts [59,127–130,241,242,244–246], a consistent and
comprehensive physical picture of collective adhesion under the action of a mechanical
force that could explain the observations on live cellular systems [58, 115, 253–257, 259]
remains elusive. For example, whether the coupling of individual bonds causes the collec-
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Figure 5.1: Examples of experimental techniques to measure adhesion strength. For
each technique an external force h is applied to a cell (blue) which is attached to a substrate
or other cell through the cellular adhesion molecules (red: detached, green: attached).

tive association and dissociation rates to increase or decrease, respectively, was speculated
to depend on the intrinsic single-bond affinity [221, 260], cell type (i.e. surface corruga-
tion) [238] and on the state of the actin cytoskeleton [221]. An understanding of cellular
adhesion therefore must integrate the complex interplay between the correlated, collec-
tive (un)binding [58, 129, 217, 218, 244–246], the intrinsic affinity of anchored adhesion
bonds [221, 260, 261], the cell type and surface topology [238], as well as the integrity
of, and forces generated by, the actin cytoskeleton [221, 234, 254–256] under physiologi-
cal [259] or pathological conditions [257,262–264].

Although cellular adhesion is omnipresent in various biological systems with different un-
derlying microsopic details, we attempt to capture the essential conclusions by incorporat-
ing the most general and essential features of adhesion molecules and their dynamics. In
order to arrive at a deeper understanding of the mechanical regulation of cellular adhe-
sion that would explain the collective dynamics of adhesion bonds on the level of individual
(un)binding events, we here consider mixed Glauber-Kawasaki dynamics of a generic, two-
dimensional model of diffusing nearest-neighbor interacting adhesion bonds with intrinsic
affinity µ under the action of a shared force h (see Fig. 5.2a).

Highly accurate analytical results on the BG level reveal the many-body – that is beyond
MF – physics underlying biological adhesion. We consider in detail cluster-sizes ranging
from a few CAMs to the thermodynamic limit. In the thermodynamic limit we determine
the equation of state and complete phase behavior that displays a phase separation and co-
existence of dense and dilute adhesion domains. The critical behavior is investigated in de-
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tail and striking differences are found between pulling- and pushing-forces. Strikingly, we
prove the existence of a seemingly new kind of dynamical phase transition – the mean first
passage time to cluster formation/dissolution is proven to change discontinuously with
respect to the coupling strength. This dynamical phase transition, and more generally
the non-linear and non-monotonic dependence on the membrane flexibility, may explain
the puzzling cooperative behavior of effective (un)binding rates measured experimentally.

5.1.1 Outline of the chapter

This chapter is structured as follows: In Sec. 5.2 we present an effective mesoscopic model
of adhesion clusters and provide a practical roadmap to the diverse calculations and anal-
yses. In Sec. 5.3 we present explicit analytical results for the thermodynamic equation of
state and complete phase behavior of adhesion clusters, and in Sec. 5.4 we present analyt-
ical results for the kinetics of cluster formation and dissolution both in the presence and
absence of forces. In Sec. 5.5 we discuss the biological implications of our results and in par-
ticular the suggestive rôle of criticality in the context of equilibrium adhesion strength and
the kinetic dissolution and formation rates, respectively. Finally, in Sec. 5.6 we highlight
the relevance of our results in the context of the Ising model. In Sec. 5.7 we summarize
our main results, give a perspective on the importance and limitations of our results, and
mention possible extensions to be made in future studies. Details of calculations, explicit
asymptotic results, and further technical information is presented in a series of Appendices
and in [69].

5.2 Interacting adhesion bonds under shared force

5.2.1 Equilibrium

We consider a two-dimensional patch of a cell surface with N adhesion molecules embed-
ded in the cell membrane, their lateral positions forming a lattice with coordination number
z̄ (see Fig. 5.2). The results we derive hold for any lattice but we focus the discussionmainly
on the square lattice (z̄ = 4) with free boundary conditions. Opposing the patch is a stiff
substrate or a neighboring cell-patch with complementary adhesion molecules occupying
a commensurate lattice. The state of individual bonds is denoted by σi with i = 1, 2, ..., N ,
where σi = +1 if bond i is broken an σi = −1 if it is closed.

In the presence of a timescale separation the opening/closing of nearest neighbor bonds
is coupled via membrane fluctuations. Following closely the arguments of Ref. [59], we
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can integrate out the membrane degrees of freedom to obtain an effective Ising-like model
for the bonds within the patch with effective Hamiltonian

H({σi}) = −J
∑
〈ij〉

σiσj − µNc({σi}) +Hh({σi}), (5.1)

where J ≥ 0 is the membrane-induced short-range coupling between the bonds, 〈ij〉 de-
notes all nearest-neighbor pairs, µ is the effective chemical potential (i.e. intrinsic affin-
ity1) of individual closed bonds Nc({σi}) ≡

∑
i δσi,−1, where δik is Kronecker’s delta, and

Hh({σi}) is the Hamiltonian describing the effect of the mechanical force. The first term
in Eq. (5.1) represents the effective coupling between nearest neighbor bonds, and is iso-
morphic to the interaction term in the Ising model [6]. It is an effective measure of bond-
cooperativity, i.e. it reflects that the (free) energy penalty of closing/breaking a bond is
smaller if neighboring bonds are closed/open, respectively [59]. Such an effective descrip-
tion in terms of bonds coupled via a short-range membrane-mediated interaction is feasible
when bonds are flexible and/or the patch of the cell membrane is quite (but not completely)
stiff and is thus rather pulled down as a whole instead of being locally strongly deformed
by the binding of individual bonds [59]. In this limit the coupling strength is determined
by the effective bending rigidity of the cell membrane, κ, via J ∝ 1/

√
κ (see [59] and

Appendix A5.10). That is, in this regime a relatively floppier cell membrane with lower
bending rigidity induces a stronger cooperativity between neighboring bonds than a rel-
atively stiff membrane. Notably, a detailed comparison between the full model of specific
adhesion (i.e. reversible adhesion bonds explicitly coupled to a dynamic fluctuating mem-
brane) and the lattice model captured by the first term of Eq. (5.1) revealed a quantitative
agreement (see e.g. Fig. 5 in [59]) in the range 0 ≤ J . 1.2 kBT that lies entirely within
the rather stiff limit [59]. This is the range of J we are interested in and includes the values
relevant for cell adhesion (see Sec. 5.5 below).

The second term in Eq. (5.1) reflects that each closed bond stabilizes the adhesion cluster
by an amount −µ. Aside from the last term Hh({σi}), the Hamiltonian (5.1) is isomorphic
to the lattice gas model developed in [59], and a mapping between the two models is
provided in Appendix A5.10.

The third term in Eq. (5.1), Hh({σi}), accounts for the mechanical force h acting on the
membrane-embedded bonds that we assume to be equally shared between all Nc closed
bonds 2. More precisely, external force h destabilizes the bound state by introducing an
elastic (free) energy penalty on all closed bonds, whereby broken bonds remain unaffected.

1The intrinsic affinity µ acts similarly as the external magnetic field h defined in Eq. (1.1).
2Here h refers to the external force and is not equal to the external magnetic field in Eq.(1.1).
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If all bonds are closed, Nc = N , this penalty is set to be hx0, where x0 is a microscopic
length-scale specific for a given CAM that merely sets the energy scale associated with the
elastic strain caused by h. Conversely, the penalty must vanish in a completely dissolved
configuration with Nc = 0, and is assumed to be a smooth and monotonic function of Nc.
A mathematically and physically consistent definition is

Hh({σi}) = −2hx0

(
(1 +Nc({σi})/N)−1 − 1

)
. (5.2)

A pulling force, h > 0, favors the dissociation of bonds while a pushing force, h < 0, favors
their association. We are interested in strain energies on the order of the thermal energy
per bond, i.e. |h|x0/N = O(kBT ). Note that the assumption of an equally shared force in
Eq. (5.2) is valid if either of the following conditions is satisfied: the anchoring membrane
has a large combined elastic modulus (i.e. stiff membranes or membrane/substrate pairs),
individual bonds are flexible, the bond-density is low, or the membrane is prestressed by
the actin cytoskeleton [241,265,266]. In the limit of a rather stiff membrane both, a spin
representation with effective coupling J and a uniform force load are valid approximations
to describe cell adhesion under force over a broad range of physically relevant parameters,
as we detail below. The implications of a non-uniform force load are addressed in detail in
Sec. 5.7 and Appendix A5.11.

5.2.2 Kinetics

The breaking/closure and lateral diffusion of adhesion bonds are assumed to evolve as a
discrete time Markov chain with mixed single-bond-flip Glauber dynamics [43] and
two-bond-exchange Kawasaki dynamics [44] (see Fig. 5.2b). For a single jump in the
Markov chain we define the probability to attempt a Glauber transition as pk ∈ [0, 1] which
controls the diffusion rate, and for the sake of generality is allowed to depend on the num-
ber of closed bonds k. Similarly, the probability to attempt a Kawasaki transition is given
by 1 − pk ∈ [0, 1]. Here we consider the scenarios of purely anchored (pk = 1, ∀k) and
mixed diffusing bonds (0 < pk < 1, ∀k), whereas purely diffusing bonds (pk = 0, ∀k)
will not be considered since bonds break and associate in real biological systems. Further
details about the respective transition rates are given below.

Glauber transitions: Let {σj}′i denote the bond configuration obtained by flipping bond i
while keeping the configuration of all other bonds fixed, i.e. {σj}′i ≡ (−σi, {σj 6=i}). More-
over, letwi({σj}) denote the transition rate from {σj} to {σj}′i and∆Hi({σj}) ≡ H({σj}′i)−
H({σj}) the energy difference associated with the transition. These rates can be speci-
fied uniquely by limiting interactions to nearest-neighbors, imposing isotropy in position
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Figure 5.2: A coarse-grained model for the cooperative association/dissociation of
adhesion bonds. (a) Schematic of the effective many-body model governed by Eqs. (5.1)
and (5.2), depicting an adhesion domain on a cell-patch with 16 CAMs anchored to stiff
substrate. Adhesion bonds are arranged on a 4 × 4 square lattice and can assume two
states, σi = ±1, where +1 corresponds to an open (red) and −1 to a closed bond (green).
Nearest-neighbor bonds experience an effective interaction J induced by undulations of
the anchoring membrane. An external force h is pulling/pushing on the adhesion domain.
Each adhesion bond has an intrinsic binding-affinity µ ≥ 0 that favors a bound state. A
small number of bonds is depicted for convenience only. We consider different system
sizes including the thermodynamic limit. (b) Glauber and Kawasaki transition. A Glauber
transition changes the binding state of a single adhesion bond σi → −σi with transition
rate wi({σj}) (see Eq. (5.3)). A Kawasaki transition interchanges two nearest-neighbor
adhesion bonds σi ↔ σk with transition rate wik({σj}) (see Eq. (5.5)).

space, and requiring that wi satisfies DB, i.e. wi({σj})/wi({σj}′i) = exp (−β∆Hi({σj})),
where β = 1/kBT is the inverse thermal energy. The general result reads wi({σj}) =

α[1 − tanh(β∆Hi({σj})/2)]/2N , where α is an intrinsic attempt-frequency that sets the
fastest timescale [43], and time will throughout be expressed in units of α−1. Introducing
furthermore the dimensionless quantities J̃ = βJ , µ̃ = βµ and h̃ = βhx0/N , leads to

wi({σj}) =
α

2N

{
1− σi tanh

[
J̃
∑
〈ij〉

σj −
µ̃

2
+Λh̃{σj},i

]}
, (5.3)

where we defined the auxiliary function

Λh̃{σj},i ≡
h̃

(1 +Nc({σj})/N)(1 +Nc({σj}′i)/N)
. (5.4)
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Figure 5.3: Strategy roadmap. Small system sizes N ≤ 5 × 5 are solved for exactly.
The thermodynamics of larger systems is treated on the level of the BG approximation
and the kinetics by assuming local equilibrium. Within the BG approximation we take the
thermodynamic limit N → ∞ and determine the phase behavior, master scaling of disso-
lution/formation kinetics, and analyze the statical and dynamical critical behavior.

Kawasaki transitions: Let {σj}′ik denote the bond configuration upon interchanging the
state of the nearest neighbor bonds σi and σk while keeping the configuration of all other
bonds fixed, i.e. {σj}′ik ≡ (σi ↔ σk, {σj 6=(i,k)}). We denote the Kawasaki transition rate
from {σj} to {σj}′ik as wik({σj}), where ∆Hik({σj}) ≡ H({σj}′ik)−H({σj}) is the energy
difference associated with the transition. Imposing the same symmetry constraints as for
the Glauber rates, as well as DB, yields the general expression [44]

wik({σj}) =
α

2N

{
1− σi − σk

2
tanh

[
J̃(
∑
〈ij〉

σj −
∑
〈kl〉

σl)
]}
, (5.5)

where we have used that (σi − σk)/2 ∈ {−1, 0, 1}. As pointed out in [44], the transi-
tion is only meaningful when σk = −σi, otherwise the transition brings the system to an
identical state, which is equivalent to no transition. Note that the Kawasaki rates given
by Eq. (5.5) do not depend on the external force h̃ nor the binding-affinity µ̃, since the
Kawasaki transition conserves the total number of open and closed adhesion bonds. How-
ever, if we introduce a position-dependent force/binding affinity, the Kawasaki rates also
depend on h̃ and µ̃, which we analyze in Appendix A5.11.

5.2.3 Strategy roadmap

We focus in detail on both, the equilibrium properties as well as the kinetics of cluster
formation and dissolution for all cluster sizes. A roadmap to our extensive analysis is pre-
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sented in Fig. 5.3. For small to moderate cluster sizes, i.e. up to 50 bonds for the equilibrium
properties and up to 25 bonds in the case of formation/dissolution kinetics, we obtain exact
solutions using standard algebraic methods [267]. To circumvent the explosion of combina-
torial complexity for large system sizes, we employ the BG approximation (see Chapter 2)
to derive closed-form expressions for the partition function, and finally carry out the ther-
modynamic limit to derive explicit closed-form results for large adhesion clusters. When
considering the formation/dissolution kinetics of large clusters and in the thermodynamic
limit, we apply the local equilibrium approximation (LEQ), where we assume that the
growth and dissolution evolves like a birth-death process on the free energy landscape.

5.3 Equilibrium properties of adhesion clusters

5.3.1 Small and intermediate clusters

In order to quantify the equilibrium stability of adhesion clusters, we first analyze the
equation of state (EOS) for the average fraction of closed bonds, 〈ϕ〉 ≡ 〈Nc({σi})〉/N at
given µ̃, J̃ and h̃. To this end we require Zk, the partition function constrained to the
number of closed bonds Nc({σi}) = k. We therefore write the total canonical partition
function Z for a system of N adhesion bonds as Z ≡∑{σi} e−βH({σi}) ≡

∑N
k=0 Ẑk, where

Ẑk ≡
∑
{σi}

e−βH({σi})δNc({σi}),k = e[µ̃+2h̃(k/N+1)−1]kZk, (5.6)

and Zk ≡
∑
{σi} exp (J̃

∑
〈ij〉 σiσj)δNc({σi}),k is the partition function of the Ising model

at zero field conditioned to have a magnetization N/2 − k (see also Sec. 1.1.5). The free
energy density (per bond) in units of thermal energy kBT constrained to a given fraction
of closed bonds ϕ, f̃N (ϕ), and the EOS, 〈ϕ(µ̃, J̃ , h̃)〉, are given by

f̃N (ϕ) = −N−1 ln Ẑk, 〈ϕ〉 = N−1∂µ̃ lnZ. (5.7)

We note that e−Nf̃N (ϕ)/Z = Prob(Nc = Nϕ) in an equilibrium ensemble of N bonds. The
sum over constrained configurations inZk contains

(
N
k

) terms. Whereas it can be performed
exactly for N . 50, it explodes for larger system sizes. To overcome the computational
complexity, we employ the BG approximation [131], yielding (see derivation in Chapter 2)

Zk=Nϕ ≈ ZBG
k=Nϕ =

(
N

Nϕ

)
ΨBG(ϕ, ζ†BG(ϕ))

ΨBG(ϕ, ζBG(ϕ))
e−2z̄NJ̃(ζ†BG(ϕ)−1/4). (5.8)

where the functions ΨBG and ζ†BG are given by Eqs. (2.9) and (2.12), respectively.
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Figure 5.4: Free energy landscape and EOS for small clusters. (a-c) Free energy density
conditioned on ϕ, f̃N (ϕ) from Eq. (5.7) for a system of N = 5×8 bonds on a square lattice
for (a) a pushing force h̃ = −0.5, (e) no force h̃ = 0, and (f) pulling force h̃ = 0.5; Black
symbols depict exact results, blue symbols the BG approximation, and red symbols the MF
result. (d-f) EOS, 〈ϕ〉, for a cluster of 5×8 adhesion bonds on a square lattice as a function
of the dimensionless coupling J̃ for (d) a pushing force h̃ = −0.5, (e) no force h̃ = 0, and
(f) a pulling force h̃ = 0.5. Symbols depict exact results, blue lines correspond to the BG
approximation, and red to the MF result.

Fig. 5.4(a-c) shows a comparison of the free energy density f̃N (ϕ) for a cluster of 40 bonds
for various affinities µ̃ and external forces h̃, and confirms the high accuracy of the BG ap-
proximation on the one hand, and the systematic failure of the MF result on the other hand.
This signifies that correlations between adhesion bonds decisively affect cluster properties.
Moreover, pairwise correlations captured by the BG approach are apparently dominant,
whereas higher order correlations that were ignored are apparently insignificant.

Similarly, in Fig. 5.4(d-f) we depict the EOS for a cluster of 40 bonds. The BG approxima-
tion (blue lines) is very accurate for all values of J̃ , whereas the MF approximation (red
lines) fails for intermediate values of the coupling. We observe striking differences in the
dependence of 〈ϕ〉 on the coupling J̃ (and hence membrane rigidity) with respect to the
intrinsic binding-affinity µ̃ in the presence of a pulling force (see Fig. 5.4f). At strong cou-
pling between adhesion bonds 〈ϕ〉 depends strongly on µ̃. In the presence of a pulling force
adhesion bonds with a weak affinity are on average all broken, whereas they are all closed
if the affinity is large. Notably, the dependence of 〈ϕ〉 on the coupling J̃ at zero force (see
Fig. 5.4e) agrees qualitatively well with experimental observations [221, 221, 238, 260]
and hints at some form of critical behavior underneath, which we discuss in more detail in
Sec. 5.5.
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5.3.2 Thermodynamic limit

To explore the phase diagram in detail and analyze the critical behavior, we consider the
thermodynamic (TD) limit of the BG and MF free energy density, i.e. the scaling limit

f̃BG,MF(ϕ) ≡ limN→∞
k/N=ϕ=const.[f̃

BG,MF
N (ϕ)], (5.9)

which exists and is given by f̃BG(ϕ) = ũBG(ϕ)− s̃BG(ϕ), where the internal energy density
and entropy density are respectively given by

ũBG(ϕ) = 2z̄J̃ [ζ†BG(ϕ)− 1/4] + 2h̃ϕ/(1 + ϕ)− µ̃ϕ, (5.10)
s̃BG(ϕ) = (z̄−1)[Ξ(ϕ)+Ξ(1−ϕ)]−(z̄/2)[Ξ(ϕ−ζ†BG(ϕ))+Ξ(1−ϕ−ζ†BG(ϕ))+2Ξ(ζ†BG(ϕ))],

where Ξ(x) ≡ x lnx and ζ†BG is given by Eq. (2.12). The result for f̃MF(ϕ) is given in Ap-
pendix C of [69]. Somewhat surprisingly, the free energy density of a finite system, f̃BG

N (ϕ),
converges to the thermodynamic limit f̃BG(ϕ) already for N & 100. For convenience, we
henceforth drop the subscript BG when considering the BG result, i.e. f̃BG(ϕ)→ f̃(ϕ).

The EOS in the thermodynamic limit is determined by means of the saddle-point method
(see Appendix A5.13), yielding a weighted sum over ϕ0

i , theM global minima of f̃(ϕ):

〈ϕ〉TD = limN→∞
k/N=ϕ=const.[N

−1∂µ̃ lnZ] '
∑M

i=1 ciϕ
0
i , (5.11)

where f̃(ϕ0
i ) = f̃min, ∀i, and' stands for asymptotic equality in the thermodynamic limit. In

practice,M is either 1 (unique minimum) or 2 (two-fold degenerate minima). The minima
have the universal form ϕ0

m = ξ4
µ̃,J̃ ,h̃

/(1 + ξ4
µ̃,J̃ ,h̃

) with the coefficients ξµ̃,J̃ ,h̃ and weights
ci given explicitly in Appendix A5.13. The EOS 〈ϕ〉 for a finite cluster seems to converge
to the saddle-point asymptotic 〈ϕ〉TD already for N & 400 for any value of the force h̃,
bond affinity µ̃, and coupling J̃ (see Fig. 5.5(a-c)), and is qualitatively the same as for
smaller clusters (compare Fig. 5.5(a-c) with Fig. 5.4(d-f)). However, important differences
emerge in the thermodynamic limit – the systemmay undergo a phase transition and phase-
separate into dense (“liquid”) and dilute (“gas”) phases of closed bonds with composition
ϕl and ϕg, respectively (see also [246]).

