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Coarse graining empirical densities and currents in continuous-space steady states
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We present the conceptual and technical background required to describe and understand the correlations
and fluctuations of the empirical density and current of steady-state diffusion processes on all time scales—
observables central to statistical mechanics and thermodynamics on the level of individual trajectories. We focus
on the important and nontrivial effect of a spatial coarse graining. Making use of a generalized time-reversal
symmetry we provide deeper insight about the physical meaning of fluctuations of the coarse-grained empirical
density and current, and explain why a systematic variation of the coarse-graining scale offers an efficient method
to infer bounds on a system’s dissipation. Moreover, we discuss emerging symmetries in the statistics of the
empirical density and current, and the statistics in the central-limit regime. More broadly our work promotes
the application of stochastic calculus as a powerful direct alternative to Feynman-Kac theory and path-integral

methods.
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I. INTRODUCTION

A nonvanishing probability current [1-17] and entropy
production [18-27] are the hallmarks of nonequilibrium,
manifested as transients during relaxation [25-31] or in
nonequilibrium, current-carrying steady states [4-6,32-34].
Genuinely irreversible, detailed balance-violating dynamics
emerge in the presence of nonconservative forces (e.g., shear
or rotational flow) [35-38] or active driving in living mat-
ter fueled by ATP hydrolysis [16,39-46]. Such systems are
typically small and “soft” and thus subject to large thermal
fluctuations. Single-molecule [45—-49] and particle-tracking
[50] experiments probe dynamical processes on the level
of individual, stochastic trajectories. These are typically an-
alyzed within the framework of “time-average statistical
mechanics” [5,50-56], i.e., by averaging along individual fi-
nite realizations yielding random quantities with nontrivial
statistics.

Ergodic steady states are characterized by the (invariant)
steady-state density ps(x) and a steady-state probability cur-
rent j(x) in systems with a broken detailed balance. One
can equivalently infer ps(x) and js(x) from an ensemble of
statistically independent trajectories of an ergodic process, or
from an individual but very long (i.e., ergodically long [57])
trajectory. To infer py(x) and js(x) from individual sample
paths one uses estimators that are called the empirical density
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and empirical current, respectively, defined as
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where U;’(z) is a “window function” around a point x with a
characteristic scale & [58] and o dx, denotes the Stratonovich
integral, which both will be specified more precisely below.
Notably, the Stratonovich integration odx, in Eq. (1) is the
correct way to make sense of the expression “x;dt”, which
is ill defined since, for any 7 with probability one, |X,| = 0o
for overdamped Langevin dynamics [59]. Because (X;)o<r<:
is random, p¥ (t) and JY (¢) are fluctuating quantities. Notably,
the empirical density and current are typically defined with a
§ function, i.e., with U,f‘”o(z) =48(x —z) [4,7,60-67]. For a
variety of reasons detailed below and in the companion Letter
[58] we here define U,f with a finite length scale 7 > 0, such
that E(t) measures the time spent in the region U} around
x and JU(r) the displacements in the region U/ around x.
Such a definition is in line with that of generalized currents
in stochastic thermodynamics [5,52-54] except that we here
consider vector-valued currents. Important recent results on
such generalized currents (however, without the notion of
coarse graining) may be found in Refs. [15,55,56,68,69].

The fluctuations of E(I) and ﬁ(t) may be interpreted as
variances of fluctuating histograms. Namely, after “binning”
into (hyper)volumes around points x (or in our language the
coarse graining around X), often carried out on a grid, each
individual trajectory yields a random histogram of occupation
fractions or displacements. That is, the height of bins in the
histogram reflects the time spent or displacement in said bin
accumulated over all visits of the trajectory until time ¢ for
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FIG. 1. (a) Two trajectories (gray) with length # = 5 in harmoni-
cally confined rotational flow [Eq. (2)] with Q = 5. The steady-state
density and current are depicted by the color gradient and yellow
arrows, respectively. (b) Height of bins depicts the time-averaged
x component of the current with Gaussian coarse-graining window
[Eq. (3)] with & = 0.3 evaluated for several points on the red line in
(a) for the two trajectories in (a). This corresponds to time averaging
all local displacements (weighted by U!") within a single trajectory.
(c) As in (b) but for the continuum of points on the red line in (a).
This can be considered as the x component of the current smoothened
over a scale A. (d) Mean value (A); and standard deviation /var(A)
of A= Jf’],y)x obtained from our result [Eq. (52)]. This represents
the statistics of many histograms as in (b). (e) As in (d) but for
continuous y as in (c). (f) Overlaying (d) and (e) shows that the his-
togram picture is fully contained in the continuous coarse-graining
procedure.