5.3.3 Phase diagram and critical behavior

To determine the phase diagram we require the binodal J̃b(ϕ) and spinodal J̃s(ϕ) line,
which are introduced in Sec. 2.8. Recall that the binodal and spinodal are independent
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Figure 5.5: EOS and phase diagram in the thermodynamic limit. (a-c) 〈ϕ〉 for a cluster
of 20 × 20 adhesion bonds on a square lattice (symbols) and the saddle-point asymptotic
〈ϕ〉TD from Eq. (5.11) as a function of the dimensionless coupling J̃ for various affinities
µ̃ and for (a) a pushing force h̃ = −1, (b) no force, and (c) a pulling force h̃ = 1. The
dashed vertical line denotes the (statical) critical coupling strength J̃scrit whereupon the
system phase-separates into dense and dilute phases of closed bonds. (d-e) Phase diagram
for (d) a pushing force h̃ = −1, (e) no force, and (f) a pulling force h̃ = 1; the full and
dashed lines depict the binodal and spinodal line, respectively. The shaded area depicts
the region where the system is metastable. The blue circle depicts the (statical) critical
point (ϕscrit, J̃

s
crit). Inset in (e): Schematic of the free energy landscape f̃(ϕ) below the

critical coupling J̃ < J̃scrit (bottom) displaying a single minimum, and a bi-stable free
energy landscape above the critical coupling J̃ > J̃scrit (top), with the black and red symbols
illustrating the meaning of phase compositions highlighted in the phase diagram.

of the intrinsic affinity µ̃ which couples linearly to ϕ. For a non-zero force (h̃ 6= 0) we
determine J̃b(ϕ) numerically, whereas for h̃ = 0 the binodal is given by Eq. (2.20). The
spinodal line for any force h̃ is in turn given by

J̃s(ϕ, h̃) =
1

4
ln

{
[ϕ− Φ(ϕ, h̃)][1− ϕ− Φ(ϕ, h̃)]

Φ(ϕ, h̃)2

}
, (5.12)

with the auxiliary function

Φ(ϕ, h̃) ≡ 2ϕ(1− ϕ) + z̄

[
1− z̄

ϕ(1− ϕ)
− 4h̃

(1 + ϕ)3

]−1

, (5.13)

that is defined for (2 − z̄)/8h̃ ≤ ϕ(1 − ϕ)/(1 + ϕ)3 ≤ (1 − z̄)/4h̃. Note that for
h̃ = 0 Eq. (5.12) reduces to Eq. (2.25). The phase diagram for a pushing, zero,
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Figure 5.6: Statical critical point as a
function of the force h̃. Symbols de-
pict the exact solution using a converged
Newton’s series and the gradient line de-
picts the quadratic approximation given by
Eq. (A5.29), which is very accurate for
any pulling- and up to a moderate pushing
force, i.e. h̃ ≥ −1. Explicit results are given
in Appendix A5.12. The black line cor-
responds to the result from second order
perturbation theory given by Eqs. (5.14)-
(5.15) that is valid for small forces.

and pulling force h̃ is shown in Fig. 5.5(d-
f) and displays, above the critical coupling
strength J̃ > J̃scrit, a phase separation into a
dense and dilute phase of closed bonds with
compositions ϕl and ϕg, respectively. A push-
ing force h̃ < 0 lifts the critical coupling and
“tilts” the phase diagram towards higher den-
sity, i.e. at a given coupling J̃ > J̃scrit the den-
sity of both phases increases. Conversely, a
pulling force h̃ > 0 lowers the critical coupling
and “tilts” the phase diagram towards lower
density, i.e. at a given coupling J̃ > J̃scrit the
density of both phases decreases. The biolog-
ical implications of these results will be dis-
cussed in Sec. 5.5. The binodal and spinodal
within the MF approximation are given in Ap-
pendix C of [69] (see Eq. (C3)-(C4) therein).

We now address in detail the behavior of the statical critical point (ϕscrit, J̃
s
crit) – the point

where the binodal and spinodal merge, J̃b(ϕscrit, h̃) = J̃s(ϕ
s
crit, h̃) ≡ J̃scrit(ϕ

s
crit, h̃). The

critical point denotes the onset of phase separation and is the solution of f̃ ′′′(ϕ) = 0, which
in absence of the force yields (ϕs,0crit, J̃

s,0
crit) ≡

1
2(1, ln z̄

z̄−2) (see Sec. 2.8.3). In the presence of a
force h̃ 6= 0 we obtain the exact solution using a Newton’s series approach [204,268,269]
(for details regarding the Newton series see Appendix A5.13). The analytical result is
non-trivial and is given explicitly in by Eq. (A5.29) within the quadratic approximation.
For small forces |h̃| � 1 we in addition derive a second order perturbation expansion
J̃scrit = J̃s,0crit − δJ̃scrit(h̃) +O(h̃3) and ϕscrit = ϕs,0crit − δϕcrit(h̃) +O(h̃3), with

δJ̃scrit(h̃) =
8

27

1

z̄ − 2

(
h̃+

2

27

z̄ + 2

z̄ − 1
h̃2

)
, (5.14)

δϕcrit(h̃) =
2

3

(z̄/3)2

(z̄ − 2)(z̄ − 1)

[
h̃+

16

9

(z̄/3)2 − z̄ + 1

(z̄ − 2)(z̄ − 1)
h̃2

]
. (5.15)

The dependence of the statical critical point on the external force is depicted in Fig. 5.6. A
pulling force (red) pulls the critical point towards lower J̃ and lower ϕ, whereas a pushing
force (blue) effects the opposite and shifts the critical point towards larger coupling J̃ and
higher density ϕ. The MF statical critical point can be derived exactly as a function of the
force h̃, and the result is given in Appendix C of [69] (see Eq. (C13) therein).
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5.4 Kinetics of cluster formation and dissolution

5.4.1 Small and intermediate clusters

We are interested in the kinetics of cluster formation from a completely unbound state,
and cluster dissolution from a completely bound state. More general initial conditions are
treated in Appendix A5.14. We quantify the kinetics by means of the mean first passage
time (MFPT) 〈τd,f 〉, where the subscripts d and f stand for dissolution and formation,
respectively, and τd,f is the first passage time (FPT) defined as

τd ≡ inf
t

[ϕ({σi}t) = 0|ϕ({σi}0) = 1] ,

τf ≡ inf
t

[ϕ({σi}t) = 1|ϕ({σi}0) = 0] , (5.16)

where {σi}t denotes the instantaneous state at time t. A cluster with N adhesion bonds
has 2N possible states {σi}. We enumerate them such that the first state corresponds to
all bonds closed and the final state to all bonds broken. The transition matrix of the
Markov chain, describing mixed Glauber-Kawasaki, has dimension 2N × 2N , whereby we
must impose absorbing boundary conditions on the fully dissolved and fully bound states,
respectively. An exact algebraic result for 〈τd,f 〉 is given in Eq. (A5.40) in Appendix A5.14.1
but requires the inversion of a (2N − 1) × (2N − 1) sparse matrix, followed by a sum over
2N − 1 terms, which is feasible only for N . 5× 5.

As a result of the non-systematic cluster formation and dissolution at zero coupling J̃ = 0,
and motivated by the intuitive idea that the dynamics is dominated by low energy (i.e.
minimum action) paths at large coupling J̃ � 1, we make the so-called LEQ to treat large
clusters. Thereby we map the dynamics of the 2N ×2N state-space onto a one-dimensional
birth-death process for the instantaneous number of closed bonds k (see Fig. 5.7a) with
effective transition rates

w̄k→k±1 ≡ (Ẑk/pk)−1
∑
{σi}

e−βH({σi})w±exit({σi})δNc({σi}),k, (5.17)

where we recall that pk represents the Glauber attempt probability in state k, and we have
introduced the exit rates from configuration {σi} in the “+” (i.e.Nc({σi}′j) = Nc({σi})+1)
and “−” (i.e. Nc({σi}′j) = Nc({σi})− 1) direction, respectively, given by

w±exit({σi}) ≡
N∑
j=1

wj({σi})δNc({σi}′j),k±1. (5.18)
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Figure 5.7: Local equilibrium approximation and kinetics of dissolution and forma-
tion of small clusters. (a) Mapping the full dynamics onto a birth-death process. For
convenience, and without any loss of generality, we here show an example for 3 adhesion
bonds on a 1-dimensional lattice. The mapping holds for any lattice geometry. In the full
dynamics each lattice configuration represents a different node, comprising a 2N×2N tran-
sition matrix, whereas in the LEQ approximation we only distinguish between states with
a different number of closed/open bonds, comprising a (N+1)×(N+1) transition matrix.
(b-c) MFPT for cluster dissolution (b) and formation (c) as a function of the coupling J̃
for N = 4 × 5 adhesion bonds with intrinsic affinity µ̃ = 0.5 in the absence of a force (for
nonzero force values see Fig A5.14). Colored lines correspond to exact results obtained
from Eq. (A5.40) for various values of the Glauber attempt probability p, which we set to
be constant pk → p, and symbols denote the LEQ approximation Eq. (5.19) evaluated with
the exact Ẑk and w̄k→k±1 obtained from brute-force summation of Eqs. (5.6) and (5.17).

Note that only the Glauber transitions, given by Eq. (5.3), enter in Eq. (5.18). The Kawasaki
transitions given by Eq. (5.5), which conserve the total number of closed bonds, enter
the dynamics through the diagonal of the transition matrix as the waiting rates w̄k→k =

1− w̄k→k+1 − w̄k→k−1, where the right hand side follows from conservation of probability.
Within the LEQ approximation the MFPT for cluster dissolution and formation becomes

〈τd〉 ≈ 〈τ le
d 〉 =

N−1∑
k=0

1

w̄k→k+1

N∑
l=k+1

Ẑl
Ẑk

pk
pl
, 〈τf 〉 ≈ 〈τ le

f 〉 =

N∑
k=1

1

w̄k→k−1

k−1∑
l=0

Ẑl
Ẑk

pk
pl
, (5.19)

where one can further use the DB relation (Ẑk/pk)w̄k→k±1=(Ẑk±1/pk±1)w̄k±1→k (which
we prove in Appendix A5.14.2) to interchange the backward and forward rate in the sec-
ond line and change the summation according to ∑N

k=1 w̄
−1
k→k−1

∑k−1
l=0 (Ẑl/Ẑk)(pk/pl) →∑N−1

k=0 w̄−1
k→k+1

∑k
l=0(Ẑl/Ẑk)(pk/pl). In Appendix A5.14.3 we prove that Eq. (5.19) holds
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for any birth-death process where the transition rates obey DB. A comparison of the exact
result given by Eq. (A5.40) with the LEQ approximation in Eq. (5.19) shown in Fig. 5.7b-c
demonstrates the remarkable accuracy of the approximation already for N ∼ 20 bonds,
which increases further for larger N . The reason for the high accuracy can be found in the
large entropic barrier to align bonds in an unbound/bound state, effecting a local equilibra-
tion prior to complete formation/dissolution. Moreover, the LEQ approximation is expected
to become asymptotically exact even for small clusters in the ideal, non-interacting limit
J̃ → 0 as well as for J̃ → ∞ that is dominated by the minimum-action, “instanton” path.
A further discussion of the LEQ approximation and an approximate closed form expression
for Eq. (5.19) for larger systems is given in Appendices A5.14.4 and A5.14.5.

The MFPT for cluster dissolution/formation shown in Fig. 5.7b-c both display a strong and
non-monotonic dependence on the coupling parameter J̃ with a pronounced minimum,
hinting at some form of critical dynamics. As we prove below this minimum in the thermo-
dynamic limit indeed corresponds to a dynamical critical coupling.

5.4.2 Thermodynamic limit

We now consider dissolution and formation kinetics in very large clusters, i.e. in the limit
N →∞. Note that while theMFPT formally diverges, i.e. limN→∞〈τd,f 〉 =∞, it is expected
to do so in a “mathematically nice”, well-defined “bulk scaling”. In anticipation of an expo-
nential scaling of relevant time-scales with the system size N , we define the mean forma-
tion/dissolution time per bond in the thermodynamic limit as 〈td,f〉 ≡ limN→∞〈τd,f 〉1/N .
Using the LEQ approximation for the MFPT given by Eq. (5.19), and assuming that the
Glauber attempt probabilities pk are strictly sub-exponential inN , we prove via a squeezing
theorem in Appendix A5.14.6 that the exact mean dissolution and formation time per bond
in the thermodynamic limit reads

〈td,f〉 = ef̃(ϕd,fmax)−f̃(ϕd,fmin) ≡ e∆f̃† , (5.20)

where

ϕdmax ≡ sup
ϕ<1

f̃(ϕ), ϕdmin ≡ inf
ϕ>ϕdmax

f̃(ϕ),

ϕfmax ≡ sup
ϕ>0

f̃(ϕ), ϕfmin ≡ inf
ϕ<ϕfmax

f̃(ϕ). (5.21)

Eq. (5.20) shows that the mean first passage per bond in the thermodynamic limit is deter-
mined exactly by the largest left/right-approaching free energy barrier between the initial
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Figure 5.8: Master scaling of mean dissolution and formation times per bond for finite
clusters and in the thermodynamic limit, and the origin of the dynamical critical point.
〈td,f〉 for cluster dissolution (a) and formation (b) as a function of the coupling J̃ for a pair
of intrinsic affinities µ̃ = 0 and µ̃ = 0.5 and various cluster sizes (symbols) as well as
the thermodynamic limit (lines) in the absence of an external force; Symbols are evaluated
with the LEQ approximation Eqs. (5.19) using ẐBG

k (Eqs. (5.6) and (5.8)) and w̄k→k+1 from
Eq. (5.17). The discrepancy between the lines and symbols is due to finite-size effects. (c)
In the thermodynamic limit the mean dissolution/formation time 〈td,f〉 depends only on
the largest free energy barrier (see Eq. (5.20)). For small coupling (regime I) the latter
corresponds to the difference between the free energy minimum and the fully dissolved
or bound configuration, ∆f̃† = ∆f̃†0,1, respectively. At the statical critical coupling value,
Jscrit, (onset of regime II) a free energy barrier emerges separating the meta-stable from
the stable phase, ∆f̃†H�L, but the largest free energy barrier is still ∆f̃† = ∆f̃†0,1. At the
dynamical critical coupling, J̃dcrit, (onset of regime III) the free energy barrier separating the
meta-stable from the stable phase becomes dominant, ∆f̃† = ∆f̃†H�L. The depicted free
energy landscapes f̃(ϕ) correspond to Eq. (5.10) with µ̃ = 0.05 and h̃ = 0.

and final point, and is completely independent of the Glauber attempt probability pk. We
obtain analytical results for Eqs. (5.20) and (5.21) for arbitrary J̃ , µ̃ and h̃. Since these re-
sults are somewhat complicated for µ̃ > 0 and h̃ 6= 0 we present them in Appendix A5.14.7
and Fig A5.15. In the force-free case with zero intrinsic affinity, i.e. µ̃ = h̃ = 0, they turn
out to be surprisingly compact and given by

〈td,f〉 =


2e−2J̃ cosh2 J̃ , 0 ≤ J̃ ≤ 1

2 ln 2

4
sinh2 2J̃

e4J̃ − 2
, 1

2 ln 2 ≤ J̃≤ 1
2 ln (1+

√
2)

8e2J̃ sinh2 J̃

e4J̃ − 2
, J̃ ≥ 1

2 ln (1+
√

2),

(5.22)
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such that for J̃ = 0 and J̃ →∞ we have 〈td,f〉 = 2 being the maximum, and the minimum
occurs at J̃ = ln (1 +

√
2)/2 where 〈td,f〉 = (4/7)(2

√
2−1). Fig. 5.8a,b shows a comparison

of the prediction of Eq. (5.20) with the results for finite systems given by Eqs. (5.19) and
(5.17) rescaled according to 〈τd,f 〉1/N . Already for N = 900 a nearly complete collapse
to the thermodynamic limit (5.20) is observed for both, cluster formation as well as dis-
solution. The MF analogue of Eq. (5.22) is given by Eq. (E35) in [69] for general z̄ and
remarkably has a universal minimum (i.e. z̄-independent) value of 〈td,f〉MF ≈ 1.0785 at
the dynamical critical coupling J̃ = 2 ln (2)/z̄. Moreover, 〈td,f〉MF displays an unphysical
divergence in the limit J̃ → ∞ which relates to the diverging MF free energy barrier as
discussed in Sec. 2.11.1 (see also Fig. 18 in [69]).

5.4.3 Dynamical phase transition and critical behavior

Strikingly, the mean dissolution and formation time in the thermodynamic limit (5.20)
display a discontinuity as a function of the coupling J̃ (see jumps in ∂J̃〈td,f〉 depicted in
the insets in Fig. 5.8a,b). In particular, for zero affinity and external force we find from
Eq. (5.22)

lim
J̃↗ 1

2
ln(1+

√
2)
∂J̃〈td,f〉 = −(4/7)2(13

√
2− 17)

lim
J̃↘ 1

2
ln(1+

√
2)
∂J̃〈td,f〉 = (8/72)(9

√
2− 8).

This implies the existence of a first order dynamical phase transition at the dynamical
critical coupling J̃dcrit and hence a qualitative change in the dominant dissolution/formation
pathway. Coincidentally, the BG dynamical critical point for µ̃ = h̃ = 0 coincides with the
exact (Onsager’s) statical critical point for the two-dimensional zero-field Ising model [21]
(for a more detailed discussion see Appendix A5.14.7). Similarly, the MF dynamical critical
point for µ̃ = h̃ = 0 coincides with the BG statical critical point as shown in [69]. Strikingly,
the dynamic critical point always corresponds to the minimum of 〈td,f〉. The explanation
of the physics underneath the dynamical phase transition and the meaning of J̃dcrit is given
in Fig. 5.8c.

The qualitative behavior of 〈td,f〉 has three distinct regimes. In regime I, where 0 ≤ J̃ <

J̃scrit, the free energy landscape f̃(ϕ) has a single well and according to Eq. (5.20) 〈td,f〉 is
determined by ∆f̃†0,1 – the free energy difference between the minimum and the absorbing
point (i.e. ϕ = 0 for dissolution and ϕ = 1 for formation, respectively). ∆f̃†0,1 is a decreasing
function of J̃ .
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At the statical critical coupling J̃scrit, which marks the onset of regime II, a second free en-
ergy barrier emerges delimiting the phase-separated low (L) and a high (H) density phase.
We denote this free energy barrier by ∆f̃†H�L where → and ← stand for dissolution and
formation, respectively. ∆f̃†H�L is an increasing function of J̃ . In regime II, that is when
J̃scrit ≤ J̃ < J̃dcrit, the dissolution and formation first evolve through a (thermodynamic)
phase transition and, finally, must also surmount the second, predominantly entropic bar-
rier to the complete dissolved/bound state. In regime II, as in regime I, the largest free
energy barrier remains the free energy difference between the minimum and the absorb-
ing point, i.e. ∆f̃†0,1 > ∆f̃†H�L.

Exactly at the dynamical critical coupling J̃dcrit the two barriers become identical, ∆f̃†0,1 =

∆f̃†H�L and for J̃ > J̃dcrit we always have ∆f̃†0,1 < ∆f̃†H�L. Therefore, in regime III the rate-
limiting event becomes the phase transition itself, whereas the fully dissolved/bound state
is thereupon reached by typical density fluctuations. Since ∆f̃†0,1 decreases with J̃ while
∆f̃†H�L increases with J̃ , the mean dissolution/formation time per bond at the dynami-
cal critical coupling J̃dcrit must be minimal. This explains the dynamical phase transition
completely.

Note that the dynamical phase transition is preserved under equilibrium initial conditions,
i.e. upon considering ϕ({σi}0) = ϕ0

L,H in Eq. (5.16), where ϕ0
L,H is the (meta)-stable

minimum in the high or low density region for respectively cluster dissolution or formation.

Figure 5.9: Dynamical critical coupling
J̃dcrit as a function of the external force h̃
for several values of the intrinsic binding-
affinity µ̃. Note that J̃dcrit is non-monotonic
with a global minimumwhose location de-
pends on µ̃ and h̃.

In the thermodynamic limit the equilibration
time from the initial condition ϕ({σi}) = 0∨ 1

to the (meta)-stable minimum ϕ0
L,H becomes

exponentially suppressed w.r.t. the total tran-
sition time, which renders 〈td,f〉 unchanged.

The dependence of J̃dcrit on µ̃ and h̃ is deter-
mined in the form of a Newton’s series in Ap-
pendix A5.14.7, and is depicted in Fig. 5.9.
Depending on the intrinsic affinity µ̃, the de-
pendence of J̃dcrit may be non-monotonic. Note
that in contrast to the statical critical coupling
J̃ s

crit which is independent of µ̃, the dynamical
critical coupling J̃d

crit depends on the particu-
lar value of µ̃.
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parameter symbol estimated
value/range

source

spring constant βk ∼ 10−2 [nm−2] [59,278,279]
non-specific interaction strength βγ ∼ 10−5 [nm−4] [59]
bond separation distance h0 − l0 25 ∼ 50 [nm] [278,280,281]
bending rigidity βκ 4 ∼ 400 [252,275,276,282]

Table 5.1: Estimated parameter to determine the range of J̃ through Eq. (A5.25).

5.5 Mechanical regulation of cell adhesion

Our results tie the effective bending rigidity, κ, and in turn interactions between neigh-
boring adhesion bonds, J̃ ∝ κ−1/2 (see Appendix A5.10), to the collective phase behavior
of adhesion clusters at equilibrium, and to distinct dynamical phases of cluster dissolution
and formation. Based on the quantitative relationship between the coupling strength J̃
and bending ridigity κ given by Eq. (A5.25), and an order-of-magnitude estimation of the
relevant parameters listed in Table 5.1, we find that the coupling strength in cellular sys-
tems lies within the range 0 . J̃ . 2.5. Notably, both the statical and dynamical critical
point at moderate values of the external force values and/or intrinsic binding-affinity lie
within said range (see Fig. 5.6 and 5.9). Yet, it remains to be explained why a near-critical
coupling may be beneficial for cells, and how it may be regulated.

Our results provoke the hypothesis that the membrane rigidity (and hence the coupling
strength) may lie close to the statical critical value for quasi-static, and near the dynamical
critical value for transient processes. Mechanical regulation of the bending rigidity can
be achieved through hypotonic swelling [270], (de)polymerization of the F-actin network
[271,272], by decoupling the F-actin network from the plasma membrane [252], through
changes of the membrane composition [273–276] or integral membrane proteins [274],
membrane-protein activity [277], temperature modulation [228, 235, 275], and acidosis
[243], to name but a few. Moreover, it has been shown experimentally that temperature
modulations affects adhesion strength through changes in membrane fluidity [228], cell
elasticity [235], or via a temperature cooperative process [226], albeit the denaturation of
the binding proteins also provides a possible explanation [236].

Below we argue that the change in the response of a cell to a perturbation, defined as
a change in the equilibrium binding strength or association/dissociation rates, is largest
near criticality. This results in either a very small or very large response, depending on the
change of the underlying parameter. Here we follow the same kind of reasoning as rooted
in the criticality hypothesis, which states that systems undergoing an order–disorder phase
transition achieve the highest trade-off between robustness an flexibility around criticality
[283].
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5.5.1 Criticality at equilibrium

In Fig. 5.10a we depict how oscillations in the coupling strength (arising through oscilla-
tions in the bending rigidity κ) around the statical critical point affect the average fraction
of closed bonds. Similar oscillatory patterns and their effect on the adhesion strength have
been observed in vascular smooth muscle cells, where changes in the bending rigidity were
concerted by the remodeling of the actin cytoskeleton [234,254,255]. Minute changes in
the amplitude, δJ̃ , can drive the systems’s behavior from oscillations within a dense phase
with 〈ϕ(t)〉 > 0.5 to intermittent periods of nearly complete dissolution (compare full and
dashed lines in Fig. 5.10a). Hence we find that the response (i.e. 〈ϕ(t)〉) is most sensitive
to a change in the amplitude δJ̃ when J̃ lies close to the statical critical point.