pY () and JY(¢), respectively, and is a fluctuating quantity
due to the stochasticity of trajectories. The variance of these
fluctuations quantifies the inference uncertainty. In Fig. 1 we
show such histograms inferred from individual trajectories of
a two-dimensional harmonically confined overdamped diffu-
sion in a rotational flow,

dx, = _[slz _1Qi|xdt + V2dW,, 2)

with Gaussian window
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o2
exp [—%} 3

27 h?

(b)

!
l__'_l

FIG. 2. (a) Coarse-graining windows (colors) in the form of an
indicator function of a rectangle centered at different points x with
coarse-graining scale h. For each x and h, each trajectory (gray
lines) gives rise to one value for the (coarse-grained) time-averaged
density and current. Note that the choice of x and 4 is flexible such
that the windows may overlap. (b) Same as (a) but with Gaussian
coarse-graining windows. (c, d) Coarse-graining windows in the case
of trajectory data with a finite experimental resolution (grid, gray
trajectories). The coarse-graining scale & should be chosen large
compared to the resolution to obtain reliable approximations of the
(coarse-grained) densities and currents.

For this process and window function we analytically solved
all spatial integrals [58] entering the results derived below, and
numerically evaluated one remaining time integral.

The interpretation of the coarse graining captured in
or induced by U/ in Eq. (1) is flexible; it can represent a
projection or a “generalized current” [5,15,52-56,68,69] or
may be thought of as a spatial smoothing of the empirical
current and density as shown in Figs. 1(c), 1(e), and 2,
also for the case of a finite experimental resolution. Our
main focus here is the smoothing aspect in the context of
uncertainty of py(x), js(x) and steady-state dissipation from
individual trajectories. Note that some form of coarse graining
or smoothing is in fact required in order for the quantities
in Eq. (1) to be well defined [58]. A suitable smoothing
decreases the uncertainty of the estimate and, if varied over
sufficiently many /4 and x [see also Figs. 1(c) and 1(e)] instead
of simply “binning,” one does not necessarily lose information
(as compared to input data). Moreover, a systematic
variation of the scale & may reveal more information
about pV(¢) and JY(r). The same reasoning is found to
apply to generalized thermodynamic currents and allows
for an improved inference of dissipation (see Ref. [58] and
below).

The present work is an extended exposé of the conceptual
and technical background that is required to understand and
materialize the above observations. It accompanies the Letter
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[58]. Several additional explanations, illustrations, and appli-
cations are given here.

The article is structured as follows. In Sec. II we lay out
the theoretical background on stochastic differential equa-
tions in the Itd, Stratonovich, and anti-It0 interpretations
and the corresponding equations for the probability densities.
We furthermore decompose the drift and steady-state cur-
rent into conservative and nonconservative (i.e., irreversible)
contributions and introduce dissipation. In Sec. III we prove
a generalize time-reversal symmetry called “dual-reversal
symmetry.” In Sec. IV we derive our main results for the
steady-state (co)variances of pY(z) and JY () and interpret
them in terms of initial- and end-point currents and incre-
ments. We then use these results to explicitly evaluate the limit
h — 0 of no coarse graining in Sec. V, where we find that
fluctuations diverge in (d > 2)-dimensional space. In Sec. VI
we use current fluctuations to infer steady-state dissipation
via the thermodynamic uncertainty relation (TUR) [15,34]
with an emphasis on the importance of the coarse-graining
scale h. In particular we demonstrate and explain the ex-
istence of a thermodynamically optimal coarse graining. In
Sec. VII we discuss symmetries obeyed by the (co)variances
and explain how the results simplify in thermodynamic equi-
librium, and in Sec. VIII we present a continuity equation for
coarse-grained empirical densities and currents. In Sec. IX
we present asymptotic results for short and long trajectories
and give results for the central-limit regime. We conclude
with an outlook beyond overdamped dynamics in Sec. X by
considering underdamped systems as well as experimental
data derived from particle-tracking experiments in biolog-
ical cells, and with a summary and perspectives for the
future.

II. THEORY

Setup: Overdamped Langevin dynamics

In this section we provide background on the equations of
motion for the coordinate x,, highlighting the differences be-
tween the Itd, Stratonovich, and anti-Itd interpretations, and
for their corresponding conditional probability density func-
tions of a transition Xy — X.

We consider time-homogeneous (i.e., coefficients do not
explicitly depend on time) overdamped Langevin dynam-
ics in d-dimensional space with (possibly) multiplicative
noise [70,71] described by the thermodynamically consistent
[20,72] anti-It6 (or Hianggi-Klimontovich [73,74]) stochastic
differential equation

dx, = F(x;)dt + o(x;) ® dW-, (€]

where dW, is the increment of a d-dimensional Wiener
processes (i.e., white noise) with zero mean and covariance
(AW, i dWy ;) = 8(t — v')8;;dt. The noise amplitude is re-
lated to the diffusion coefficient via D(x) = o(x)o(x)7 /2. We
assume the drift field F(x) to be smooth and sufficiently con-
fining, such that the anti-Itd (end-point) convention ®dW, =
W. — W,._,, guarantees the existence of a steady-state prob-
ability density ps(x) = e~?™ and steady-state current jq(x),
and yields the thermodynamically consistent Boltzmann-

Gibbs (equilibrium) statistics when D(x) ' F(x) =
a potential force.

The anti-It6 equation (4) can equivalently be rewritten as
an Itd equation with an adapted drift as

dx, = F(x,)dt + o(x;,) ® dW,
= F(x,)dt + [{VI/2D(x,)}dx,] - dW; + /2D(x,)dW,
= [F(x,) + {V' D}(x)ldt + /2D(x,)dW,, (5)

where the brackets {-} throughout denote that the differential
operator only acts within the bracket and /2D(x;) represents
the matrix o(x,). At this point several remarks are in order.
First, the anti-Itd interpretation of the stochastic differential
equation (4) as well as the Stratonovich integral in Eq. (1)
are both required for thermodynamic consistency. Second,
there is no difference between the interpretations of Eq. (4)
if D(x) =D is a constant matrix; i.e., the convention only
matters for multiplicative noise. However, even in this case
the Stratonovich integral in Eq. (1) is required for thermody-
namic consistency of the empirical current and to use it as an
estimator of js(X).

The Fokker-Planck equation for the conditional probability
density G(x, t]y) to be at a point X at time ¢ after starting at 'y
that corresponds to Egs. (4) and (5) reads

%G(x, t]y) = [~ Vx - F(x) + V{ DX)V5]G(x, ty)
= L(x)G(x, 1]y), (6)

—Vop(x)is

which satisfies a continuity equation (9, + Vx ~jX)G(x, tly) =
0, where

jx = F(x) — D(x)Vy. 7

Decomposing of the drift F(x) into reversible F*'(x) =
—D(x){V¢}(x) and irreversible Fi“e"(x) F(x) — F*(x)
parts translates to a decomposition of jy into a gradient
part j¢ and steady-state-current contributions, namely, j, =
F™v(x) 4+ F*'(x) — D(x)V,. This is rewritten using

B =F"x - DV
= Dx){Vlog(ps(x)} — D(X)V
=DX)p; ' (X){Vpi(x)} — D(x)V
= —Dx)[psx){Vp;' )} - V]
= —-Dx)p,(x)Vp; ' (x), ®)

where we have used that {Vp(x)~ }—_pq 2(X){qu}(x)
implies {(Vpsh(x) = —p2(x){Vp;}(x)). Therefore, we have
.]x  ps(x) = 0, such that the deﬁmtlon of the steady-state current
x) = prs(X) with .]x = Jx + Fme"(x) implies FlrrCV(X)
Py (x)js(x) and we obtain

b =3+ P 00500
= —p D) Vypy (%) + py 0fX). ()
Moreover, note that the steady-state two-point density
Py(x,t) = G(x, t]y)ps(y) also satisfies the same Fokker-
Planck equation as G(x, t]y).