Similarly, in Fig. 5.10b we show the response of 〈ϕ(t)〉 to a mechanical per-
turbation oscillating quasi-statically between a pulling and a pushing force,
h̃(t)=h̃+δh̃ sin(ωt) (for practical examples see e.g. [284, 285]). Such mechanical
perturbations can for example arise through changes in active stresses generated

Figure 5.10: Equilibrium response
to changes in cell stiffness and ex-
ternal force. Equilibrium response of
the average fraction of closed bonds
〈ϕ(t)〉 to a slow (quasi-static), peri-
odic modulation of (a) the coupling
J̃(t)=J̃+δJ̃ sin(ωt) (and hence mem-
brane stiffness) and (b) the external
force h̃(t)=h̃+δh̃ sin(ωt). Note the
strong sensitivity of the response near
the statical critical coupling J̃scrit.

within the cytoskeleton [286]. Here as well, a
small change in the force δh̃ acting on the cluster,
can lead to stark differences in the cluster stabil-
ity 〈ϕ(t)〉. The sensitivity to a change in the the
force is most amplified near the statical critical
coupling J̃scrit (compare full and dashed lines in
Fig. 5.10b), where a small change in the ampli-
tude, δh̃, can cause intermittent periods of essen-
tially complete cluster detachment.

Drastic changes in the average number of closed
bonds have been observed experimentally in ad-
hesion frequency assays and single-molecule mi-
croscopy [221, 260]. There it was shown that
binding affinities and binding dynamics for a T-
cell receptor (TCR) interacting with the peptide-
major histocompatbility complex (pMHC) are
more than an order of magnitude smaller in so-
lution (i.e. in 3D) as compared to when they are
anchored to a cell membrane (i.e. in 2D). One
possible contribution to the discrepancy between
the 3D and 2D binding kinetics is the difference in
the reduction of the entropy upon binding, which
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is larger in 3D than in 2D [239]. However, it has been explicitly remarked that this contri-
bution alone does not explain the measured difference in the binding affinities [239]. The
authors of Ref. [221,260] rationalize these differences in binding in terms of a cooperativ-
ity between neighboring TCRs due to the anchoring membrane. In particular, Fig. 11a in
the SM of Ref. [260] shows the adhesion frequency Pa(tc) ∈ [0, 1], defined as the fraction
of observed adhesion events between the TCR and pMHC as a function of the contact time
tc between the anchoring membranes, derived from MC simulations. Upon introducing a
heuristic neighbor-dependent amplification factor in the binding rates, the authors observe
an amplification of the adhesion frequency Pa (compare squares with diamonds), indicating
an increase in binding events in agreement with their experimental observations.

We relate our results to the observations in Ref. [260] by recalling the relation between
Pa and 〈Nc〉 = N〈ϕ〉, i.e. P ss

a ≡ limtc→∞ Pa(tc) = 1 − exp (−N〈ϕ〉) (see [287] as well as
Eqs. (1) and (2) in [260]). In our model the aforementioned amplification factor arises
naturally from a nonzero coupling strength J̃ due to the anchoring membrane. Indeed, in
Fig. 5.4e an increase in J̃ leads to an increase in 〈ϕ〉, which in turn causes an increase of the
steady state adhesion frequency P ss

a . Hence, we find that the amplification factor in [260]
and coupling J̃ in our model have the same effect on the adhesion frequency.

A similar observation was made in [238] on the basis of a detailed analysis of the bind-
ing affinities of the adhesion receptor CD16b placed in three distinct environments: red
blood cells (RBCs), detached Chinese hamster ovary (CHO) cells, and K562 cells. Based
on Fig. 4a,b in [238] the adhesion frequency for RBCs is around a 15-fold larger than for
CHO and K562 cells. In the discussion the authors point towards the modulation of surface
smoothness as an explanation for the observed differences in adhesion frequency [238].
Since K562 cells are known to have a larger bending rigidity than RBCs [288, 289] (we
were unfortunately not able to find the corresponding information for CHO cells in the ex-
isting literature), it is expected that the coupling strength J̃ is generally higher in the latter
(see Appendix A5.10), which provides a potential explanation for the observed difference
in adhesion frequencies between RBCs and K562 cells.

5.5.2 Criticality in kinetics

Many biological processes [290–293] and experiments [294–296] involve adhesion under
transient, non-equilibrium conditions, where cells can become detached completely from
a substrate (for a particular realization with a constant force see [294]). The duration of
these transients may be quantified by the mean dissolution and formation time, 〈td,f〉 (see
Fig. 5.8). Imagine that the cell can change the bending rigidity by an amount ∆κ that in
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Figure 5.11: Kinetic response
to changes in cell stiffness.
Change in mean dissolution (a)
and formation (b) time per bond,
∆J̃〈td,f〉≡〈td,f(J̃+∆J̃)〉−〈td,f(J̃)〉, as
a response to a change ∆J̃ of the
coupling, as a function of J̃ for various
∆J̃ . The kinetic response is largest for
J̃ near the dynamical critical coupling.

turn translates into a change in coupling, J̃ ′ =

J̃ + ∆J̃ ∝ 1/
√
κ+ ∆κ. If the mechanical regula-

tion is to be efficient, a small change of ∆J̃ should
effect a large change of 〈td,f〉.

The efficiency of the regulation, ex-
pressed as the change of mean dissolu-
tion/formation time in response to a change
∆J̃ , ∆〈td,f〉≡〈td,f(J̃+∆J̃)〉−〈td,f(J̃)〉, is shown
in Fig. 5.11. The results demonstrate that
the regulation is most efficient, that is gives
the largest change, when J̃ is poised near the
dynamical critical coupling, J̃ ' J̃dcrit, regardless
of the magnitude of the change ∆J̃ . Recall that
the formation and dissolution rate, 1/〈tf〉 and
1/〈td〉, respectively, are highest at the dynamical
critical coupling (see Fig. 5.8). Therefore, we
not only find the largest response to a change in
J̃ , but also the fastest formation and dissolution
kinetics at the dynamical critical coupling.

An example where fast kinetic (un)binding and
a large sensitivity to the bending rigidity can be
beneficial is found in tumor cells that undergo metastasis - the process through which
tumor cells spread to secondary locations in the host’s body. Recent studies suggest that
cancer cells are mechanically more compliant than normal, healthy cells [297]. Moreover,
experiments with magnetic-tweezers have shown that membrane stiffness of patient tumor
cells and cancer cell-lines inversely correlates with their migration and invasion potential
[257], and an increase of membrane rigidity alone is sufficient to inhibit invasiveness of
cancer cells [282]. Cells with the highest invasive capacity were found to be five times
less stiff than cells with the lowest migration and invasion potential, but the underlying
mechanism behind this correlation remained elusive [257].

Based on our results a decrease in the bending rigidity, and hence the membrane stiffness,
can alter both, the equilibrium strength of adhesion (see Figs. 5.4 and 5.10) as well as the
kinetics of formation and dissolution of adhesion domains (see Figs. 5.8 and 5.11). This
may provide a clue about the mechanical dysregulation of cell adhesion in metastasis in
terms of a softening of the cell membrane.
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5.6 Criticality in the Ising Model

By setting h̃ = 0 in Eq. (5.1) our findings, and in particular the uncovered dynamical phase
transition, also provide new insight into equilibrium and kinetic properties of the Ising
model in the presence of a uniform external magnetic field.

The equilibrium properties of the two-dimensional Ising model in the absence of a mag-
netic field, such as the total free energy per spin, statical critical point, and binodal line
were obtained in the seminal work by Onsager [21]. The effect of a uniform magnetic
field has mostly been studied numerically [298, 299], e.g. by MC simulations [300] and
renormalization group theory [301], but hitherto no exact closed-form expression for the
free energy per spin has been found. On the BG level the free energy density, binodal line,
spinodal line, and statical critical point were known [133], but to our knowledge we are the
first to provide an exact closed-form expression for the EOS in the presence of a uniform
magnetic field (see Appendix A5.13).

The kinetics of the two-dimensional Ising model have been studied in the context of
magnetization-reversal times (i.e. the time required to reverse the magnetization) [302–
304], nucleation times [305, 306], and critical slowing down [45, 307]. Here we report
a new type of dynamical critical phenomenon related to a first-order discontinuity and
a global minimum of the magnetization reversal time at the concurrent dynamical criti-
cal point (see Fig. 5.8), which is fundamentally different from the statical critical point.
The dynamical phase transition reflects a qualitative change in the instanton path towards
magnetization reversal, and has not been reported before.

In Table 5.2 we summarize the values of the statical and dynamical criti-
cal points obtained by the MF and BG approximation in the absence of a

critical points
approximation J̃scrit J̃dcrit

MF 1/z̄ 2 ln (2)/z̄

BG ln (z̄/(z̄ − 2))/2 − ln (21−2/z̄ − 1)/2

Exact 2D ln
(
1 +
√

2
)
/2 ≥ J̃scrit

Table 5.2: Statical and dynamical critical point as a func-
tion of the coordination number z̄ obtained with the MF
and BG approximation, alongside the exact statical critical
point J̃ s

crit for the two-dimensional Ising model at zero field
and binding-affinity µ̃ = h̃ = 0. The exact dynamical criti-
cal point remains unknown; a lower bound is given by the
Onsager statical critical point.

magnetic field, and for a gen-
eral coordination number z̄
(for a derivation of the dy-
namical critical points see
Appendix A5.14.7 and Ap-
pendix 9 in [69]. We also
state the exact statical critical
point of the two-dimensional
Ising model. Conversely, the
exact dynamical critical point
of the two-dimensional Ising
model remains unknown as it
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requires the exact free energy density as a function of the fraction of down spins (see
Eq. (5.10) for the result within the BG approximation). A lower bound on the dynamical
critical point is set by the statical critical point, as the latter denotes the onset of an interior
local maximum that is required for the dynamical critical point (see Fig. 5.8). The exact
dynamical critical point may provide further insight into the nature of the dynamical phase
transition. Moreover, it also sets a lower bound on the magnetization reversal times per
spin in ferromagnetic systems in the absence of an external force.

5.7 Concluding Remarks

The behavior of individual [123] and non-interacting [214–216,265] adhesion bonds un-
der force, the effect of the elastic properties of the substrate and pre-stresses in the mem-
brane [241, 266], as well as the physical origin of the interaction between opening and
closing of individual adhesion bonds due to the coupling with the fluctuating cell mem-
brane [59,127–130,242,244,308,309], are by now theoretically well established. However,
in order to understand the importance of these interactions and their manifestation for the
mechanical regulation of cell adhesion in and out of equilibrium, one must go deeper, and
disentangle the response of adhesion clusters of all sizes to external forces and how it be-
comes altered by changes in membrane stiffness. This is paramount because interactions
strongly change the physical behavior of adhesion clusters under force both, qualitatively
as well as quantitatively.

Founded on firm background knowledge [59, 123, 127–130, 214–216, 241, 242, 244, 265,
266,308,309], our explicit analytical results provide deeper insight into cooperative effects
in cell-adhesion dynamics and integrate them into a comprehensive physical picture of cell
adhesion under force. We considered the full range of CAM binding-affinities and forces,
and established the phase behavior of two-dimensional adhesion clusters at equilibrium as
well as the kinetics of their formation and dissolution.

We have obtained, to the best of our knowledge, the first theoretical results on equilibrium
behavior and dynamic stability of adhesion clusters in the thermodynamic limit beyond
the MF-level (existing studies, even those addressing non-interacting adhesion bonds [215,
216, 265] are limited to small clusters sizes [59, 128, 129, 241, 266]). We explained the
complete thermodynamic phase behavior, including the co-existence of dense and dilute
adhesion domains, and characterized in detail the corresponding critical behavior.

We demonstrated conclusively the existence of a seemingly new kind of dynamical phase
transition in the kinetics of adhesion cluster formation and dissolution, which arises due
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to the interactions between the bonds and occurs at a critical coupling J̃dcrit, whose value
depends on the external force h̃ and binding-affinity µ̃. At the dynamical critical coupling
J̃dcrit, and in turn critical bending rigidity κdcrit ∝ (J̃dcrit)

−2, the dominant formation and
dissolution pathways change qualitatively. Below J̃dcrit the rate-determining step for cluster
formation and dissolution is the surmounting of the (mostly) entropic barrier to completely
bound and unbound states, respectively. Conversely, above J̃dcrit the thermodynamic phase
transition between the dense and dilute phase for dissolution, and between the dilute and
dense phase for cluster formation, becomes rate-limiting, whereas the completely bound
and unbound states, respectively, are thereupon reached by typical density fluctuations.

In an experimental setup we expect that the non-monotonicity between the MFPT to cluster
dissolution/formation and the coupling strength J̃ – which is a direct reflection of the dy-
namical critical transition – could be measured. By determining the dissolution/formation
time (in the absence or presence of an external driving force) for an ensemble of cells
which are adherent to a stiff interface, one could calculate the MFPT to cluster dissolu-
tion/formation. Then, upon varying the membrane rigidity through varying the mem-
brane composition (i.e. increasing the cholesterol composition increases the membrane
rigidity [275]), one could vary the coupling strength, and thereby potentially obtain the
MFPT as a function of the coupling strength J̃ .

We discussed the biological implications of our results in the context of mechanical regula-
tion of the bending rigidity around criticality. Based on our results we have suggested that
the response of a cell to a change in the bending rigidity may be largest near the statical
critical point for quasi-static processes, and near the dynamical critical point for transient
processes. This observation agrees with the criticality hypothesis and might expand the list
of biological processes hypothesized to be poised at criticality [310].

Finally, we discussed the implications of our result for the two-dimensional Ising model.
The observed dynamical phase transition is related to a first-order discontinuity in the
magnetization reversal time, and the exact dynamical critical point for the two-dimensional
Ising model remains elusive (see Table 5.2).

5.7.1 Model limitations

We now remark on the limitations of our results. The mapping onto a lattice gas/Ising
model (i.e. Eq. (5.1) and Appendix A5.10; see also [59,128]) may not apply to genuinely
floppy membranes encountered in biomimetic vesicular systems [217, 218]. Moreover,
since we only allow for two possible states of the bonds, i.e. associated and dissociated,
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we neglect any internal degrees of freedom (e.g. orientations of the bonds) which may
contribute to the entropy loss upon binding [239], thereby changing the free energy.

Likewise, the assumption of an equally shared force is generally good for stiff membranes
(stiffened by the presence of, or anchoring to, the stiff actin cytoskeleton [121]) or stiff
membrane/substrate pairs, flexible individual bonds, low bond-densities, or the presence
of pre-stresses exerted by the actin cytoskeleton [241, 265, 266]. In Appendix A5.11 we
provide an analysis of the effect of a non-uniform force load. Based on this analysis we
find that in the case of rather floppy membranes, corresponding to large values of the
coupling strength J̃ = O(1), the difference between a uniform and a non-uniform force
load is negligible for a broad range of realizations of the non-uniform force distribution.
Only under the extreme, non-physiological condition that the ratio of forces experienced
by inner and outer bonds is larger than an order of magnitude, we observe significant
differences. Therefore, the dependencies of the statical and dynamical critical points on
the external force (see Figs. 5.6 and 5.9, respectively) are expected to remain valid for a
non-uniform force distribution over a large range of force magnitudes.

In their present form our results may not apply to conditions when cells actively contract in
response to a mechanical force on a timescale comparable to cluster assembly or dissolution
[311], as well as situations in which cells actively counteract the effect of an external pulling
force and make adhesion clusters grow.

Finally, throughout we have considered clusters consisting of so-called slip-bonds, whereas
cell adhesion may also involve catch-bonds that dissociate slower in the presence of suf-
ficiently large pulling forces [312]. The reason lies in a second, alternative dissociation
pathway that becomes dominant at large pulling forces [313–316]. Our results therefore
do not apply to focal adhesions composed of catch-bonds and would require a generaliza-
tion of the Hamiltonian (5.1-5.2) and rates (5.3-5.5). These open questions are beyond
the scope of the present work and will be addressed in forthcoming publications.

5.8 Appendices

A5.9 Data availability

The open source code for the evaluation of the EOS and MFPT to cluster dissolution and
formation for finite-size systems is available at [317].
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A5.10 Membrane rigidity and the coupling strength

Here we provide a quantitative relation between the effective bending rigidity κ and the
coupling strength J̃ based on the results of Ref. [59]. Consider a set of adhesion bonds
at fixed positions {ri} coupled to a fluctuating membrane. The effective bending rigid-
ity quantifies the amount of energy needed to change the membrane curvature, and is
supposed to depend on the membrane composition [275, 276], state of the actin net-
work [252], and other intrinsic factors that determine the mechanical stiffness of the cell.
Let {bi} describe the state of all bonds, where bi = 1 denotes a closed and bi = 0 an
open bond. The bonds are represented by springs with constant k, resting length l0, and
binding energy εb. Non-specific interactions between the membrane and the opposing sub-
strate are described by a harmonic potential with strength γ, which arises from a Taylor
expansion around the optimal interaction distance h0 between the membrane and the sub-
strate. Assuming a timescale separation between the opening/closing of individual bonds
and membrane fluctuations, the following partition function for the state of bonds {bi} can
be derived [59]

Z =
∑
{bi}

exp

∑
i 6=j

J̃ijbibj + µ̃
N∑
i=1

bi

+O
(
k2

γκ

)
, (A5.23)

where µ̃ plays the role of an intrinsic binding-affinity and J̃ij is an effective interaction
between the bonds given by

J̃ij ≡
βk2(h0 − l0)2

16
√
γκ

m (|ri − rj |) , (A5.24)

with m (r) = −(4/π)kei0
(
r(κ/γ)1/4

), and kei0(x) is a Kelvin function defined as
kei0(x) ≡ ImK0(xe3πi/4) where K0(z) is the zero-order modified Bessel function of the
second kind [59]. A systematic comparison of the EOS ϕ of the full/explicit model (i.e.
reversible adhesion bonds coupled to a dynamic, fluctuating membrane) and of the lattice
gas governed by Eq. (A5.24) has been carried out in [59]. Using the following set of param-
eter values βκ = 80, βγ = 10−5 nm−4, βk = 2.25× 10−2 nm−2, h0 − l0 = 45.9− 50.3 nm,
and m (1.5) = 0.42194(6), corresponding to a coupling strength of J̃ ≈ 1.0 − 1.2, the au-
thors found a quantitative agreement between the full and lattice gas models (see Fig. 5 in
Ref. [59]). Note that the lattice gas model becomes exact in the limit κ→∞.

Our effective Hamiltonian, given by Eq. (5.1), is directly derived from Eq. (A5.23) by con-
sidering the following arguments: First we note that the effective interaction J̃ij decays
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exponentially fast as a function of the lattice distance between the bonds, and therefore it
suffices to only take into account nearest neighbor interactions [59]. Moreover, since we
place the adhesion bonds on a lattice with equidistant vertices, the position dependence in
Eq. (A5.24) drops out and we get |ri − rj | = ∆r. Finally, upon introducing the variables
σi ≡ 1−2bi ∈ [−1, 1], and applying the transformations µ̃→ µ̃− z̄J̃ and J̃ → 4J̃ , we arrive
at our effective Hamiltonian Eq. (5.1) with coupling strength

lim
κ→∞

γ 6=0, k<∞, ∆r<∞
J̃ =

βk2 (h0 − l0)2

16
√
γκ

+O
(

lnκ

κ

)
. (A5.25)

Here we find the relation J̃ ∝ 1/
√
κ, as mentioned in the main text.

A5.11 Non-uniform force distribution

Under the condition of a small combined elastic modulus, corresponding to large values of
the coupling strength J̃ � 1, the assumption of an equally shared force load is no longer
valid [241,265,266]. We therefore address how a non-uniform force distribution affects
the EOS and MFPT to cluster dissolution/formation for finite system sizes. Based on Eq. (7)

in [266] and Eq. (4) in [318] we introduce a non-uniform force load by making the substi-
tution h → C∑i hiδσi,−1/Nc({σi}) in Eq. (5.2), where C ≡ Nh/

∑
i hi is a normalization

constant such that initially, i.e. when all bonds are closed, the total force load is h. The
load on bond i, denoted as hi, is given by

hi =
1√
ξ − ε̄2i

, (A5.26)

where ξ ≥ 1, and ε̄i ≡ (εi − r)/(d − r) ∈ [0, 1] is a normalized distance of bond i to the
center of the lattice, with εi defined as the eccentricity of node i, which is the maximum
number of edges between node i and any other node in the lattice. The radius r ≡ min εi

and diameter d ≡ max εi of the lattice are defined as the minimum and maximum eccen-
tricity, respectively. With the force distribution given by Eq. (A5.26), which is depicted
in Fig. A5.12a, closed bonds located at the outer edge of the lattice (εi = 1) experience
a larger external force than bonds located at the inner part of the lattice (εi = 0). The
parameter ξ is an indicator for the spread in force load among the individual bonds. For
ξ = 1, which holds when lim J̃ →∞ [266], the force distribution at the edge of the cluster
is singular and nonphysical. On the contrary, for lim ξ → ∞, which is valid for lim J̃ → 0,
we recover the uniform force distribution.
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Figure A5.12: Comparison between a uniform and non-uniform force load. (a) The
non-uniform force load distribution given by Eq. (A5.26) as a function of the normalized
lattice distance ε̄i. For ξ < ∞ the external force increases monotonically with the lattice
distance. (b) The EOS for a pulling (blue) and pushing (red) force for various values of ξ for
a system of N = 5× 5 adhesion bonds with zero intrinsic binding-affinity. (c-d) The MFPT
to dissolution (c) and formation (d) for mixed Glauber-Kawasaki dynamics with constant
Glauber attempt probability p = 0.5 under a pulling (blue) and pushing (red) force for
various values of ξ and N = 5× 5 adhesion bonds with zero intrinsic binding-affinity.

In Fig. A5.12(b-d) we depict the equation of state (b) and MFPT to cluster dissolution (c)
and formation (d) for mixed Glauber-Kawasaki dynamics with a constant Glauber attempt
probability p = 0.5 and for various values of ξ under a pulling or pushing force (h̃ =

±0.5). The results were obtained by exact summation/algebraic techniques. Interestingly,
for ξ ≥ 1.1 the EOS and MFPT are almost identical to the uniform force load solutions
corresponding to ξ →∞. Only for ξ < 1.1, corresponding to extremely floppy membranes,
we observe deviations from the uniform force results. The origin of the deviations is the
extreme force load on the outer bonds, which is

√
ξ/(ξ − 1) times larger than the force load

on the inner bond. For ξ = 1.01 this leads approximately to a factor of ×10, and for ξ =

1.001 this leads approximately to a factor of ×32. Hence, for most physically meaningful
realizations of a non-uniform force distribution (i.e. distributions based on Eq. (A5.26)) the
results converge to the uniform force solutions. Only under the extreme conditions where
the force load on the outer bonds becomes at least an order of magnitude larger compared
to the inner bonds we find large deviations from the uniform force load. Note that the
relative fraction of edge bonds in the thermodynamic limit vanishes. Therefore we expect
a non-uniform force load, which mainly penalizes the edge bonds for ξ → 1, to have an
even weaker effect on the EOS and mean first passage times in large systems.
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A5.12 Statical critical point

We determine the BG statical critical point from f̃ ′′′BG(ϕ) = 0, which results in the following
equation using Eq. 5.10

αh̃ϕ
2 (1− ϕ)2 + (1 + ϕ)4 (2ϕ− 1) γz̄ (ϕ) = 0, (A5.27)

with αh̃ ≡ 12h̃, and we have furthermore defined the auxiliary function

γz̄ (ϕ) ≡ 1−1

z̄

(
3− 2

z̄

)
+

2αh̃
z̄

(
1− 1

z̄

)
Λ (ϕ)−

α2
h̃

3z̄

(
1− 2

z̄

)
Λ2 (ϕ)−

2α3
h̃

27z̄2
Λ3 (ϕ) , (A5.28)

with Λ (ϕ) ≡ ϕ(1−ϕ)/(1+ϕ)3. For h̃ = 0 the solution of Eq. (A5.27) is given by ϕs
crit,BG =

1/2, and the corresponding statical critical point is given by J̃ s
crit,BG = ln (z̄/(z̄ − 2))/2̄ as

shown in Sec. 2.8.3. For non-zero force we solve Eq. (A5.27) by means of a quadratic
Newton series as explained in more detail in the next Appendix A5.13.1. The main result
for the statical critical fraction obtained by the quadratic Newton series reads

ϕs
crit ≈

1

2
− 3

24

δz̄(h̃)

νz̄(h̃)
+

3

24

[
δ2
z̄(h̃)

ν2
z̄ (h̃)
−26

34

z̄2h̃

νz̄(h̃)

] 1
2

, (A5.29)

where the auxiliary functions δz̄(h̃) and νz̄(h̃) are defined as

δz̄(h̃) ≡
(
z̄ − 1− 26

35
h̃2

)(
z̄ − 2 +

24

32
h̃

)
+

213

39
h̃3, (A5.30)

νz̄(h̃) ≡
(
z̄ − 1 +

25

35
h̃2

)(
z̄ − 2 +

22

32
h̃

)
− 2

32
z̄2h̃+

27

39
h̃3, (A5.31)

respectively. The statical critical coupling J̃ s
crit is obtained by inserting Eq. (A5.29) into

Eq. (5.12), and the result is depicted by the gradient line Fig. 5.6 in the main text, where
the black symbols represent the fully converged Newton’s series (A5.33).

A5.13 Equation of state in the thermodynamic limit

Here we derive the EOS in the thermodynamic limit using the saddle-point technique, i.e.

〈ϕ〉TD ≡ lim
N→∞

1

N

∫ 1

0
ϕe−N f̃(ϕ)dϕ ' lim

N→∞

1

N

∫ 1

0

M∑
i=1

ϕ0
i e
−N f̃′′(ϕ0

i )(ϕ−ϕ0
i )

2
dϕ =

M∑
i=1

ciϕ
0
i ,
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where ϕ0
1, ..., ϕ

0
M denote the locations of the local minima of the BG free energy density

f̃(ϕ) ≡ f̃BG(ϕ) given by Eq. (5.10), N=
∫ 1

0 exp (−N f̃(ϕ))dϕ, and the coefficients ci read

cj = lim
N→∞

N−1

∫ 1

0
e−N f̃′′(ϕ0

j )(ϕ−ϕ0
j )

2

dϕ '

1 +
M∑

i=1|i 6=j

[̃f ′′(ϕ0
j )/f̃

′′(ϕ0
i )]

1/2

−1

.

The idea behind the above result is that in the large N limit we expect the integral over
ϕ to be dominated by the immediate neighborhood of the local minima of f̃ (ϕ). We may
therefore approximate the exponent by its Taylor expansion around these extremal points.
In general special care has to be taken when one of the global minima lies at the boundary
of the integration interval [319], which turns out not to be the case here. For h̃ = 0 the
local minima of the BG free energy density are analyzed in Sec. (2.9). Here we proceed
with the analysis for non-zero force h̃ 6= 0 and z̄ = 4. Based on the analysis in Sec. 2.9.2
we obtain a transcendental equation for the auxiliary variable ξ4 ≡ ϕ/(1−ϕ) which reads

g(ξ) ≡ ξ4 − e2J̃ [e
µ̃
4
− 1

2

(
1+ξ4

1+2ξ4

)2

h̃
ξ3 − e

− µ̃
4

+ 1
2

(
1+ξ4

1+2ξ4

)2

h̃
ξ]− 1 = 0. (A5.32)

For h̃ = 0 Eq. (A5.32) reduces to a quartic similar to Eq. (2.29). For h̃ 6= 0 we determine
the roots of g(ξ) by means of a convergent Newton series yielding the exact result [268]

ξ = ξ0 −
∞∑
k=1

[
g(0) (ξ0)

]k[
g(1) (ξ0)

]2k−1

detAk (ξ0)

(k − 1)!
, (A5.33)

where ξ0 is an initial guess in a convex neighborhood of g(ξ), g(k) (ξ0) = dkg (ξ) /dξk|ξ=ξ0 ,
and Ak (ξ0) are upper/lower Hessenberg matrices3 of size (k − 1)× (k − 1) with elements

Aijk (ξ0) =
g(i−j+2) (ξ0) θ (i− j + 1)

(i− j + 2)!
(k [i− j + 1] θ (j − 2) + iθ (1− j) + j − 1) , (A5.34)

where θ (x) denotes the Heaviside step function. The determinant of Hessenberg matrices
can be efficiently calculated using a recursion formula [320], for which a numerical im-
plementation can be found in [321]. Yet it remains computationally expensive to evaluate
the determinant in Eq. (A5.33), and furthermore it does not provide any analytical insight.
Therefore we now introduce the so-called quadratic approximation.

3These are almost triangular matrices with non-zero elements in the first sub- or superdiagonal.
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A5.13.1 Quadratic Newton series

If we set g(3) = g(4) = ... = 0 in the almost triangular matrices, the resulting matrix
Ãk becomes triangular, implying that its determinant is simply given by the product of its
diagonal elements. Making the substitution Ak → Ãk in Eq. (A5.33) yields the so-called
quadratic approximation [269,322]

ξ ≈ ξ0 −
g(1) (ξ0)−

√
g(1) (ξ0)2 − 2g(0) (ξ0) g(2) (ξ0)

g(2) (ξ0)
. (A5.35)

that becomes exceedingly accurate when the root moves close to ξ0. For the initial point ξ0

we use the Ansatz
ξ0 = exp

(
µ̃

4
− 2

9
h̃+ sign

[
µ̃

4
− 2

9
h̃

]
6

5
J̃

)
, (A5.36)

which is derived by considering an adapted form of Eqs. (2.30a) and (2.30b) in combina-
tion with the implementation of the force term. The weight 2/9 is derived from the term
(1+ξ4)2/2(1+2ξ4)2 in Eq. (A5.32) evaluated at the point ξ = 14 and the weight 6/5 in front
of J̃ was selected empirically. This choice assures that Eq. (A5.32) satisfies the Lipschitz
condition between ξ0 and the root ξ for a broad range of parameter values, and thus as-
sures the convergence of the Newton’s series. Plugging Eq. (A5.36) into Eq. (A5.35), and
using the relation ϕ0

1 = ξ4/(1 + ξ4), we obtain the location of the global minimum - and
thus 〈ϕ〉TD - for non-zero force. Notably, the Ansatz given by Eq. (A5.36) also provides a
numerically correct solution for zero force and non-zero intrinsic binding-affinity. Below
we write down explicitly the terms which are used to evaluate Eq. (A5.35).Introducing the
auxiliary functions

αh̃ (ξ) ≡ 4ξ4
(
ξ4 + 1

)
h̃/
(
2ξ4 + 1

)3
, βh̃ (ξ) ≡ 4ξ4(10ξ8 + 11ξ4 − 3)h̃/

(
2ξ4 + 1

)4
,

the first and second derivative can be written as

g(1) (ξ) = 4ξ3 − e2J̃
(
cµ̃,h̃(ξ)

[
3 + αh̃

]
ξ − c−1

µ̃,h̃
(ξ)
[
1− αh̃

]
ξ−1
)
ξ, (A5.37)

g(2) (ξ) = 12ξ2−e2J̃
(
cµ̃,h̃(ξ)

[
(3 + αh̃)2−3−βh̃

]
ξ+c−1

µ̃,h̃
(ξ)[2αh̃ − 3α2

h̃
+ βh̃]ξ−1

)
, (A5.38)

where cµ̃,h̃(ξ) ≡ exp (µ̃/4− (1 + ξ4)2h̃/2(1 + 2ξ4)2). Equation (A5.35) provides our main
result for the EOS in the thermodynamic limit in the presence of an external force. In
Fig. 5.5 we show the results for various values of the force and intrinsic binding-affinity.

4This corresponds to the point ϕ = 1/2.
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A5.14 Kinetics of cluster formation and dissolution

A5.14.1 Exact algebraic result for small clusters

It is well known that the transition matrix for an absorbing discrete-time Markov chain with
a set of recurrent states has the canonical form [267]

P =

[
1 0

R Td,f

]
, (A5.39)

where 1 is the identity matrix, Td,f is the submatrix of transient states in dissolu-
tion/formation, and R the submatrix of recurrent states. In the particular case of cluster
dissolution the (2N −1)× (2N −1) matrix Td entering Eq. (A5.39) is obtained by removing
the last column and row, and the (2N − 1) × (2N − 1) matrix Tf entering Eq. (A5.39) by
removing the first column and row. If we introduce the column vector êk with components
(êk)i = δki and the column vector e whose elements are all equal to 1, the mean first
passage times for cluster formation and dissolution read exactly

〈τd〉 = êT1 (1−Td)−1e, 〈τf 〉 = êT2N−1(1−Tf)
−1e. (A5.40)

To apply Eq. (A5.40) one must invert a (2N−1)×(2N−1) sparse matrix and afterwards sum
over 2N−1 terms, which is feasible for N . 25. For N = 20 bonds the exact results are
shown in Fig. 5.7b-c (blue line). Larger clusters are treated within the LEQ approximation.

A5.14.2 Proof of DB for the LEQ transition rates

Before stating the explicit result for the MFPT to dissolution/formation within the LEQ
approximation, we prove that the LEQ transition rates w̄k→k±1 given by Eq. (5.17) obey
DB w.r.t. Ẑk defined in Eq. (5.6). The effective transition rates are obtained by mapping
the full mixed Glauber-Kawasaki dynamics onto an effective birth-death process over the
number of closed bonds (see Fig. 5.7a), where we assume that the dynamics reaches a LEQ
at any number of closed bonds before any transition. As a result, the birth-death process
is a Markov chain on the free energy landscape for the fraction of closed bonds ϕ. Recall
that the original Glauber rates in Eq. (5.3) obey DB w.r.t. the Hamiltonian H({σj}), hence

e−βH({σj})wi({σj})δNc({σj}),kδNc({σj}′i),k±1 =

e−βH({σj}′i)wi({σj}′i)δNc({σj}′i),k±1δNc({σj}),k (A5.41)
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where we have explicitly incorporated the constraints arising from single-bond-flip dynam-
ics by means of the Kronecker delta´s. Upon summing the LHS of Eq. (A5.41) over all ini-
tial configurations with Nc({σj}) = k and over all rates that jump to a configuration with
Nc({σj}′i) = k±1, we reach all possible final configurations with Nc({σj}′i) = k±1, with a
backward rate given by the sum of all rates that jump to a configuration withNc({σj}) = k.
Hence we obtain the equality

∑
{σj}

N∑
i=1

e−βH({σj})wi({σj})δNc({σj}),kδNc({σj}′i),k±1 =

∑
{σj}′i

N∑
i=1

e−βH({σj}′i)wi({σj}′i)δNc({σj}′i),k±1δNc({σj}),k. (A5.42)

Comparing Eq. (A5.42) with Eq. (5.17), we recognize the LHS and RHS as (Ẑk/pk)w̄k→k±1

and (Ẑk±1/pk±1)w̄k±1→k, respectively, which proves Eq. (A5.42).

A5.14.3 FPT statistics within the LEQ approximation

The LEQ approximation maps the complete mixed Glauber-Kawasaki dynamics onto an
effective birth-death process with a right-acting tri-diagonal transition matrix Ple of size
(N + 1)× (N + 1) with elements

P le
ij = Λiδij + w̄i−1→iδi+1jθ (N − i) + w̄i−1→i−2δi−1jθ (i− 2) , (A5.43)

and Λi = 1 −
∑N+1

j 6=i P
le
ij . To obtain the MFPT we use the same algebraic technique as for

small clusters. Upon removing the first/last row and column of Ple we obtain the subma-
trix Tle

d,f for cluster dissolution and formation, respectively. We can invert the tri-diagonal
submatrix exactly, which leads to the following LU/UL decomposition

(1−Tle
d,f)
−1 = Ad,fBd,f , (A5.44)

where Ad and Bd are the lower and upper triangular matrix with elements

Ad
ij = (pj−1/Ẑj−1)w̄j−1→jθ (i− j) , Bd

ij = (Ẑj/pj)θ (j − i) , (A5.45)

and Af and Bf are the upper and lower triangular matrix with elements

Af
ij = (pj/Ẑj)w̄j→j−1θ (j − i) , Bf

ij = (Ẑj−1/pj−1)θ (i− j) . (A5.46)
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A proof of Eq. (A5.44) is given in the SM of [69]. Let us denote with 〈τ le
d,f 〉m the MFPT

to cluster dissolution and formation, starting from the state with m closed bonds. Using
Eq. (A5.44) we obtain an exact expression for the first moments

〈τ le
d 〉0<m≤N = êTmAdBde =

m−1∑
k=0

1

w̄k→k+1

N∑
l=k+1

Ẑl
Ẑk

pk
pl
, (A5.47)

〈τ le
f 〉0≤m<N = êTm+1AfBfe =

N∑
k=m+1

1

w̄k→k−1

k−1∑
l=0

Ẑl
Ẑk

pk
pl
, (A5.48)

where êm is the column vector with dimension N with components (êm)i = δmi, and e is
the column vector with all components equal to 1. Notice that Eq. (A5.44), and therefore
Eqs. (A5.47) and (A5.48), are applicable to any right-acting tri-diagonal transition matrix
with rates obeying DB. Although we only present the MFPT here, we can easily obtain any
higher order moments of the first passage time to cluster dissolution and formation using
Eq. (A5.44) [267]. Notably, Eqs. (A5.47) and (A5.48) appear to have a similar structure
as the largest eigenvalue of the transition matrix in classical nucleation theory [203,305].

A5.14.4 A bound on the effective transition rates

Here we present a bound on the LEQ rates given by Eq. (5.17) which proves that the
transition rates are strictly sub-exponential in N . First, we consider a bound for the exit
rates w±exit({σi}) defined in Eq. (5.18), which contain a sum over the original Glauber rates
that are defined in Eq. (5.3). Since 1 − tanh (x) ≥ 0, ∀x ∈ R the Glauber rates are non-
negative, and therefore the exit rates obey the bound

wmax
k→k±1 ≤ w±exit({σi}) ≤ c

±
k w

max
k→k±1, (A5.49)

with c+
k = N − k and c−k = k denoting the number of terms inside the sum of Eq. (5.18),

and wmax
k→k±1 denotes the largest transition rate to go from a state with k to k ± 1 closed

bonds. The largest transition rate can be written as

wmax
k→k±1=

1

2N

[
1− tanh (∆Hmin

k→k±1/2)
]
,

where
∆Hmin

k→k±1≡ inf
Nc({σj})=k,

Nc({σj}′i)=k±1

{H({σj}′i)−H({σj})} (A5.50)
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Figure A5.13: Minimum en-
ergy forward transitions be-
tween two configurations {σj}
and {σj}′i with Nc({σj})=k and
Nc({σj}′i)=k+1 respectively. Al-
though we depict here the mini-
mal energy differences for a lat-
tice of size N=3×3, the result
holds for any two-dimensional
lattice of size N≥3×3 as long as
the transitions for k ≤ 2 are taken
at the corner, and the transition
for k=3 is taken at the edge.

denotes the smallest possible energy change between
two configurations {σj} and {σj}′i with Nc({σj}) = k

andNc({σj}′i) = k±1, respectively. To obtain a closed-
form expression for wmax

k→k±1 we first note that the con-
tribution to ∆Hmin

k→k±1 from the external force and in-
trinsic binding-affinity are fixed and given by the sec-
ond and third term in Eq. (5.3). Therefore we are left
to consider the smallest energy change due to the cou-
pling strength, which we denote as ∆J̃H

min
k→k±1. For a

square lattice with free boundary conditions the min-
imal energy “forward transitions” with energy differ-
ence ∆J̃H

min
k→k+1 for various values of k are depicted

in Fig. (A5.13). Similarly, the minimal energy “down-
ward transitions” with energy difference ∆J̃H

min
k→k−1

are obtained by interchanging the open (red) and
closed (green) adhesion pairs in Fig. (A5.13). Com-
bining these two results yields ∆J̃H

min
k→k±1 = 2m±k J̃ ,

with

m±k ≡ 2(c∓k − 1)θ(2− c∓k )−min(c∓k , 4)θ(c∓k − 3),

and delivers the expression for wmax
k→k±1. Finally, since

wmax
k→k±1 is independent of the specific configuration
{σi} at fixed k, it drops out of the sum over {σi} in
Eq. (5.17) for the effective transition rates, and there-
fore the bound in Eq. (A5.49) can directly be applied to the effective transition rate upon
multiplying both sides with the Glauber attempt probability

pkw
max
k→k±1 ≤ w̄k→k±1 ≤ pkc±k w

max
k→k±1, (A5.51)

which yields the bound on the effective transition rate. The lower and upper bound for
the effective transition rate are used to determine an upper and lower bound for the MFPT
to cluster dissolution and formation, respectively. The specific result for a lattice of size
N = 6× 7 with z̄ = 4 for pure Glauber dynamics (i.e. pk = 1, ∀k) is shown in Fig. A5.14.
For small values of the coupling strength J̃ we find that the upper bound in Eq. (A5.51),
corresponding to the lower bound in Fig. A5.14 (since 〈td,f〉 ∝ 1/w̄k→k±1), is saturated by
the exact effective transition rate. Conversely, for large values of the coupling strength J̃ it
seems that the lower bound in Eq. (A5.51) is saturated.
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5 Criticality in Cell Adhesion

Figure A5.14: Comparison of the exact LEQ effective rates and the approximate BG
local equilibrium effective rates for pure Glauber dynamics. 〈td,f〉 for cluster dissolu-
tion (a)-(c) and cluster formation (d)-(f) as a function of the coupling J̃ for fixed intrinsic
binding-affinity µ̃ = 0.5 in the presence of a pushing force h̃ = −0.3 (a and d), zero force
h̃ = 0 (b and e), and a pulling force h̃ = 0.3 (c and f); The blue solid line is obtained
with the exact LEQ effective transition rate and exact partition function Ẑk (Eqs. (5.17)
and (5.6), respectively) with pk = 1, ∀k. The black symbols are obtained with the BG
approximation to the effective rate and partition function ẐBG

k (Eqs. (5.17) and (5.6) in
combination with Eq. (5.8), respectively). The black dotted line indicates the upper and
lower bound to the mean dissolution/formation time, which is obtained with the upper
and lower bound to the effective transition rate in combination with the exact partition
function (Eqs. (A5.51) and (5.6) respectively).

A5.14.5 Approximate effective transition rates

For systems larger than N ≈ 50 bonds the combinatorics involved in the computation of
Ẑk defined in Eq. (5.6) and w̄k→k+1 in Eq. (5.17) becomes prohibitive, and thus forces us
to make further approximations. To get Eq. (5.19) fully explicit we make an instanton ap-
proximation for w̄k→k±1 using the BG approximation with the bound given by Eq. (A5.51),
and reads

w̄k→k±1 ≈ max(1, αkc
±
k )pkw

max
k→k±1, (A5.52)

with αk = δk0 + δkN + 2ζ†BG(ϕ=k/N) ∈ [0, 1], c+
k = N − k, c−k = k, and ζ†BG(ϕ) given by

Eq. (2.12). The prefactorαkc±k is ameasure for the number of favorable adhesion bonds that
are most likely to flip in a configuration with k closed bonds. For k = 0∨N all bonds have
an equal surrounding in the thermodynamic limit (or for a periodic lattice), and therefore
all c±k open/closed bonds are equally likely to attempt a flip. For 0 < k < N it becomes
energetically more favorable to flip a bond which is part of an open-closed adhesion pair
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(see Fig. A5.13). To determine the number of bonds that constitute an open-closed pair, we
note that z̄Nζ†BG(ϕ=k/N) is a measure for the number of open-closed pairs in a lattice of
sizeN with k closed bonds. Upon dividing by the total number of pairs in the system, given
by z̄N/2, we obtain the probability 2ζ†BG(ϕ=k/N) ∈ [0, 1] to select an open-closed pair in
the lattice. Multiplying the result by the total number of open/closed adhesion bonds,
i.e. 2c±k ζ

†
BG(ϕ=k/N), we obtain an approximate expression for the number of open/closed

bonds which constitute an open-closed adhesion pair.

To prove that the approximate effective rate given by Eq. (A5.52) obeys the bound given by
Eq. (A5.51) we apply a chain of inequalities. First we note that 0 ≤ 2ζ†BG(ϕ) ≤ 1/2, where
the upper bound follows from considering J̃ = 0 and ϕ = 1/2 in Eq. (2.12), and the lower
bound is given for ϕ = 0 ∨ 1 or the limit J̃ → ∞. From this it follows that 0 ≤ αk ≤ 1,
and therefore 1 ≤ max(1, αkc

±
k ) ≤ c±k . Finally, since we use pkwmax

k→k±1 in Eq. (A5.52), it
cancels on both sides of the inequality in Eq. (A5.51), which leaves to prove the inequality
we have proven above and thereby completes the proof.