Finally, if the process is irreversible, i.e., Firev(x) # 0,
the steady state is dissipative with an average total entropy
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production rate 3 given by [21,75]

= / dxF™ (x) - D™ (x)F"™ (x) ps(x)

T
- f ax® D1 (%), (%), (10)
Ds(X)

which can be obtained as the mean value of a sum over steady-

state expectations of the respective ith component of JY(@t)in
Eq. (1) with U; = (F™(x)" D! (x));.

Note that by adopting the It6 or Stratonovich conventions
instead of the anti-Itd convention in Eq. (4) one obtains
a different Fokker-Planck equation with a different
steady-state density. In particular, L' (x) = —V, - F(x) +
Z?,,‘:l 30;D;;(x) and  LS"(x) = L(x)/2 + L"(x)/2 =

—Vi - F(x) + 2?,1:1 9;y/D;;(x)d;,/D;;(x) and the respective
steady-state densities p'°(x) and pS"'°(x) depend explicitly
on D(x) and are therefore in general not thermodynamically
consistent since the steady state deviates from Gibbs-
Boltzmann statistics [e.g., in dimension one we have
pISm(x) I pgnti—ItO(x)/D(x) and pglram(x) x pgnti—ItO(x)/ /D(x),
respectively, where the deviation from p2°(x) cannot be
absorbed in the normalization if D(x) depends on x].

III. GENERALIZED TIME-REVERSAL SYMMETRY

It will later prove useful to take into account a form
of generalized time-reversal symmetry obeyed by Eq. (4)
called “continuous time reversal” or “dual-reversal symme-
try” [55,76]. Analogous generalized symmetries were also
found in deterministic systems (see, e.g., Ref. [77]). Gener-
alized time-reversal symmetry relates forward dynamics in
nonequilibrium steady states to time-reversed dynamics in an
ensemble with inverted irreversible steady-state current, i.e.,
in an ensemble with F'™ — —FI™ or equivalently j; —
—Js- The dual-reversal symmetry for the two-point probability
densities states that

G(x, ty)ps(y) = G:(y, t[x)ps(x), Y

or equivalently G7(x,1|y)ps(y) = G(y, t|x)ps(x) where
G (y, t|x) is the conditional probability density of the pro-
cess with drift F (x) = F**¥(x) — F™(x) instead of F(x) =
F'(x) + F™V(x). At equilibrium, i.e., js(x) = 0 (for all x),
this symmetry simplifies to the well-known time-reversal
symmetry called the “detailed balance” condition for two-
point densities. We here provide an original and intuitive proof
of Eq. (11) that proceeds entirely in continuous space and
time, based on the decomposition of currents in Eq. (9). The
Fokker-Planck operator L(x) = —Vy o using the decompo-
sition in Eq. (9) and multiplying by ps from the right-hand
side, reads

L(x)ps(x) = —Vy - js(X) + Vi px)DX)Vy.  (12)
Taking the adjoint gives (since D = D)
ps(L'(x) = [Lx)p(x)]
=js(X) - Vx + V] px)DX)V,.  (13)

Since for the steady-state density Lps = 0, js is divergence
free, {Vx-js(x)} =0, and we have Vj - js(x) = js(X) - Vx.