Fig. A5.14 shows the MFPT to cluster dissolution and formation obtained with the approx-
imate effective rates (A5.52) in combination with the BG approximation for Ẑk for a lattice
of size N = 6 × 7 for pure Glauber dynamics (i.e. pk = 1, ∀k). The results obtained with
the approximate rates (black symbols) agree to a high degree with the results obtained by
the exact effective rates (blue solid line).

A5.14.6 MFPT in the thermodynamic limit

Here we prove the result for the MFPT to dissolution/formation in the thermodynamic limit
given by Eqs. (5.20) and (5.21) based on the LEQ approximation. Intuitively 〈τd,f 〉 must
scale as 〈τd,f 〉 ∼ eN∆f̃† , where ∆f̃† ≡ f̃max − f̃min denotes the difference in the free en-
ergy density between the minimum, f̃min = infϕ f̃(ϕ), and the maximum, f̃max ≡ supϕ f̃(ϕ),
that for large clusters becomes independent of N . Indeed, according to Eq. (5.19) we
have (pk/pl)(Ẑl/Ẑk) = (pk/pl)e

N [f̃N (k/N)−f̃N (l/N)] and recall that w̄k→k+1 is strictly sub-
exponential in N . Furthermore we make the assumption that the Glauber attempt proba-
bilities pk are strictly sub-exponential in N . Since both series in Eq. (5.19) are absolutely
convergent, we can apply a version of the squeeze theorem to Eq. (5.19).

To simplify notation we write the summands in Eq. (5.19) as 0 < (pk/pl)ak,l/w̄k→k+1 <∞,
where ak,l ≡ eN [f̃N (k/N)−f̃N (l/N)]. If k† denotes the index of the largest k-dependent term

k† ≡ sup
0≤k<N

pk exp[Nf̃N (k/N)]

w̄k→k+1
, (A5.53)
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and l†d,f the index of the largest l-dependent term

l†d ≡ sup
k†<l≤N

exp [−Nf̃N (l/N)]

pl
, l†f ≡ sup

0<l<k†

exp [−Nf̃N (l/N)]

pl
, (A5.54)

then the following chain of inequalities holds for any N

pk†ak†,l†d,f
p
l†d,f
w̄k†→k†+1

≤
N−1∑
k=0

M−1∑
l=m

pkak,l
plw̄k→k+1

≤
cM,mpk†ak†,l†d,f
p
l†d,f
w̄k†→k†+1

, (A5.55)

where cM,m ≡ N(M − m), M = N + 1 and m = k + 1 for dissolution, and M = k + 1

and m = 0 for cluster formation. Since x1/N is monotonic in x > 0, such that x1 < x2

implies x1/N
1 < x

1/N
2 , the inequality (A5.55) is preserved when exponentiated to 1/N . The

thermodynamic limit of Eq. (A5.55) is a scaling limit, i.e. lims ≡ limN→∞ |l/N=ϕl
k/N=ϕk

, and thus
(A5.55) becomes

lims

 pk†ak†,l†d,f
p
l†d,f
w̄k†→k†+1

 1
N

≤ 〈td,f〉 ≤ lims

cM,mpk†ak†,l†d,f
p
l†d,f
w̄k†→k†+1

 1
N

. (A5.56)

Moreover, since lims [w̄k†→k†+1]−1/N = 1, lims [cM,m]1/N = 1, and lims [pk†/pl†d,f
]1/N = 1,

all limits in Eq. (A5.56) exist and may be taken separately, implying the convergence of the
upper bound to the lower bound. Thereby 〈td,f〉 becomes squeezed in-between the upper
and lower bound, rendering the inequality an equality. Since lims f̃N (k†/N) = f̃(ϕmax) and
lims f̃N (l†d,f/N) = f̃(ϕd,fmin) we finally obtain Eqs. (5.20) and (5.21), completing the proof.

A5.14.7 BG MFPT in the thermodynamic limit

In the previous section we have proven that in the thermodynamic limit the MFPT to cluster
dissolution/formation scales as 〈τd,f 〉 ' 〈td,f〉N = eN∆f̃† , where ∆f̃† denotes the largest
left/right barrier in the BG free energy density Eq. (5.10). In this section we determine ∆f̃†

and thereby obtain a closed-form expression for the MFPT in the thermodynamic limit.

Case 1: J̃ ≥ 0, h̃ = µ̃ = 0

We first consider the MFPT to cluster dissolution/formation in the absence of an external
force and intrinsic binding-affinity. Due to the Z2 symmetry of the coupling strength, we
note that 〈td〉 = 〈tf〉. Our first task is to find the locations of the global maximum and
minimum in the free energy landscape, denoted by ϕd,fmax and ϕd,fmin, respectively.
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Figure A5.15: Master scaling of mean dissolution and formation times per bond for
finite clusters and in the thermodynamic limit. 〈td,f〉 for cluster dissolution (a-b) and
formation (c-d) as a function of the coupling J̃ for a pair of intrinsic affinities µ̃ = 0 and
µ̃ = 0.5 and various cluster sizes (symbols) as well as the thermodynamic limit (lines) in
the presence of an external pushing (a,c) and pulling (b,d) force; Symbols are evaluated
with LEQ approximation Eqs. (5.19) using ẐBG

k (Eqs. (5.6) and (5.8)) and w̄k→k+1 from
Eq. (A5.52) with pk = 1, ∀k (i.e. pure Glauber dynamics) The discrepancy between the
lines and symbols is due to finite-size effects.

The position of the global minimum for zero force and intrinsic binding-affinity is given by
Eq. (2.37), while the position of the global maximum is located at ϕd,fmax = 0 ∧ 1 for low
values of the coupling strength J̃ , and at ϕd,fmax = 1/2 for large values. The coupling strength
at which the global maximum changes position corresponds to the root of the equation

f̃ (0)− f̃ (1/2) = (z̄/2) ln (e2J̃ + 1)− z̄J̃ + (1− z̄/2) ln (2), (A5.57)

which is given by
J̃d

crit,BG = −(1/2) ln (21−2/z̄ − 1), (A5.58)

and sets the BG dynamical critical coupling value for the zero-field Ising model. Surpris-
ingly, for the two-dimensional square lattice with z̄ = 4 we exactly recover the critical
point obtained by Onsager [21]. To check whether this is a mere coincidence we note that
for the honeycomb lattice with z̄ = 3 the exact statical critical point is given by J̃ s

crit =
1
2 ln

(
2 +
√

3
)

= 0.65... [323], whereas Eq. (A5.58) gives J̃d
crit = −1

2 ln
(
21/3 − 1

)
= 0.67...,

and so we find that the surprising equality for z̄ = 4 is coincidental.

Combining our results for the locations of the global maximum and minimum we obtain
the following result for the MFPT per adhesion bond in the thermodynamic limit for the
zero field Ising model with z̄ = 4

ln〈td,f〉 =


f̃(0)− f̃(1

2), 0 ≤ J̃ ≤ J̃ s
crit,BG

f̃(0)− f̃(1
2 [1± C]), J̃ s

crit,BG ≤ J̃≤ J̃d
crit,BG

f̃(1
2)− f̃(1

2 [1± C]), J̃ ≥ J̃d
crit,BG,

(A5.59)

where C ≡ e2J̃(e4J̃ − 4)1/2/(e4J̃ − 2) comes from Eq. (2.37), J̃ s
crit = ln (2)/2 denotes the

statical critical point for zero force, and J̃d
crit = ln (1 +

√
2)/2 the dynamical critical point
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in the force free case. This ultimately leads to Eq. (5.22) in the main text. In the strong
coupling limit we find from Eq. (A5.59) limJ̃→∞〈td,f〉 = 2, which is identical to the result
obtained for zero coupling. The physical intuition behind this comes from considering the
average number of steps required to change the state of a single independent adhesion
bond. For zero force and intrinsic binding-affinity the probability to associate/dissociate a
bond is a 1/2, and therefore the average dissolution/formation time is given by

1

(
1

2

)
+ 2

(
1

2

)2

+ 3

(
1

2

)3

+ ... =
∞∑
n=1

n

(
1

2

)n
= 2.

For an infinite coupling strength the interaction between the bonds is so strong that
effectively the system behaves as one super bond, and therefore the average dissolu-
tion/formation time is equal to that of a single independent adhesion bond.

Case 2: J̃ ≥ 0, µ̃ 6= 0, h̃ = 0

Here we use the results obtained in Sec. 2.9.2 which leads to the following outcomes

ln〈td〉 =


f̃ (0)− f̃ (ϕ1) , 0 ≤ J̃ ≤ ln min {

√
2, s0}

f̃ (0)− f̃ (ϕ3) , ln min {
√

2, s0} ≤ J̃ ≤ J̃d,−
crit

f̃ (ϕ4)− f̃ (ϕ3) , J̃ ≥ J̃d,−
crit

, (A5.60)

ln〈tf〉 =


f̃ (1)− f̃ (ϕ1) , 0 ≤ J̃ ≤ ln min {

√
2, s0}

f̃ (1)− f̃ (ϕ3) , ln min {
√

2, s0} ≤ J̃ ≤ J̃d,+
crit

f̃ (ϕ4)− f̃ (ϕ1) , J̃ ≥ J̃d,+
crit

, (A5.61)

with ϕi = ξ4
i /(1 + ξ4

i ) given by Eqs. (2.30a) and (2.30b), s0 ≡
√

2
√

2e−µ̃/4, and J̃d,±
crit are

the dynamical critical points for cluster dissolution and formation, respectively given by

[̃f (0)− f̃ (ϕ4)]|
J̃d,−
crit

!
= 0, [̃f (1)− f̃ (ϕ3)− f̃ (ϕ4) + f̃ (ϕ1)]|

J̃d,+
crit

!
= 0. (A5.62)

Case 3: J̃ ≥ 0, µ̃ 6= 0, h̃ 6= 0

Using the quadratic Newton series (see Appendix A5.13.1), Eqs. (A5.60) and (A5.61) are
directly applicable to the non-zero force scenario upon applying the transformation ϕi →
ϕ∗i , where ϕ∗i = ξ∗4i /(1 + ξ∗4i ) and

ξ∗i = ξi −
g(1) (ξi)±

√
g(1) (ξi)

2 − 2g(0) (ξi) g(2) (ξi)

g(2) (ξi)
, (A5.63)
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with a minus sign for the global minimum ξ∗1,3, and a plus sign for the global maxi-
mum ξ∗4 . The function g(0)(ξ) and its first and second derivative g(1,2)(ξ) are given in
Eqs. (A5.32),(A5.37), and (A5.38), respectively.

Our analytical results for the MFPT to cluster dissolution and formation per adhesion bond
are depicted in Fig. 5.8 and Fig A5.15 for zero and nonzero external force respectively;
note the remarkable agreement between the black solid line depicting the thermodynamic
limit and the results for finite system sizes on the order of N ≥ 10× 10.
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Chapter 6

Global Speed Limit for Finite-Time

Dynamical Phase Transition in

Nonequilibrium Relaxation
I learned very early the difference between knowing the name

of something, and knowing something.

Richard Feynmann in The Pleasure Of Finding Things Out

Recent works [52–55] unraveled an intriguing finite-time dynamical phase transition in
the thermal relaxation of the MF Curie-Weiss model. The phase transition reflects a sudden
switch in the magnetization dynamics. Its existence in systems with a finite range of in-
teraction, however, remained unclear. Employing the BG approximation, which is exact on
Bethe lattices, we here demonstrate the finite-time dynamical phase transition in nearest-
neighbor Ising systems for arbitrary quenches, including those within the two-phase region.
Strikingly, for any given initial condition we prove and explain the existence of non-trivial
speed limits for the dynamical phase transition and the relaxation of magnetization, which
are absent in the MF setting. Pair correlations, which are neglected in MF theory and trivial
in the Curie-Weiss model, account for kinetic constraints due to frustrated local configura-
tions that give rise to a global speed limit. This chapter is based on [324].
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6.1 Introduction and motivation

Despite its overwhelming importance in condensed matter physics [325, 326], our un-
derstanding of thermal relaxation kinetics is far from complete, and mostly limited to
systems near equilibrium [327–329] and non-equilibrium [330–332] steady states. No-
table advances in understanding relaxation dynamics out of equilibrium include far-from-
equilibrium fluctuation-dissipation theorems [333, 334], “frenesy” [335], anomalous re-
laxation a.k.a. the Mpemba effect [336–339], optimal heating and cooling [340] as well
as driving [341, 342] protocols, asymmetries in heating and cooling rates [343–346],
and dynamical phase transitions (i.e. the occurence of non-analytic points in distributions
of physical observables) [128, 347–370]. Further important results on non-equilibrium
relaxation are embodied in thermodynamic uncertainty relations for non-stationary sys-
tems [371–376], and so called speed limits [377–380,380–393,393–398].

In contrast to the well established concept of quantum speed limits [377–380, 380–388]
that has long been known [377], it was comparably only recently found that the evolution
of classical systems is also bounded by fundamental speed limits [389–395]. Quantum
and classical speed-limits impose an upper bound on the rate of change of a state of a sys-
tem evolving from a given non-stationary initial state, and arise as an intrinsic dynamical
property of Hilbert space [389]. Moreover, it was found that by considering the thermody-
namic cost of the state change, one may derive even sharper thermodynamic speed limits
that bound the rate of change of a state of a system from above by the entropy production
rate [391,393,396–398].

Recently, a surprising finite-time dynamical phase transition was observed in a MF Ising sys-
tem [52, 53], manifested as a finite-time singularity [54, 55] in the probability density
of magnetization [52] and entropy flow per spin [53] upon a quench from any sub-critical
temperature T < Tc to a temperature Tq 1. In contrast to conventional phase transitions,
here time plays the role of a control parameter inducing an abrupt change of the typical
dynamics [52,53]. The sudden transition from a Gibbsian to a non-Gibbsian probability
density occurs for all quenches from sub-critical temperatures T < Tc, whereby the initial
location of the singularity depends on T and Tq [55]. Upon quenches from super-critical
temperatures T > Tc, the probability density remains Gibbsian forever [55], but the dy-
namics is non-ergodic [399].

Notwithstanding the detailed results on the non-Gibbsian transition in the MF setting, it
remains unknown if and in what form this dynamical phase transition exists in systems

1In [52, 53] only super-critical quench temperatures Tq > Tc are considered, whereas [54, 55]
consider all possible Tq above the initial temperature T .
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with a finite range of interactions. Moreover, since speed limits bound from below the time
of reaching a final state from a given initial state, the following intriguing questions arise:

What happens with the speed limit in the finite-time dynamical phase transition, where the
dynamics undergoes an abrupt change? Is there a global speed limit to reach the critical time?

To shed light on these questions, we here present analytical results on non-equilibrium
relaxation of nearest-neighbor Ising systems on the BG level [12,13]. Our results confirm,
for the first time, the existence of the finite-time dynamical phase transition in finite-range
Ising systems. Strikingly, we derive explicit global speed limits to both, the critical time and
relaxation time, which are absent in the MF setting. Notably, the speed limit is saturated
by an antiferromagnetic interaction and is faster than the dynamics of a non-interacting
system. Accounting for unfavorable local spin configurations, pair correlations, which are
neglected in MF theory, impose a global speed limit in the dynamical phase transition.

6.2 Fundamentals
In previous chapters we defined the free energy density f̃ in terms of the fraction of down
spins ϕ, see e.g. Eq. (2.14). However, to be consistent with the literature [52,53] addressed
in this chapter, we will define f̃ in terms of themagnetization per spinm(σ) ≡ N−1

∑N
i=1 σi,

which is related to ϕ through the simple relation ϕ = (1−m)/2.

6.2.1 Equilibrium

We consider an Ising model in the absence of a magnetic field. The Hamiltonian H(σ)

is given by Eq. (1.1) with h = 0, and J denotes the ferromagnetic (J > 0) or anti-
ferromagnetic (J < 0) coupling. The spins are placed on a Bethe lattice with coordi-
nation number z̄ ∈ N+. Fig. 6.1a shows three examples of Bethe lattices. The equilib-
rium free energy density (in units of kBT , J̃ ≡ J/kBT ) in the thermodynamic limit is de-
fined as f̃(m, J̃) = limm=const.

N→∞
[
N−1 ln (Zm)

]2, where Zk ≡ ∑σ exp (−H(σ)/kBT )δm(σ),k

is the fixed-magnetization partition function (see Sec. 1.1.5) with Kronecker delta δa,b
being 1 when a = b and 0 otherwise. Within BG theory, the free energy density,
f̃BG(m, J̃)=ũBG(m, J̃)−s̃BG(m, J̃), is given by Eq. (2.14) with m = 1 − 2ϕ. Similarly, the
MF free energy density, f̃MF(m, J̃), is given by Eq. (2.40). The BG critical coupling above
which f̃BG(m, J̃) develops two minima is given by J̃BG

crit ≡ ln (z̄/[z̄−2])/2 (see Sec. 2.8.3),
and correctly diverges in dimension one with z̄ = 2, where no phase transition occurs.

2In this chapter we write f̃(m, J̃) instead of f̃(m), because J̃ will be considered a variable instead
of a parameter. The free energy densities defined in Eqs. (2.14) and (2.40) remain the same.
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6.2.2 Kinetics

Figure 6.1: Finite-time dynamical phase tran-
sition on the Bethe lattice. (a) Examples of
Bethe lattices. In (b)-(c) we consider a Bethe
lattice with z̄=4. (b) Forward (solid lines) and
backward (dashed lines) rates w± within the BG
(blue; Eq. (6.1)) and MF approximation (red;
see [52]). (c) Temporal evolution of V (m, J̃, t)
for a quench into the one-phase domain. Time
passes from light to dark blue lines. At the criti-
cal time tc (black line) a cusp emerges at m=0.

We now introduce continuous-time
stochastic dynamics for changes of
the magnetization within the LEQ
approximation [44, 400] (see also
Sec. 5.4), which is highly accurate
in the thermodynamic limit [69].
Let W±(M, J̃) denote the transition
rate to change the total magneti-
zation from M≡Nm→M±2 by a
single-spin flip. Following [44, 400],
we define, in the thermodynamic
limit, an intensive transition rate
w±(m, J̃)≡ limm=const.

N→∞ [W±(Nm, J̃)/N ].
Let τ be an intrinsic time-scale of
infinitesimal changes of magnetization
m→m+dm [134], and ζ†BG(1/2−m/2)

the fraction of defects for a given mag-
netization m given by Eq. (2.12). Then,
the BG-LEQ transition rate reads

w±BG(m, J̃) =
1∓m

2τ

(
e−J̃ +

2ζ†BG(1/2−m/2) sinh (J̃)

1∓m

)z̄
. (6.1)

The transition rates obey the parity symmetry w±BG(m, J̃)=w∓BG(−m, J̃) and DB
w.r.t. the free energy density, w+

BG(m, J̃)/w−BG(m, J̃)= exp (−2∂mf̃BG(m, J̃)). In
the weak coupling (or high temperature) limit we recover the MF transition rates
limJ̃→0w

±
BG(m, J̃)=w±MF(m, J̃)+O(J̃2) reported in [52] (see Eq. (3) therein). A compari-

son between the BG and MF transition rates for (z̄, J̃)=(4, 0.5) is shown in Fig. 6.1b.

6.2.3 Kinetics in the thermodynamic limit

Let PN (m, J̃, t) be the probability density ofm at time t evolving according to the incoming
and outgoing local fluxes ∂tPN (m, J̃, t) = j+(m, t)− j−(m, t). The time-dependent large-
deviation rate function is defined as V (m, J̃, t) ≡ − limN→∞N

−1 lnPN (m, J̃, t). At equi-
librium the rate function is given by the free energy density Veq(m, J̃) ≡ f̃(m, J̃)− f̃(m̄, J̃),
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with m̄(J̃)≡ arg minm f̃(m, J̃) denoting the location of free energy minima. Out of equilib-
rium V (m, J̃, t) obeys a Hamilton-Jacobi equation [52,401,402]

∂tV (m, J̃, t) +H(m, ∂mV (m, J̃, t)) = 0, (6.2)

with the Hamiltonian given by

H(q, p) = w+(q, J̃)(e2p − 1) + w−(q, J̃)(e−2p − 1). (6.3)

Eq. (6.2) can be derived directly from the master equation for PN (m, J̃, t) as the instanton
solution in the thermodynamic limit. We are interested in the evolution of V (m, J̃, t) upon
a quench J̃0 → J̃q < J̃0, where J̃q may be positive or negative. For a quench towards a
lower coupling strength (or higher temperature), the spins undergo a disordering tran-
sition and break the ferromagnetic state. Experimentally quenches to negative J̃q may be
achieved, e.g. by ultrafast optical switching ferro-antiferromagnetic materials [403] or by
spin-population inversion in metals by radio-frequency irradiation [404] yielding negative
spin temperatures3. Note that quenches beyond the Néel point (i.e. the antiferromagnetic
critical coupling) push the system across the antiferromagnetic transition, which m does
not detect [406–409]. In fact, quenching from the antiferromagnetic two-phase region and
replacingmwith the staggered magnetization [406–409] yields mirror-symmetric results
(see Appendix A6.17).

6.3 Dynamical phase transition
We throughout assume that the system is initially prepared at equilibrium in
the two-phase regime J̃0 > J̃BG

crit (i.e. above the critical coupling), and thus
VBG(m, J̃, 0) = f̃BG(m, J̃0)−f̃BG(m̄, J̃0). At t = 0we apply an instantaneous quench J̃q < J̃0

by changing the temperature T or the coupling J , which pushes the system out of equilib-
rium. The rate function VBG(m, J̃, t > 0) thereupon evolves according to Eq. (6.2), which
we solve numerically (see Fig. 6.1d and 6.2a for quenches with J̃q ≤ J̃BG

crit and J̃q ≥ J̃BG
crit ,

respectively). As VBG(m, J̃, t) relaxes towards the new equilibrium at J̃q, there is a de-
finedmoment tBG

c (J̃0, J̃q)—the critical time—where VBG(m, J̃, t) abruptly develops a cusp
(black line in Fig. 6.1c and 6.2a) and becomes non-Gibbsian. The phenomenon was coined
finite-time dynamical phase transition [52, 54, 55] and is hereby confirmed in nearest-
neighbor Ising systems.

3Note that only the nuclear spin temperature becomes negative, other degrees of freedom actu-
ally heat up. For an excellent pedagogical expose on negative temperatures in systems with bounded
energy spectra see [405].
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Figure 6.2: Finite-time dynamical phase transition for quenches in the two-phase
domain, scaling of the critical time, and relaxation dynamics of the rate function
minima. (a) Temporal evolution of the BG rate function V (m, J̃q, t) upon a quench into the
two-phase domain. (b) Temporal evolution of the probability-flux ratio j+(m, t)/j−(m, t)
after a quench into the one-phase regime. At the critical time tc (black line) the ratio
discontinuously jumps to a value above 1 at m = 0. Inset: Enlargement around m =
0. (c) BG (blue) and MF (red) critical time tc/τ as a function of J̃q. The BG critical time
attains a global minimum tBG

c,min (black dot) for an antiferromagnetic quench, bounded from
below by Eq. (6.6) (black line); Inset: tBG

c,min (black dots) and Eq. (6.6) (black line) as a
function of J̃0. (d-e) Relaxation of excess mean magnetization δm̄t = (m̄t − m̄∞)/(m̄0 −
m̄∞) upon a quench in the one- (d) and two-phase (e) domain. Dots depict the first two
nonzero terms of the analytical power series solution, lines are numerical solutions of the
differential equation. Squares/diamonds denote the first τr and second (τr/3 in d and τr/2
in e) relaxation time-scales, respectively. Inset: First two nonzero prefactors of the power
series which enter Eq. (6.7). (f) BG (blue) and MF (red) relaxation time τr/τ as a function
of J̃q. τBG

r has a local minimum at J̃rq < 0 (see Eq. (6.8)). In all panels z̄ = 4.

Due to the reflection symmetry aroundm=0, and local rates w+
BG and w−BG that are strictly

increasing and decreasing, respectively, in an interval around m = 0 (see Fig. 6.1b),
the forward and backward probability fluxes, j±(m, t), remain perfectly balanced in a
region around m = 0 during a transient period after the quench (see Fig. 6.2b). As
a result, PN (m ≈ 0, J̃ , t) is transiently “locked” in the initial state (see Fig. 6.1c and
Fig. 6.2a). “Fronts” of net flux towards m = 0 gradually develop on each side and drift
towards the center (Fig. 6.2b). Once the fronts collide, the dynamical phase transition
takes place as an instability, in which the flux ratio j+(0, t)/j−(0, t) discontinuously jumps
to a value larger than 1 (inset of 6.2b). At the transition the dynamics switches from con-
fined in the wells to exploring the free energy barrier, i.e. between the formation of defects
in ordered domains to their (partial) melting.
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The fact that the cusp appears upon quenches within the two-phase regime, J̃BG
crit ≤ J̃q < J̃0

(see Fig. 6.2a), implies that the dynamical phase transition does not require a change in ge-
ometry from a double- to a single-well potential. Moreover, we show in Appendix A6.13.2
that the initial location of the cusp undergoes a symmetry-breaking transition above a
threshold coupling J̃0 > J̃SB

0 (J̃q) whereupon it moves from the center m = 0. For in-
finite temperature/zero coupling quenches the symmetry-breaking transition occurs at
J̃SB

0,BG(0) = ln ([z̄ + 1]/[z̄ − 2])/2, which in the MF setting simplifies to limz̄→∞ J̃
SB
0,BG(0) =

3/(2z̄) +O(1/z̄2) and agrees with the results in [54,55].

6.4 Critical time
We now determine the critical time tc, i.e. the first instance a cusp appears at m = 0. The
critical time can be determined from the curvature [52] or slope [54, 55] at m = 0 and
reads (see derivation in Appendix A6.13)

tc(J̃0, J̃q)=
ln (1−f̃ ′′(0, J̃q)/f̃

′′(0, J̃0))

8w±(0, J̃q )̃f ′′(0, J̃q)
, (6.4)

where f̃ ′′(0, J̃) ≡ d2f̃(m, J̃)/dm2|m=0 is the curvature of the barrier. Inserting the MF free
energy density (see Eq. (2.40)) and transition rates (see Eq. (3) in [52]) into Eq. (6.4), we
recover the results derived in [52, 54, 55]. For the BG critical time we insert Eqs. (2.14)
and (6.1), respectively. In Fig. 6.2c the BG (blue) and MF (red) critical times are shown as
a function of J̃q for (z̄, J̃0) = (4, 0.6), and display starkly dissimilar behavior. In particular,
the BG critical time displays a global minimum—a global speed limit—that is absent in the
MF setting. This implies a dominant role of local spin configurations, which are accounted
for in the BG theory but ignored in MF theory.

6.5 Lower bounds on the critical time
The stationary points of Eq. (6.4) cannot be determined analytically. To confirm that the
speed limit indeed exists, we instead prove lower bounds on Eq. (6.4) for quenches in the
one- and two-phase domain.

6.5.1 Lower bound for quenches in the two-phase domain

The critical time tc(J̃0, J̃q) is monotonically increasing with J̃q for J̃BG
crit ≤ J̃q < J̃0 (see proof

in Appendix A6.14.2). Thus, the critical time for quenches within the two-phase regime

121



6 Global Speed Limit for Finite-Time Dynamical Phase Transition

is bounded from below by tBG
c (J̃0, J̃

BG
crit ), which gives the following J̃q-independent lower

bound

tBG
c (J̃0, J̃q) ≥

(
z̄ − 1√
z̄(z̄ − 2)

)z̄
tanh (J̃0) + 1

4(z̄ − 1) tanh (J̃0)− 4
, for J̃BG

crit ≤ J̃q < J̃0. (6.5)

6.5.2 Lower bound for quenches in the one-phase domain

For quenches below the critical coupling, i.e. J̃q < J̃BG
crit , we have −f̃ ′′BG(0, J̃q)/f̃

′′
BG(0, J̃0) >

0, and therefore we can apply the inequality ln (1 + x) > 2x/(2 + x) for x > 0 [410] to the
numerator of Eq. (6.4). Minimizing the result with respect to J̃q then yields a speed limit
on the critical time, which reads

tBG
c (J̃0, J̃q) >

coshz̄ (ln [e2J̃BG
crit (e−2J̃0+2/z̄+∆z̄(J̃0))]/2)

z̄−e2J̃BG
crit [(z̄−4)e−2J̃0−4/z̄−z̄∆z̄(J̃0)]

, for J̃q < J̃BG
crit < J̃0, (6.6)

where ∆z̄(J̃0)≡[8/z̄2+e−4J̃0+(1−4/z̄)(1−2e−2J̃0)]
1
2 . The bound becomes tighter with in-

creasing J̃0 (see inset Fig. 6.2c) and coordination number z̄ (see Fig. A6.5b), and for
J̃0 → ∞ attains a minimum value, which reads 1/8 for z̄ = 4 (see Eq. (A6.29) for the
general result). Equation (6.6) is by construction smaller than Eq. (6.5), and therefore
also bounds quenches within the two-phase domain. Notably, the BG critical time attains
a minimum for an antiferromagnetic quench J̃q < J̃BG

Néel < 0 (see black point in Fig. 6.2c),
which lies slightly below the Néel point J̃BG

Néel = −J̃BG
crit [407,408].

6.6 Antiferromagnetic speed limit for relaxation
Interestingly, we now show that an antiferromagnetic speed limit also exists in the re-
laxation of the mean magnetization 〈mt〉≡

∫ −1
−1 mPN (m, J̃, t)dm. In the thermodynamic

limit 〈mt〉 is dominated by m̄t≡ arg minm V (m, t, J̃q)
4, where ±m̄t evolve according

to d
dtm̄t(J̃0, J̃q)=2[w+(m̄t, J̃q)−w−(m̄t, J̃q)], with initial condition m̄0= arg minm f̃(m, J̃0)

[134]. Using the Lagrange inversion theorem, we obtain an explicit power-series solu-
tion (see Appendix A6.15)

m̄t(J̃0, J̃q)=

∞∑
k=0

αk(J̃0, J̃q)e
−kt/τr(J̃q), (6.7)

4The mean magnetization limN→∞〈mt〉 is evaluated with the saddle-point method yielding con-
tributions from the free energy minima (see e.g. Sec.A5.13). In the two-phase regime f̃(m, J̃) has
two global minima equidistant from m = 0. Therefore, limN→∞〈mt〉 = 0.
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with relaxation rate 1/τr(J̃q)≡4w±(m̄∞, J̃q )̃f
′′(m̄∞, J̃q). The prefactors αk are given ex-

plicitly in Appendix A6.15. In Fig. 6.2d-e we show the relaxation of the relative excess
magnetization δm̄t ≡ (m̄t − m∞)/(m̄0 − m̄∞) for quenches into the one-phase (d) and
two-phase (e) domain, based on a numerical solution (lines) and by retaining only the first
two terms in the power-series (dots).

For quenches below the critical coupling, J̃q < J̃BG
crit , the relaxation rate depends non-

monotonically on J̃q (compare red and green lines in Fig. 6.2d), which is explicitly elabo-
rated in Fig. 6.2f. Similarly to the critical time, we find a speed limit, i.e. τBG

r (J̃q) is minimal
at an antiferromagnetic quench J̃rq below the Néel point

J̃rq ≡arg min
J̃q

τBG
r (J̃q)=

1

2
ln

(
z̄ − 2

√
z̄ − 1

z̄ − 2

)
<J̃BG

Néel . (6.8)

For z̄ = 4 this gives J̃rq ≈ −0.65874 as indicated in Fig. 6.2f with the black dotted line. The
antiferromagnetic speed limit τr(J̃rq ) is the result of a trade-off between an antiferromag-
netic interaction, deterministically biasing m towards smaller values on the one hand, and
growing kinetic constraints5 on energetically accessible local configurations on the other
hand.

When J̃q > J̃BG
crit , i.e. quenches within the two-phase regime, there is no speed limit and

τr(J̃q) decreases monotonically with J̃q towards zero because the distance between the
initial and final location of the minima become vanishingly small, i.e. m̄0 − m̄∞ → 0.

6.7 Asymptotic measure equivalence

Despite the presence of a cusp in the rate function for all t > tc (see [54,55]), we now show
thatPN→∞(m, J̃, t) becomesmeasure equivalent [411,412] to the equilibriumGibbsmea-
sure exponentially fast. We quantify the distance between the two measures via the in-
stantaneous excess free energy density Dt [343,413–418] defined as the relative entropy
per spin in the thermodynamic limit, Dt ≡ limN→∞N

−1D[PN (m, J̃, t)||P eq
N (m, J̃)] with

D[f ||g] ≡
∫
f ln (f/g)dm, or explicitly

Dt= lim
N→∞

∫ 1

−1
e−NV (m,J̃q ,t)[Veq(m, J̃q)−V (m, J̃q, t)]dm '

∞∑
k=2

γk(J̃0, J̃q)e
−kt/τr(J̃q), (6.9)

5These energetic local constraints arise due to the antiferromagnetic order for J̃ < 0.
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Figure 6.3: Relaxation of the
relative entropy per spin,
and the dynamical phase
diagram. (a) Temporal evo-
lution of the relative entropy
per spin Dt given by Eq. (6.9),
upon a quench into the one-
phase (red-blue) and two-phase
regime (green). At J̃rq (red)
the relative entropy relaxes the
fastest. Dots depict analytical re-
sults obtained with the first two
nonzero terms in Eq. (6.9). Lines
correspond to numerical re-
sults. Squares/diamonds denote
the first τr/2 and second τr/4
- τr/3 relaxation time-scales,
respectively. Inset: First two
nonzero prefactors which enter
Eq. (6.9). (b) Dynamical phase
diagram for tBG

c and τBG
r . The

red area is forbidden since
J̃0 > J̃q. Dashed/solid black lines
denote the fastest relaxation and
critical time. In both panels we
set z̄ = 4.

where the second line was obtained with the saddle
point approximation (for derivation and prefactors γk
see Appendix A6.16). The time evolution of Dt for var-
ious quenches is shown in Fig. 6.3a. Clearly,Dt→∞ → 0,
implying that limt→∞ V (m, J̃q, t) = Veq(m, J̃q) almost
everywhere, i.e. the large deviation behavior is ergodic
[411,412].

6.8 Dynamical phase diagram
Due to the asymptotic measure equivalence, the dynam-
ical phase transition may not always be easily observ-
able, in particular if tc > τr. In Fig. 6.3b we present a
dynamical phase diagram in the (J̃0, J̃q)-plane, show-
ing that the critical time is not always smaller than
the relaxation time. However, (i) there is an extended
regime where tc < τr (see blue region in Fig. 6.3b) such
that the transition should be observable, and (ii) the
(exact) minimal relaxation time is always smaller than
the (exact) minimal critical time. The MF phase dia-
gram is, however, starkly different (see Fig.A6.6c).

6.9 Conclusion
Our results reveal, for the first time, the finite-time dy-
namical phase transition in nearest-neighbor interact-
ing Ising systems. Moreover, they unravel non-trivial
antiferromagnetic speed limits for the critical time
and the relaxation time of the magnetization. Consid-
ering instead quenches from antiferromagnetically or-
dered states, we in turn find mirror-symmetric results
for the staggered magnetization (see [406–409] and
Appendix A6.17). These unforeseen speed limits em-
body an optimal trade-off between antiferromagnetic interactions, biasing the magneti-
zation towards smaller values, and a decreasing number of energetically accessible local
configurations that impose kinetic constraints. As it emerges due to kinetic constraints im-
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posed by frustrated local configurations, it should not come as a surprise that the speed
limit requires accounting for nearest-neighbor correlations, and is therefore not captured
by MF theory. Notably, speed limits may also be obtained from “classical” [389–395] or
thermodynamic [391,393,396–398] speed limits which, however, is likely to be more dif-
ficult as analytical solutions for probability density functions, in particular at the critical
time, do not seem to be feasible. Our findings may provide insight allowing for optimiza-
tion of ultrafast optical-switching ferromagnetic materials [403]. Finally, our work provokes
further intriguing questions, in particular on the microscopic path-wise understanding of
the dynamical critical time, the effect of an external field, the existence of heating-cooling
asymmetries [343–346] in different regimes and across phase transitions, and optimal driv-
ing protocols [339–342] that may be relevant for optical-switching ferromagnets.

6.10 Appendices

In the Appendices we present details of calculations and mathematical proofs for the claims
made in this chapter. The sections are organized in the order they appear in this chapter.

A6.11 Hamiltonian formalism

Recall that V (m, J̃, t) ≡ − limN→∞N
−1 ln (PN (m, J̃, t)) represents the time-dependent

large-deviation rate function. In the SM of [52] it is shown that the rate function V (m, J̃q, t)

with quench temperature/coupling J̃q obeys the Hamilton-Jacobi (HJ) equation given by
Eq. (6.2). The HJ equation can be solved with the method of characteristics as follows:
Let {q(s), p(s)} 0 ≤ s ≤ t be the characteristics that solve the Hamilton’s equations

q̇(s) = ∂pH(q, p), ṗ(s) = −∂qH(q, p), q(t) = m, p(0) = f̃ ′(q(0), J̃0), (A6.10)

where q̇(s) ≡ dq(s)/ds, ṗ(s) ≡ dp(s)/ds, f̃ ′(a, J̃) ≡ ∂mf̃(m, J̃)|m=a, and H(q, p) is given in
Eq. (6.3). Upon solving the Hamilton’s equations, the solution to the HJ equation reads

V (m, J̃q, t) =

∫ t

0
[p(s)q̇(s)−H(q, p)]ds+ V (q(0), J̃0, 0). (A6.11)

For t > tc, where tc = tc(J̃0, J̃q) denotes the critical time, the solutions to the Hamilton’s
equations become degenerate. Under these circumstances, the solution that minimizes
Eq. (A6.11) corresponds to the stable solution [53].
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A6.12 Lagrangian formalism
One can also obtain the solution to the HJ equation with the Lagrangian formalism, which
is formally introduced in [54, 55]. The Lagrangian is obtained from the Hamiltonian via
the backward Legendre transform L(q, q̇) = p(q, q̇)q̇ −H(q, p(q, q̇)), where p(q, q̇) can be
obtained from the first of the Hamilton’s equations in Eq. (A6.10) and reads

p(q, q̇) =
1

2
ln

(
q̇ + Λ(q, q̇)

4w+(q, J̃q)

)
, (A6.12)

with Λ(q, q̇)≡[16w+(q, J̃q)w
−(q, J̃q) + q̇2]1/2. Plugging this expression back into

H(q, p(q, q̇)), we obtain the Lagrangian

L(q, q̇) = p(q, q̇)q̇ − Λ(q, q̇)/2 + w+(q, J̃q) + w−(q, J̃q). (A6.13)

The Hamilton’s equations are replaced by the E-L equation, which reads

q̈(s) = 2Λ(q, q̇)∂q[w
+(q, J̃q)+w

−(q, J̃q)]−8∂qw
+(q, J̃q)w

−(q, J̃q), q̇(0)=g(q(0)), q(t)=m.

(A6.14)
The boundary condition for q̇(0) is determined by the curve of allowed initial configura-
tions (see also Eq. (24) in [55])

g(m) ≡ 2e2f̃′(m,J̃0)w+(m, J̃q)− 2e−2f̃′(m,J̃0)w−(m, J̃q), (A6.15)

which will be used in Sec. A6.13.2 to determine the symmetry-breaking transition. Upon
solving the E-L equation, the solution of the HJ equation is given by

V (m, J̃q, t) =

∫ t

0
L(q(s), q̇(s))ds+ V (q(0), J̃0, 0), (A6.16)

which is identical to Eq. (A6.11). Similar to the Hamiltonian formalism, the solution of
Eq. (A6.14) becomes degenerate for t > tc. The stable solution for q(s) minimizes the rate
function given by Eq. (A6.16).

A6.13 Derivation of the critical time
In this section we derive the critical time tc based on two different approaches, which are
discussed in [52] and [55], respectively. The first approach uses the Hamiltonian formalism
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discussed in Sec. A6.11 to derive an equation for the curvature at m = 0. The second ap-
proach uses an invariance principle for the solutions of Eq. (A6.14) discussed in Sec. A6.12.
Both approaches lead to the same result for the critical time given by Eq. (6.4). However,
with the latter approach we can also derive the critical coupling above which the initial
location of the cusp deviates from m = 0.

A6.13.1 Hamiltonian formalism and the Ricatti equation

The critical time tc(J̃0, J̃q) is defined as the moment when the rate function V (m, J̃q, t) de-
velops a cusp at m = 0, leading to a negatively diverging curvature. In the SM of [52] an
equation for the curvature V ′′0 (J̃q, t) ≡ d2V (m, J̃q, t)/dm

2|m=0 is derived from the Hamil-
ton’s equations. The resulting equation – after simplification – reads

dV ′′0 (J̃q, t)

dt
= 8w±(0, J̃q)V

′′
0 (J̃q, t)(f̃

′′(0, J̃q)− V ′′0 (J̃q, t)), (A6.17)

with initial condition V ′′0 (J̃q, 0)=f̃ ′′(0, J̃0). To obtain Eq. (A6.17), we explicitly
used the DB relation ln (w−(m, J̃)/w+(m, J̃))=2f̃ ′(m, J̃) and the parity symmetry
w±(m, J̃)=w∓(−m, J̃) to write ∂mw±(m, J̃)|m=0 = ∓w±(0, J̃ )̃f ′′(0, J̃). Eq. (A6.17) is a
so-called Ricatti equation, which can be solved analytically. The resulting solution valid
up to the critical time reads

V ′′0 (J̃q, t) =
f̃ ′′(0, J̃q)

1− (1− f̃ ′′(0, J̃q)/f̃ ′′(0, J̃0))e−2t/τ̂r(J̃q)
, (A6.18)

where 1/τ̂r(J̃q) ≡ 4w±(0, J̃q )̃f
′′(0, J̃q) is an effective relaxation rate. The critical time tc

determines the root of the denominator in Eq. (A6.18), which leads to Eq. (6.4).

A6.13.2 Lagrangian formalism and the cusp location

Following the steps in Sec. 3.5 of [55] we can derive the symmetry-breaking coupling
J̃SB

0 (J̃q), above which the initial location of the cusp deviates from m̄ = 0. The idea behind
this calculation is that at the critical time the solution of Eq. (A6.14) converges to the same
point q(tc) for different initial conditions {q(0), q̇(0)}. In other words, the location of q(tc)
remains invariant under a variation of the initial conditions. To determine the symmetry-
breaking transition, it suffices to consider the dynamics of q(s) around the origin [55]. We
linearize Eq. (A6.14) around the point (q, q̇) = (0, 0), which yields

q̈(s) = q(s)/τ̂2
r (J̃q), q̇(0) = g(q0) ≡ v0, q(0) ≡ q0, (A6.19)
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Figure A6.4: Symmetry-breaking transition for the location of the cusp. In all panels we
consider a lattice with z̄ = 4. (a) BG critical time tBG

c (q0) given by Eq. (A6.22) as a function
of the initial point q0 for various values of J̃0. The black dots indicate the minima of tBG

c (q0),
which set the location of the cusp. For J̃0 > J̃SB

0,BG the critical time contains two minima
±qmin, which correspond to non-zero cusp locations. (b) Blue line: BG symmetry-breaking
coupling J̃SB

0,BG(J̃q) given by Eq. (A6.25) as a function of J̃q. Inside the light blue region
the cusp is formed at m = 0, and in the white region the cusp is formed at m 6= 0. The
red area is forbidden since J̃0 > J̃BG

crit and J̃0 > J̃q. Inset: MF symmetry-breaking coupling
J̃MF

0 (J̃q) given by Eq. (A6.24). Inside the light green region the cusp is formed at m = 0.
(c) Temporal evolution of the BG rate function VBG(m, J̃q, t) for a quench to J̃q = 0. Time
increases from light to dark blue. The initial coupling is set above the symmetry-breaking
coupling, i.e. J̃0 > J̃SB

0 (J̃q), to induce a cusp at m 6= 0. Inset: Enlargement of the rate
function around the center. Black arrows indicate the location of the cusps.

where {q0, v0(q0)} are the initial conditions, and 1/τ̂r(J̃q) ≡ 4w±(0, J̃q )̃f
′′(0, J̃q). The solu-

tion of Eq. (A6.19) is given by

q(s) = (q0/2− τ̂rv0/2)e−s/τ̂r + (q0/2 + τ̂rv0/2)es/τ̂r . (A6.20)

We now consider a variation of q(s) w.r.t. the initial conditions {q0, v0(q0)}, which gives

dq(s)

dq0
=
∂q(s)

∂q0
+
∂q(s)

∂v0
g′(q0) = (1/2−τ̂rg′(q0)/2)e−s/2τ̂r+(1/2+τ̂rg

′(q0)/2)es/2τ̂r , (A6.21)

where g′(q0) ≡ dg(m)/dm|m=q0 and g(m) is the curve of allowed initial configurations given
by Eq. (A6.15). At the critical time s = tc the variation in Eq. (A6.21) should vanish, which
leads to the critical time in the form

tc(q0) = (τ̂r/2) ln

(
g′(q0)− 1/τ̂r
g′(q0) + 1/τ̂r

)
. (A6.22)

For J̃c < J̃0 < J̃SB
0 (J̃q) the critical time given by Eq. (A6.22) has a single minimum

at qmin = 0 (see upper line in Fig. A6.4a). Inserting q0 = 0 and recalling the relation
∂mw

±(m, J̃)|m=0 = ∓w±(0, J̃ )̃f ′′(0, J̃) we obtain the critical time given by Eq. (6.4).

For J̃0 > J̃SB
0 (J̃q) Eq. (A6.22) develops two minima at ±qmin 6= 0, corresponding to the

new cusp locations (see lower line in Fig. A6.4a).

128



Global Speed Limit for Finite-Time Dynamical Phase Transition 6

For J̃0 = J̃SB
0 (J̃q) the curvature of Eq. (A6.22) at q0 = 0 vanishes (see middle line in

Fig. A6.4a), which results in the following equation determining J̃SB
0 (J̃q)

g′′′(0)|J̃SB
0 (J̃q)

= 0, (A6.23)

where we have used g′′(0) = 0. Solving Eq. (A6.23) for the MF approximation, we obtain

J̃SB
0,MF(J̃q) =

3 + z̄J̃q
2z̄

. (A6.24)

For J̃q = 0 we have J̃SB
0,MF(0) = 3/2z as mentioned in [54,55]. Note that there is a typo in

Eq. (41) in [55]. Within the BG approximation the general formula for J̃SB
0,BG(J̃q) is rather

long and therefore not shown. For z̄ = 4 the result can compactly be written as

J̃SB
0,BG(J̃q)|z=4 = ln (xJ̃q)/2, (A6.25)

where xJ̃q is the real solution of the following cubic equation

20− 16(1 + 2e−2J̃q)xJ̃q + (8 + 8e−2J̃q + 20e−4J̃q)x2
J̃q

− (2− 4e−2J̃q + 10e−4J̃q − e−8J̃q + 6e−10J̃q − 9e−12J̃q + 4e−14J̃q)x3
J̃q

= 0. (A6.26)

For J̃q = 0 we obtain J̃SB
0,BG(0) = ln ([z̄ + 1][z̄ − 2])/2 as mentioned in Sec. 6.3. In Fig. A6.4b

we plot Eq. (A6.25) as a function of J̃0 with the dark blue line. Interestingly, the light blue
region for which the cusp appears at m = 0 is rather small and of finite area. Correspond-
ingly, in Fig. A6.4c we provide an example of the rate function VBG(m, J̃q, t) for which the
cusps appear at a non-zero location during the evolution towards to equilibrium state.

A6.14 Bounds on the BG critical time

In this section we derive the bounds for the BG critical time tBG
c . Inserting the BG free

energy density and transition rates – given by Eqs. (2.14) and (6.1) – into Eq. (6.4), we
obtain

tBG
c (J̃0, J̃q) =

coshz̄ (J̃q)(tanh (J̃q)+1)

4(z̄ − 1) tanh (J̃q)−4

[
J̃q+ ln

(
(z̄−1) sinh (J̃0)− cosh (J̃0)

z̄ sinh (J̃0 − J̃q)

)]
, (A6.27)
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Figure A6.5: Bounds on the
BG critical time for quenches in
the one-phase domain. (a) BG
critical time tBG

c (J̃0, J̃q) given by
Eq. (A6.27) (blue line) as a func-
tion of J̃q for J̃0 = 0.5 and z̄ =
4. The respective lower bounds
are shown with the black and red
line. (b) Minimum of the BG crit-
ical time (blue dots) as a func-
tion of the lattice coordination
number z̄. The respective lower
bounds are shown with the black
and red dots, respectively.

where J̃0 > J̃BG
crit ≡ ln (z̄/(z̄ − 2))/2 and J̃0 > J̃q.

Fig. 6.2c displays the BG critical given by Eq. (A6.27)
with the blue line. The BG critical time has a mini-
mum for an antiferromagnetic quench J̃q < 0, which
cannot be determined analytically. We can, however,
derive lower bounds on the critical time. To construct
the bounds, we will distinguish between quenches in
the one- and two-phase domain, i.e. J̃q < J̃BG

crit and
J̃q ≥ J̃BG

crit .

A6.14.1 J̃q < J̃BG
crit

For quenches in the one-phase domain we can bound
the critical time by applying the well-known in-
equality ln (1 + x) > 2x/(2 + x) for x > 0

[410] to the logarithmic term in Eq. (6.4) (since
−f̃ ′′BG(0, J̃q)/f̃

′′
BG(0, J̃0) > 0). This yields the local lower

bound

t†BG
c (J̃0, J̃q) =

coshz̄ (J̃q)

z̄ − 2 + z̄e−2J̃q − 2z̄e−2J̃0
. (A6.28)

In Fig. A6.5a we plot t†BG
c with the black line. Surpris-

ingly, this local bound also seems to work for J̃q ≥ J̃BG
crit ,

even though −f̃ ′′BG(0, J̃q)/f̃
′′
BG(0, J̃0) < 0. Furthermore,

it gives the exact result for J̃q = J̃BG
crit given by Eq. (6.5). The lower bound is also non-

monotonic w.r.t. J̃q, and displays a minimum for an anti-ferromagnetic quench J̃q < 0. At
the respective minimum, the global lower bound inf J̃q t

†BG
c (J̃0, J̃q) (see black dashed line

in Fig. A6.5a) is given by Eq. (6.6). Taking the limit J̃0 →∞ of Eq. (6.6), we further obtain
the following universal global lower bound independent of J̃q and J̃0 that reads

lim
J̃0→∞

inf
J̃q

t†BG
c (J̃0, J̃q) =

(z̄ − 2)1−z̄/2[2 + νz̄]
−z̄/2[z̄ + νz̄]

z̄

2z̄(4 + z̄[z̄ − 2 + νz̄])
, (A6.29)

with νz̄ ≡
√

8 + z̄(z̄ − 4). For z̄ = 4 this gives the universal global lower bound
tBG
c (J̃0, J̃q) > 1/8 and is shown with the red line in Fig. A6.5a. In Fig. A6.5b we ob-
serve that for increasing z̄ the bounds given by Eq. (6.6) and Eq. (A6.29) become sharper
with respect to the true/exact minimum of tBG

c .
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A6.14.2 J̃q ≥ J̃BG
crit

For quenches in the two-phase domain we prove that the BG critical time tBG
c (J̃0, J̃q) is

bounded from below by the critical quench tBG
c (J̃0, J̃

BG
crit ), which is given by Eq. (6.5). To

prove that Eq. (6.5) provides a lower bound for the critical time for quenches in the two-
phase domain, we first differentiate Eq. (A6.27) w.r.t. J̃q, which gives

∂tBG
c (J̃0, J̃q)

∂J̃q
=
z̄(1 + tanh (J̃q)) coshz̄ (J̃q)

4((z̄ − 1) tanh (J̃q)− 1)2
A1(J̃0, J̃q), (A6.30)

where we have introduced the auxiliary function (and subsequent auxiliary functions)

A1(J̃0, J̃q) ≡ −A2(J̃0, J̃q)[1− tanh (J̃q)]−A3(J̃q) ln (A2(J̃q, J̃0)),

A2(J̃0, J̃q) ≡ [(z̄−1) tanh (J̃q)−1][1 + tanh (J̃0)]/[z̄(tanh (J̃q)− tanh (J̃0))],

A3(J̃q) ≡ 1−(z̄−1) tanh2 (J̃q). (A6.31)

All terms in front of A1(J̃0, J̃q) in Eq. (A6.30) are trivially positive. If furthermore
A1(J̃0, J̃q) > 0 for J̃BG

crit < J̃q < J̃0, then we know that Eq. (6.5) provides a lower bound.
To prove that the latter is positive, we proceed in two steps.

Step 1: A2(J̃q, J̃0) > 1, ∀J̃q > J̃BG
crit

First, we focus on the term A2(J̃q, J̃0) entering the logarithm in A1(J̃0, J̃q). Here we prove
that A2(J̃q, J̃0) > 1, ∀J̃q > J̃BG

crit , which we need for the second step. First, note that
A2(J̃BG

crit , J̃0) = 1, which can easily be checked by hand. Introducing x0 ≡ tanh (J̃0) and
xq ≡ tanh (J̃q), we find ∂J̃qA2(J̃q, J̃0) = cosh−2(J̃q)∂xqA2(xq, x0) > 0, ∀J̃0 > J̃BG

crit . To see
this, we write out the partial derivative and obtain

∂xqA2(xq, x0) = ∂xq

(
(1 + xq)[(z̄−1)x0−1]

z̄(x0 − xq)

)
=

(1 + x0)((z̄ − 1)x0 − 1)

z̄(x0 − xq)2
> 0, ∀x0 > (z̄−1)−1.

Finally, note that x0 > (z̄ − 1)−1 translates to J̃0 > arctanh (z̄ − 1)−1 = J̃BG
crit , which is

the regime of interest. Hence, A2(J̃q, J̃0) has a positive slope w.r.t. J̃q. Combined with
A2(J̃BG

crit , J̃0) = 1, this proves that A2(J̃q, J̃0) > 1, ∀J̃q > J̃BG
crit .

Step 2: A1(J̃0, J̃q) > 0, ∀J̃q > J̃BG
crit

Now we turn our attention to A1(J̃0, J̃q). We begin by considering the regime
tanh(J̃q) ≥ 1/

√
z − 1. Here A3(J̃q) < 0, and therefore −A3(J̃q) ln (A2(J̃q, J̃0)) > 0 based
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on the previous step. Furthermore, −A2(J̃0, J̃q)[1 − tanh (J̃q)] > 0, ∀J̃BG
crit < J̃q < J̃0, and

so it follows that A1(J̃0, J̃q) > 0 for 1/
√
z − 1 ≤ tanh (J̃q) ≤ tanh (J̃0).

Next we consider the regime 1/(z−1)< tanh(J̃q)<1/
√
z−1. Here A3(J̃q)>0, and therefore

−A3(J̃q) ln (A2(J̃q, J̃0))<0. To construct a bound for A1(J̃0, J̃q), we apply the following
chain of inequalities

A1(J̃0, J̃q) ≡ A3(J̃q)[−A2(J̃0, J̃q)[1− tanh (J̃q)]/A3(J̃q)− ln (A2(J̃q, J̃0))] (A6.32)
> A3(J̃q)[−A2(J̃0, J̃q)[1− tanh (J̃q)]/A3(J̃q)−A2(J̃q, J̃0) + 1]

> A3(J̃q)[−A2(J̃0, J̃q)−A2(J̃q, J̃0) + 1] = 0.

In passing from the first to the second line, we have applied the inequality ln (z) < z − 1

for z > 1. From the second to the third line we have used [1 − tanh (J̃q)]/A3(J̃q) > 1

for 1/(z−1)< tanh(J̃q)<1/
√
z−1. Finally, in the last line we used that 1 − A2(x0, xq) −

A2(xq, x0) = 0, which follows by simply writing out the terms.

Combining the results, we find that A1(J̃0, J̃q) > 0 for J̃BG
crit < J̃q < J̃0, and therefore

tBG
c (J̃0, J̃q) is bounded by Eq. (6.5) in this regime.

A6.15 Relaxation dynamics

In this section we focus on the relaxation dynamics of the rate function minima,
m̄(t, J̃0, J̃q) ≡ arg minm V (m, J̃q, t). Based on the first characteristic equation in
Eq. (A6.10) we find that the minima obey the differential equation

dm̄(t, J̃0, J̃q)

dt
= 2w+(m̄, J̃q)− 2w−(m̄, J̃q). (A6.33)

As the RHS does not depend explicitly on time, the solution is given by the integral

1

2

∫
dm̄

w+(m̄, J̃q)− w−(m̄, J̃q)
= t+ C, (A6.34)

where C = C(J̃0, J̃q) is an integration constant left to be determined from the initial condi-
tion at t = 0. The integral on the LHS cannot be evaluated analytically upon inserting the
MF transition rates (see Eq. (3) in [52] for their functional form). However, for the BG tran-
sition rates given by Eq. (6.1), the integral can be evaluated explicitly for z̄ = {2, 3, 4, 5, 6}.
Here we show the analysis for z̄ = {2, 4}, where we use the former as an educative intro-
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duction to carry out the latter. Our aim is to go beyond the linear response regime studied
in [134] by applying the so-called Lagrange Inversion Theorem.

A6.15.1 BG approximation with z̄ = 2

Formally, the mean magnetization for z̄ = 2 vanishes for any initial and final tempera-
ture/coupling. However, instead of considering a temperature/coupling quench, we con-
sider a magnetization quench where we initially prepare the system in a non-zero magnetic
state with m̄(0) ≡ m̄0 6= 0. Inserting the BG transition rates with z̄ = 2 into Eq. (A6.34),
we obtain – after some algebraic manipulation – the result

− τr(J̃q) ln (m̄/f(m̄, J̃q)) = t+ C, (A6.35)

where 1/τr(J̃q) ≡ 4w±BG(0, J̃q )̃f
′′
BG(0, J̃q) = 8/(1 + e2J̃q)2 is the relaxation rate for z̄ = 2,

and we have introduced the auxiliary function

f(m̄, J̃q) ≡ exp (− tanh (J̃q) ln (α+)− α−/[2 cosh (J̃q)m̄]2), (A6.36)

with
α±(m̄, J̃q) ≡ exp (2J̃q)± [m̄2+ exp (4J̃q)(1−m̄2)]1/2. (A6.37)

From Eq. (A6.35) we directly read off the integration constant C = C(m̄0, J̃q) at t = 0.
To obtain an explicit solution for m̄, we multiply both sides of Eq. (A6.35) by −τr, and
subsequently exponentiate, resulting in

m̄

f(m̄, J̃q)
=

m̄0

f(m̄0, J̃q)
e−t/τr(J̃q), (A6.38)

where we have now also fixed the integration constant. Now we invoke the Lagrange inver-
sion theorem: Let h(w) be a function which is analytic in some neighborhood of the point
w = 0 (of the complex plane) with h(0) 6= 0, and let it satisfy the equation

w

h(w)
= ξ. (A6.39)

Then ∃a, b ∈ R+ such that for |ξ| < a Eq. (A6.39) has only a single solution in the domain
|w| < b. According to the Lagrange-Bürmann formula this unique solution is an analytical
function of ξ given by

w =

∞∑
k=1

ξk

k!

[
dk−1

dwk−1
h(w)k

]
w=0

. (A6.40)
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Note that Eq. (A6.38) is similar in structure to Eq. (A6.39), and furthermore

f(0, J̃q) = exp (− tanh (J̃q)(1/2+ ln 2+2J̃q)), (A6.41)

which is non-zero ∀J̃q ∈ R. Therefore, we can use Eq. (A6.40) to obtain an explicit solution
for m̄, yielding

m̄(t, m̄0, J̃q) =
∞∑
k=1

m̄k
0

f(m̄0, J̃q)kk!

[
dk−1f(m̄, J̃q)

k

dwk−1

]
m̄=0

e−kt/τr(J̃q) =
∞∑
k=1

αk(m̄0, J̃q)e
−kt/τr(J̃q).

(A6.42)
For completeness, we list the first three non-zero coefficients

α1(m̄0, J̃q) = m̄0f(0, J̃q)/f(m̄0, J̃q),

α3(m̄0, J̃q) = α3
1(m̄0, J̃q)e

−4J̃q(1− e2J̃q)2/8,

α5(m̄0, J̃q) = α5
1(m̄0, J̃q)e

−4J̃q sinh (J̃q)
3
(4 cosh (J̃q) + 5 sinh (J̃q))/8. (A6.43)

Note that α1(m̄0, 0) = m̄0 and αk(m̄0, 0) = 0, ∀k ∈ {2, 3, ...}, which gives the well-known
result m̄(t, m̄0, 0) = m̄0 exp (−2t) [55]. Furthermore, since f(m̄, J̃q) = f(−m̄, J̃q), we
know that α2k = 0, ∀k ∈ N. This concludes our derivation of m̄(t, m̄0, J̃q) for z̄ = 2.

A6.15.2 BG approximation with z̄ = 4

Now we focus on the case z̄ = 4. The analysis requires the same steps as shown in the
previous section, but involves a bit more algebra. We will focus only on quenches where
the initial coupling is above the critical coupling, i.e. J̃0 > J̃BG

crit = ln (2)/2, resulting in the
following initial magnetization (see Eq. (2.37) and recall that ϕ = (1−m)/2)

m̄0(J̃0) = e2J̃0(e4J̃0 − 4)1/2/(e4J̃0 − 2). (A6.44)

In order to apply the Lagrange inversion theorem, we have to make a distinction between
quenches above and below the critical coupling, since they have different equilibrium states.
Furthermore, for quenches below the critical coupling J̃q ≤ ln (2)/2, we will encounter a
particular “special” value J̃q = ln (2)/4 which needs to be handled separately.

Regime 1. J̃q < ln (2)/2 and J̃q 6= ln (2)/4

Upon determining the integral in Eq. (A6.34) for z̄ = 4, we obtain an analytic expression
which can be written in a similar form as Eq. (A6.35). In the one-phase domain the re-

134



Global Speed Limit for Finite-Time Dynamical Phase Transition 6

laxation rate is given by 1/τr(J̃q) ≡ 4w±BG(0, J̃q )̃f
′′
BG(0, J̃q) = cosh4 (J̃q)/(4 exp (−2J̃)− 2),

which is plotted in Fig. 6.2f (blue line, left side of the critical coupling). The auxiliary
function f(m̄, J̃q) in Eq. (A6.35) is now given by

f(m̄, J̃q) =
5∏
i=1

fi(m̄, J̃q), (A6.45)

which we have further divided into sub-auxiliary functions that read

f1(m̄, J̃q) = exp

(
α− sech (J̃q)

6
(1− 3 tanh (J̃q))(2 + e2J̃q)2

8m̄4(tanh (J̃q)− 3)3

)
,

f2(m̄, J̃q) = exp

(
e2J̃q(2− e2J̃q)(2α− + (13α− − 2)e2J̃q + (5α− + 1)e4J̃q + e6J̃q)

(1 + e2J̃q)3(2 + e2J̃q)2m̄2

)
,

f3(m̄, J̃q) = α+(m̄, J̃q)
ν1(J̃q),

f4(m̄, J̃q) = [4m̄2 − e4J̃q(e4J̃q − 4)(1− m̄2)]ν2(J̃q),

f5(m̄, J̃q) = [4m̄2 + e4J̃q((2− α+ + e2J̃q − e4J̃q)2 − m̄2(3− e4J̃q)2)]−ν2(J̃q)/2, (A6.46)

and α±(m̄, J̃q) is given by Eq. (A6.37). The exponents in the last three equations read by

ν1(J̃q) ≡ [sech (J̃q)
4
(3xq − 1) + sech (J̃q)

2
(19xq − 11) + 44xq − 20](xq − 3)−3,

ν2(J̃q) ≡ 32e2J̃q(2 + e2J̃q)−3(e4J̃q − 2)−1, (A6.47)

with xq ≡ tanh (J̃q). Note that ν2 →∞ for J̃q → ln (2)/4. This coupling value is a particular
point where the integral Eq. (A6.34) drastically simplifies as we will see in the next section.
To check whether we can apply the Lagrange inversion theorem, we first need to determine
f(0, J̃q), which reads

f(0, J̃q) = 2ν1(J̃q)−ν2(J̃q)e2[ν1(J̃q)+ν2(J̃q)]J̃q−ν3(J̃q)| coth (J̃q)− 3|ν2(J̃q), (A6.48)

where we have defined the auxiliary function

ν3(J̃q) = (9e8J̃q − 2e6J̃q − 51e4J̃q + 32e2J̃q + 12)/4(e4J̃q + 3e2J̃q + 2)2. (A6.49)
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For J̃q < ln (2)/2 and J̃q 6= ln (2)/4 we have coth (J̃q)− 3 6= 0 and |ν1,2,3(J̃q)| <∞. Hence,
in this regime f(0, J̃q) 6= 0, and therefore we can use the Lagrange inversion theorem as in
the previous section. Plugging f(m̄, J̃q) given by Eq. (A6.45) into Eq. (A6.42), and using
Eq. (A6.44) to express m̄0 in terms of J̃0, we obtain the power series solution given by
Eq. (6.7). For completeness, we list the first three non-zero coefficients

α1(J̃0, J̃q) = m̄0f(0, J̃q)/f(m̄0, J̃q),

α3(J̃0, J̃q) = α3
1(J̃0, J̃q)e

−4J̃q(4− e2J̃q)(1− e2J̃q)2/(4(2− e2J̃q)), (A6.50)

α5(J̃0, J̃q) = α5
1(J̃0, J̃q)

111 cosh (J̃q)−87 cosh (3J̃q)−313 sinh (J̃q)+113 sinh (3J̃q)

8e4J̃q(coth (J̃q)− 3)2
sinh (J̃q).

Note that only terms of m̄2 and m̄4 enter in f(m̄, J̃q) given by Eq. (A6.45). Therefore,
f(m̄, J̃q) = f(−m̄, J̃q), which implies that α2k = 0, ∀k ∈ N. Furthermore, we also have
α1(J̃0, 0) = 1 and αk(J̃0, 0) = 0, ∀k ∈ {2, 3, ...}, as in the previous section. The first two
coefficients α1,3 are displayed in the inset of Fig. 6.2d.

Regime 2. J̃q = ln (2)/4

For J̃q = ln (2)/4 the outcome of the integral in Eq. (A6.35) simplifies drastically, and the
resulting expression for the auxiliary function f(m̄, ln (2)/4) reads

f(m̄, ln (2)/4)= exp

(
c1+c2m̄

2−(c1+(c1/4+c2)m̄2−
√

2c3m̄
4)[1−m̄2/2]

1
2

m̄4

)
(2+[4−2m̄2]

1
2 )c4 ,

(A6.51)
with the numerical coefficients given by

c1 = 560
√

2− 792, c2 = 1092− 772
√

2, c3 = 8(7− 5
√

2), c4 = 329− 232
√

2. (A6.52)

This function f(m̄, ln (2)/4) attains the following value at m̄ = 0

f(0, ln (2)/4) = 4c4 exp

(
3c1

32
+
c2

4
+
√

2c3

)
. (A6.53)

Hence, f(0, ln (2)/4) 6= 0, and therefore we can use the Lagrange inversion theorem. Insert-
ing Eq. (A6.51) into Eq. (A6.42), we obtain an expression for the coefficients. The result
for the first three non-zero coefficients reads

α1(J̃0, ln (2)/4) = m̄0f(0, ln (2)/4)/f(m̄0, ln (2)/4),
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α3(J̃0, ln (2)/4) = α3
1(J̃0, ln (2)/4)(c1 + 2c2 − 8(2

√
2c3 + c4))/43,

α5(J̃0, ln (2)/4) = α5
1(J̃0, ln (2)/4)A(c1, c2, c3, c4)/213, (A6.54)

with

A(c1,c2,c3,c4) = 5c2
1+20c2

2+4c1(9+5c2−40
√

2c3−20c4)

+ 32c2(2−10
√

2c3−5c4)+64(40c2
3+c4(5c4−3)+4

√
2c3(5c4−1)). (A6.55)

Also here we find that only terms of m̄2 and m̄4 enter in Eq. (A6.51), which implies that
α2k = 0, ∀k ∈ N. Notably, the coefficients in Eq. (A6.50) approach Eq. (A6.54) in the
neighborhood of J̃q = ln (2)/4.

Regime 3. J̃q > ln (2)/2

Finally, we focus on a quench in the two-phase domain with J̃q > ln (2)/2. For-
mally, the integral given by Eq. (A6.34) does not change w.r.t. the analysis for
J̃q < ln (2)/2. However, there is a difference in applying the Lagrange inversion the-
orem, since the steady-state magnetization m̄∞(J̃q) = ±e2J̃q(e4J̃q − 4)1/2/(e4J̃q−2)

maintains a non-zero value for J̃q > ln (2)/2. The relaxation rate now reads
1/τr(J̃q) = 4w±BG(m̄∞, J̃q )̃f

′′
BG(m̄∞, J̃q)=(e4J̃q − 2)(e2J̃q − 2)(e2J̃q + 2)3/(e4J̃q + 1)4 (see

blue line in Fig. 6.2f, right side of the critical coupling). After some algebraic manipulation,
we obtain for Eq. (A6.34)

− τr(J̃q) ln

(
m̄− m̄∞
f(m̄, J̃q)

)
= t+ C, (A6.56)

where C = C(J̃0, J̃q) is the integration constant determined by the initial condition. The
function f(m̄, J̃q) reads

f(m̄, J̃q) = (e4J̃q − 2)−1
5∏
i=1

fi(m̄, J̃q), (A6.57)

which we have further divided into the following sub-auxiliary functions

f1(m̄, J̃q) = exp

(
2α−(m̄, J̃q)ν1(J̃q)(2− e2J̃q)e6J̃q

m̄4(1 + e2J̃q)4(e2J̃q + 2)

)
,

f2(m̄, J̃q) = exp

(
ν2(J̃q)[14+20e2J̃q+6e4J̃q−e−4J̃q(e2J̃q+1)(2+13e2J̃q+5e4J̃q)(α+−e2J̃q)]

32(1 + e2J̃q)4m̄2

)
,
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f3(m̄, J̃q) = [m̄2(e4J̃q−2)2(1−e4J̃q)+4e4J̃q(1−α++e2J̃q)−e8J̃q(3−2α++2e2J̃q)+e12J̃q ]
1
2 ,

f4(m̄, J̃q) = |m̄(e4J̃q − 2) + e2J̃q(e4J̃q − 4)1/2|−1,

f5(m̄, J̃q) = m̄ν1(J̃q),

f6(m̄, J̃q) = α+(m̄, J̃q)
−ν3(J̃q). (A6.58)

The function α±(m̄, J̃q) is given by Eq. (A6.37), and furthermore we have introduced

ν1(J̃q) ≡ e−2J̃q(e2J̃q + 2)3(e4J̃q − 2)/32,

ν2(J̃q) ≡ e4J̃q(8− 6e4J̃q + e8J̃q),

ν3(J̃q) ≡ eJ̃q(e4J̃q−2) sech (J̃q)(28+8e−4J̃q+36e−2J̃q−5e2J̃q−3e4J̃q−6 tanh (J̃q))/64.

In order to apply the Lagrange inversion theorem, we need to evaluate f(m̄, J̃q) at the steady
state m̄∞, which yields

f(m̄∞, J̃q) = (m̄∞)ν1(J̃q)(1 + e2J̃q + 2(e4J̃q −2)−1)−ν3(J̃q)e2J̃q−ν4(J̃q)(e4J̃q −2)−1/2, (A6.59)

where we have defined the auxiliary function

ν4(J̃q) = e3J̃q [13+8 cosh (2J̃q)][cosh (J̃q)−3 sinh (J̃q)][cosh (J̃q)− sinh (J̃q)(6− tanh (J̃q))]
2.

For J̃q > ln (2)/2 we find that f(m̄∞, J̃q) 6= 0, and therefore we can apply the Lagrange
inversion theorem. Upon inverting Eq. (A6.56), the final result reads

m̄(t, m̄0, J̃q) = m̄∞ +
∞∑
k=1

(m̄0 − m̄∞)k

f(m̄0, J̃q)kk!

[
dk−1f(m̄, J̃q)

k

dwk−1

]
m̄=m̄∞

e−kt/τr(J̃q)

= m̄∞ +

∞∑
k=1

αk(J̃0, J̃q)e
−kt/τr(J̃q). (A6.60)

For completeness, we list the first three non-zero coefficients

α1(J̃0, J̃q) = (m̄0 − m̄∞)f(m̄∞, J̃q)/f(m̄0, J̃q),

α2(J̃0, J̃q) = α2
1e−6J̃q(e4J̃q − 2)2(4e3J̃q sinh (J̃q)− 1)/(e4J̃q − 4)1/2, (A6.61)

α3(J̃0, J̃q) = α3
1e−6J̃q(e4J̃q−2)3 52−10e−6J̃q−24e−4J̃q+25e−2J̃q−35e2J̃q−18e4J̃q+11e6J̃q

2(e4J̃q−4)
,
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where for convenience we have suppressed the arguments of α1(J̃0, J̃q) in the last two
equations. The inset of Fig. 6.2e displays the first two coefficients α1,2. This concludes our
derivation for the relaxation dynamics of the rate function minima.

A6.16 Relative entropy

Here we derive the coefficients γk for the power series expansion of the relative entropy per
spin, given by Eq. (6.9). The relative entropy is evaluated with the saddle point approxi-
mation in the thermodynamic limit, which results in

Dt= lim
N→∞

∫ 1

−1
e−NV (m,J̃q ,t)[Veq(m, J̃q)−V (m, J̃q, t)]dm'Veq(m̄, J̃q)=

∞∑
k=2

γk(J̃0, J̃q)e
−kt/τr .

(A6.62)
To arrive at the second equality we have applied the saddle point approximation around
the minimum m̄ = m̄(t, J̃0, J̃q) of the rate function V (m, J̃q, t) at time t. Note that
V (m̄, J̃q, t) = 0, and therefore only the equilibrium potential Veq(m̄, J̃q) remains after the
saddle point approximation. For the final equality we carried out a Taylor expansion around
the steady state m̄∞, and used the power series expansion of m̄(t, J̃0, J̃q), which is analyzed
in Sec. A6.15. The first three non-zero coefficients in Eq. (A6.62) are given by

γ2(J̃0, J̃q) = α2
1V
′′

eq(m̄∞, J̃q)/2,

γ3(J̃0, J̃q) = α1α2V
′′

eq(m̄∞, J̃q) + α3
1V
′′′

eq (m̄∞, J̃q)/6,

γ4(J̃0, J̃q) = (α2
2/2 + α1α3)V ′′eq(m̄∞, J̃q) + α2

1α2V
′′′

eq (m̄∞, J̃q)/2 + α4
1V
′′′′

eq (m̄∞, J̃q)/24,

where the coefficients αi = αi(J̃0, J̃q) are given by Eqs. (A6.50) and (A6.61) for quenches
in the one- and two-phase domain, respectively. For quenches in the one-phase domain we
have γ3(J̃0, J̃q) = 0 since m̄∞ = 0 and α2 = V ′′′eq (0, J̃q) = 0. The inset of Fig. 6.3a displays
the first two non-zero coefficients for quenches in the one- and two-phase domain.

A6.17 Staggered magnetization

Let us define the staggered magnetization m̂ ∈ [−1, 1] in the Ising model as

m̂ ≡ N−1
N∑
i=1

(−σi)i. (A6.63)
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Figure A6.6: Parity symmetry for the staggered magnetization and the MF dynamical
phase diagram. In all panels we consider a lattice with z̄ = 4. (a)-(b) Critical time (a) and
relaxation time (b) as a function of J̃q. The dashed lines correspond to the staggered mag-
netization dynamics, for which a parity symmetry applies w.r.t. the temperature/coupling
J̃ → −J̃ (see Eq. (A6.64)). (c) Dynamical phase diagram for the MF critical time tMF

c

and relaxation τMF
r time. The red area is forbidden since J̃0 > J̃q. Inside the blue area,

the relaxation time is larger than the critical time. The dark blue phase boundary where
tMF
c = τMF

r is given by Eq. (A6.67). The MF critical coupling reads J̃MF
crit ≡ 1/z̄. Fig. 6.3b

shows the BG dynamical phase diagram.

For perfectly anti-ferromagnetic order we have m̂ = ±1, and for anti-ferromagnetic disor-
der m̂ = 0. Based on the works in [409,419,420] we know that the BG free energy density
f̃BG(m, J̃) obeys the following parity symmetry w.r.t. the staggered magnetization

f̃BG(m, J̃) = f̃BG(m̂,−J̃). (A6.64)

Therefore, our results for the critical time, relaxation time, and dynamical phase dia-
gram also apply for dynamics of staggered magnetization upon inverting the tempera-
ture/coupling J̃ → −J̃ . In Fig. A6.6a-b we depict the critical time t̂c (a) and relaxation
time τ̂r (b) for the dynamics of the staggered magnetization with the blue dashed lines.

A6.18 MF dynamical phase diagram

Fig. A6.6c depicts the MF dynamical phase diagram. To obtain the blue shaded area where
τMF
r > tMF

c , we first compute the MF critical time. Inserting the MF transition rates and
free energy density into Eq. (6.4), we obtain the MF critical time

tMF
c (J̃0, J̃q) =

1

4(1− z̄Jq)
ln

(
z̄J̃q − z̄J̃0

1− z̄J̃0

)
, (A6.65)

which is also reported in [52, 54, 55] for z̄ = 1. The MF relaxation time is given by
τMF
r (J̃q) ≡ 1/4w±MF(m̄, J̃q )̃f

′′
MF(m̄, J̃q), where m̄ = arg minm f̃MF(m, J̃q) is given by the

transcendental equation
m̄ = tanh (z̄J̃qm̄). (A6.66)
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Equating tMF
c and τMF

r , we obtain the dark blue boundary line

z̄J̃†0 =
z̄J̃q exp

(
2(1+m̄)(z̄J̃q−1)

1−(1−m̄2)z̄J̃q
e−z̄m̄J̃q

)
− 1

exp
(

2(1+m̄)(z̄J̃q−1)

1−(1−m̄2)z̄J̃q
e−z̄m̄J̃q

)
− 1

. (A6.67)

For J̃0 > J̃†0 (blue region) the MF relaxation time is larger than the critical time, i.e.
τMF
r > tMF

c . For 1/z̄ < J̃0 < J̃†0 (white region) the MF critical time is larger than the
relaxation time.
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Chapter 7

Conclusion and Outlook
The characteristic of scientific progress is our knowing that we did not know.

Gaston Bachelard

7.1 Summary and conclusion

The nearest-neighbor Ising model is one of the most thoroughly studied and applied models
in the field of statistical physics (see also Chapter 1). Despite its simplistic formulation of
an interacting many-body system, exact analytical results for dimensions greater or equal
to two are difficult (and maybe impossible [421]) to obtain, and therefore many questions
remain unanswered. Trying to answer these questions is not only relevant in the context of
the Ising model, but also gives fundamental insight into the properties of any interacting
many-body system with sufficiently short-range interactions 1. It is therefore, that the Ising
model has a profound history, and remains hitherto an active research topic.

In this thesis we have studied the equilibrium and kinetic properties of the nearest-neighbor
Ising model within the so-called BG approximation, which takes into account pair corre-
lations that arise due to local interactions between nearest-neighbor spins. With the BG
approximation one can obtain analytical results for the fixed-magnetization partition func-
tion, free energy density, and LEQ transition rates, which are exact on the Bethe lattice
(see Figs. 2.1 and 6.1a for examples). Furthermore, the BG approximation provides a
more accurate description of the nearest-neighbor Ising model than the well-known MF
approximation, which neglects correlations and only takes into account average spin val-
ues. Below we provide a brief overview of the main results and conclusions obtained per
chapter, and place them into context w.r.t. other related works on the Ising model.

1A relevant example is virus spreading through close-contact transmission [109–111].
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In Chapter 2 we introduced the BG approximation for a uniform nearest-neighbor Ising
model, and subsequently derived the fixed-magnetization partition function Eq. (2.13),
free energy landscape in Eq. (2.14), and phase diagram shown in Fig. 2.3 for the fraction of
down spins ϕ. Here "uniform"means that we neglected spatial fluctuations in ϕ. For strong
coupling we found that the BG approximation is considerably more accurate than the MF
approximation w.r.t. exact results for finite system sizes (see Fig. 2.7). Analytical results for
the BG free energy density are similarly derived in the original works by Bethe [12] and
Guggenheim [13], or can be found in modern textbooks [133].

In Chapter 3 we applied the BG approximation to a non-uniform nearest-neighbor Ising
model, allowing for spatial fluctuations of the fraction of down spins, i.e. ϕ = ϕ(x, y).
By carrying out a spin block limit (see Fig. 3.1), we derived a Cahn-Hilliard field the-
ory given by Eq. (3.45), with a concentration-dependent gradient energy coefficient in
Eq. (3.33). Subsequently, we analyzed the one-dimensional equilibrium concentration pro-
file, and found for strong coupling a widening of the interface (see Fig. 3.2), which is not
present in the MF profile (see Fig. 3.3b). Finally, we benchmarked the BG and MF partition
functions against exact results for finite systems, and found (similar to Fig. 2.7) that the
BG approximation is considerably more accurate (see Fig. 3.4). To the best of our knowl-
edge we are the first to derive a two-dimensional Cahn-Hilliard field theory within the BG
approximation. Kikuchi derived similar results for a one-dimensional concentration pro-
file [140], but erroneously refuted the interface widening as incorrect since "These effects
are contrary to physical intuition..." (p. 148 in [140]). Presumably, this is due to a lack of
physical understanding behind the developed theory. Here, we closed this gap in Chapter 4.

In Chapter 4 we sought for a physical explanation behind the interface widening of the
BG one-dimensional concentration profile observed in Chapter 3. Based on a detailed com-
parison with MC simulations (see Fig. 4.2), and exact results in the strong coupling limit
(see Fig. 4.3), we found that interface widening is the result of an entropy-driven interface
delocalization transition. The delocalization transition gives rise to translational invari-
ance of the instantaneous interface position for sufficiently strong coupling, which arises
due to decreased amplitude of capillary wave fluctuations. The MF approximation does
not account for the delocalization transition, and therefore does not show interface widen-
ing. Finally, in Secs. 4.6 and 4.7 we analyzed how the delocalization transition affects
spinodal decomposition and nucleation, where we found similar non-monotonic behavior
w.r.t. the coupling strength (see Fig.4.3f and 4.4). Our results directly refute the conclu-
sion by Kikuchi in [140], and give a firm physical basis for interface widening in the BG
approximation. Hence, our analysis revealed how a Cahn-Hilliard field theory with pair
correlations includes the effect of capillary waves.
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In Chapter 5 we used the Ising model to construct a mesoscopic model for nearest-neighbor
interacting diffusing adhesion bonds in the presence of an external force. The analogy be-
tween cell adhesion and the Ising model is based on the works of Refs. [58, 59], where it
was shown that membrane fluctuations induce an effective interaction between neighbour-
ing adhesion bonds (see Figs. 1.1b and 5.2). After we analyzed the equilibrium properties
in the absence and presence of an external pushing and pulling force (see Sec. 5.3), we an-
alyzed the kinetics of cluster formation and dissolution. By employing the highly-accurate
LEQ approximation (see Fig. 5.7), we obtained analytical expression for theMFPT to cluster
dissolution and formation in the thermodynamic limit (see Eq. (5.20)). Here we discovered,
for the first time, the existence of a dynamical critical coupling, where the MFPT attains a
global minimum and undergoes a first-order discontinuity (see Fig. 5.8). From a biological
perspective the dynamical critical coupling reflects an optimal bending rigidity of the cell
membrane where cluster dissolution and formation are the fastest, and most sensitive to
external fluctuations (see Fig. 5.11). Finally, in Sec. 5.5 we hypothesized on the biological
implications of the statical and dynamical critical coupling, and placed our results into con-
text with experimental results. Within the context of the Ising model the dynamical critical
coupling corresponds to a first-order discontinuity in the mean magnetization reversal time
(see Sec. 5.6).

In Chapter 6 we focused on continuous-time relaxation dynamics of the magnetization
probability density in the nearest-neighbor Ising model on the Bethe lattice. Inspired by
recent works [52–55], which observed a finite-time dynamical phase transition in the re-
laxation of the Curie-Weiss MF model, we analyzed relaxation dynamics within the BG
approximation. Our analysis revealed, for the first time, the existence of the finite-time
dynamical phase transition for the nearest-neighbor Ising model on the Bethe lattice (see
Figs. (6.1)c and 6.2a). Furthermore, within the BG approximation we proved the existence
of a speed limit for the (i) critical time at which the dynamical phase transition appears
(see Eqs. (6.6) and Fig. 6.2c, blue line), and (ii) relaxation time for the average magneti-
zation (see Sec. (6.6) and Fig. 6.2f, blue line). Both speed limits are not present in the MF
approximation (see Figs. (6.2)c and f, red line), and are therefore a direct result of pair
correlations. This is to be expected, as the speed limit is a result of local spin configurations
that impose kinetic constraints.

7.2 Discussion

Based on the various outcomes, it is clear that pair-correlations have non-trivial effects on
the equilibrium and kinetic properties of the nearest-neighbor Isingmodel. Thework shown
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in this thesis only scratched the surface, and we expect many more surprising outcomes to
follow based on the BG approximation.

The applicability of any derived result is limited by the underlying model assumptions, and
this is certainly also the case for the BG approximation. Based on Kikuchi’s CVA, introduced
in Sec. 1.1.7, we know that the BG approximation is not the end of the line. Instead of
placing spin pairs onto a given lattice, one could also consider squares or triangles of spins
(see Sec. C in [37]). It is not clear how much of the results presented in this thesis can
be derived analytically with this procedure, but it is certainly an interesting direction to
consider.

Another interesting direction for future studies are irreversible kinetic Ising models with
broken DB. Breaking DB comes in many flavours, including asymmetric interaction
strengths [422, 423], dynamic constraints [424, 425], competing dynamics at two tem-
peratures [426–429], or through an external energy source [430]. The list of examples
presented here is limited, but should give the reader an impression of recent works. Here it
would be interesting to consider the non-equilibrium extension of the LEQ approximation,
which maps the full dynamics onto a birth-death process. In combination with the BG ap-
proximation, this allows us to construct a non-equilibrium free energy density, which one
can further analyze in the context of non-equilibrium phase separation [431,432].

Despite the detailed analysis, various verification techniques, and comparisons with exact
results, our physical understanding of the presented outcomes is far from complete. In the
end of Chapters 4-6 we have provided a brief discussion on our derived results. Here we
extend the discussion, and provide per chapter a list of unanswered questions

• Chapter 3:

1. Can we apply the same spin block procedure, in combination with the LEQ ap-
proximation, to obtain a Cahn-Hilliard free energy functional for an irreversible
Ising model?

• Chapter 4:

1. We know that the MF approximation does not account for capillary wave fluc-
tuations (see [189, 200]). This would imply that the instantaneous interface
remains perfectly stiff, and therefore has translational invariance. Yet, the MF
concentration profile is not flat for any coupling value above the critical cou-
pling (see Fig. 4.3f, red line). Is there another mechanism that maintains the
MF interface steepness at a nonzero value?
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2. How can we derive a Cahn-Hilliard free energy functional where we fix the
instantaneous interface position? Here, we would expect that the interface
broadening disappears.

• Chapter 5:
1. What is the exact value of the dynamical critical coupling for the two-

dimensional Ising model, where the MFPT for magnetization-reversal attains
a minimum? And what is the corresponding speed limit? Which physical prin-
ciples determine the speed limit?

2. Does the dynamical critical coupling survive when we consider non-equilibrium
kinetics with broken DB?

3. We assumed that the coupling strength J̃ and intrinsic binding-affinity µ̃ are
constant for each adhesion bond. In a real cellular environment this will not
be the case, as external factors can locally stiffen/soften the membrane, or
pull on the adhesion bonds. What happens when we consider a local coupling
strength J̃ij (i.e. a spin-glass) and/or binding-affinity µ̃i? Can we construct an
approximation scheme which incorporates this?

• Chapter 6:
1. What physical mechanism determines the lower bound of the critical time? We

know it arises from local kinetic constraints due to the antiferromagnetic order.
But can we quantify this?

2. Why does the cusp location undergoes a symmetry breaking transition for
coupling values above the symmetry-breaking coupling J̃0 > J̃SB

0,BG(J̃q) (see
Fig. A6.4)?

The list of questions presented above should give the reader some idea about the many
questions that remain unanswered. Hopefully in the future we can provide an answer to
some, but preferably all, of these questions.

7.3 Concluding perspective
Finally, let me conclude with a personal reflection on the last 4 years. When I started my
PhD, I had a rather naive idea about what it means to understand something. At first, I
thought that correct mathematically derived results stand on their own, and are therefore
worth publishing. By now, I have realized that this is clearly not the case. Although physical

147



7 Conclusion and Outlook

intuition does not always (at first) go hand in hand with mathematically or experimentally
derived results, one should always strive for a complete physical understanding behind the
observed outcomes2.

When it comes to scientific thinking, my supervisor has taught me to "let go of the equality
sign", and think in terms of inequalities and counterexamples. Although I am still (and will
always be) in a learning process, I noticed that this way of thinking is highly effective, as
inequalities are typically much easier to find (but are very informative), and counterexam-
ples immediately imply when a statement is incorrect. Furthermore, asking questions and
having discussions provide an iterative procedure that naturally leads to deeper insight.
Also here I definitely gained more experience, but clearly my ways of thinking are far from
being perfect.

When it comes to subject specific knowledge I have learned a great deal about the Ising
model, analytical techniques (e.g. the LEQ approximation), computer languages (e.g. Math-
ematica and Python), and computer simulations. Especially the former two brought me a
lot of joy, and I am looking forward to learn more about the secrets of the simplistic, yet
complex, Ising model.

2Unless the research is done in the field of pure mathematics.
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