Thus we see the symmetry under inversion j; — —js,
PsOLT(x) = L7 (x)ps (%) (14)

Under detailed balance j, =0, i.e., L =L, and
ps(X)LT(x) = L(x)ps(x) which implies the time-reversal
symmetry  G(x,t|y)ps(y) = G(y, t|x)ps(x)  [59,71,78].
Equation (14) implies for all integers n > 1 that
ps(X)[LT(x)]" = [L(x)7]"(x)ps(x), and consequently for all
t > 0 that py(x) exp[Li ()] = exp[L ¥ (x)(1ps(x). Applying
this operator equation to the initial condition §(y — x) and
using ps(x)6(y — X) = ps(y)8(y — x) as well as that Lt propa-
gates the initial condition as G(y, t|x) = exp[L'(x)t]6(y — X)
while L7) propagates the final point in the ensemble
with j; inverted as G (x,t|y) = exp[L ¥ (x)t]8(y — x),
we obtain the dual-reversal symmetry in Eq. (11). This
generalized time-reversal symmetry relates the dynamics in
the time-reversed ensemble to the propagation in the ensemble
with reversed current or, equivalently, the forward dynamics
to the propagation with concurrent time and j; reversal.
While at equilibrium (i.e., under detailed balance, j; = 0) the
forward dynamics is indistinguishable from the time-reversed
dynamics, the statement in Eq. (11) (if generalized to all paths;
see, e.g., Ref. [55]) means that forward dynamics (with j) is
indistinguishable from backwards or time-reversed dynamics
with reversed j; — —js [i.e., js(X) > —js(x) at all x]. We
will later use this dual-reversal symmetry to understand the
fluctuations of observables that involve (time-integrated)
currents in nonequilibrium steady states.

IV. DERIVATION OF THE MAIN RESULTS, INITIAL- AND
FINAL-POINT CURRENTS, AND THEIR APPLICATION
TO DENSITY-CURRENT CORRELATIONS

A. Mean empirical density and current

Although the time-averaged density and current defined in
Eq. (1) are functionals with complicated statistics, their mean
values can be readily computed. Throughout the paper we will
assume steady-state initial conditions, i.e., initial conditions
drawn from p,(x’), denoted by (-)s. This renders mean values
time independent and we have (see also Ref. [6])

J— 1 [
), = [ arvioo),
1 [ 0
= / dr / dzUy (z)ps(z)
t Jo

- fdzU,f‘(z)ps(z), (15)

and by rewriting the Stratonovich integration odx, in
terms of Itd integration as Ul(x,)odx, = Ul(x;)dx, +
%de(xr)dxr, where dx,deT/Z =D(x;)dt and thus
AU} (X )dxX; /2 = D(x ){VU (X, )d T,

_ 1 rt
(Jg(t))s =7 /0 (Uf(xf) o er)S

1 =t 1 =t 1
= / (U (xr)dx.), + - / —(dU} (x0)dx),

=0 =0 2

1 [ 0
= ;/0 dtfdzps(z)[Ux (z)F(z)+
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+{V, D@)}U} ) + D@){V,U} (2)}]

1 [ ooV IDG W), (16)

=0

Note that the mean value involving dW, vanishes since
this It6-noise increment has zero mean and is uncorrelated
with functions of x;, i.e., (f(X;)dW.) = (f(x)){(dW,) = 0.
Integrating by parts and using that D(z) = D? (z) is symmetric
we get

(7)), = / dzp,@)[U} @F @) + VI D@V} )]
= /dzU;'(z)[F(z)—D(z)Vz]ps(Z)

= / dzU}(2)j,ps(z) = f dzU} (2)js(z).  (17)

Note that if we had defined Eq. (1) with an Itd integral instead
of the Stratonovich, we would miss the D(z)V, term and
would not get jz and thus js, not even for additive noise. The
Stratonovich integral is therefore required for consistency.

The interpretation of the steady-state mean values in
Egs. (15) and (17) is immediate—the mean time-averaged
density and current are (at least for positive normalized win-
dows) the steady-state density ps and current js averaged over
the coarse-graining window function U

B. (Co)variances of empirical density and current

Since fluctuations [5,15,34,50-55] (and correlations [56])
play a crucial role in time-average statistical mechanics
and stochastic thermodynamics, we discuss (co)variances of
coarse-grained time-averaged densities and currents (recall
the interpretation of the variance within the “fluctuating his-
togram” picture in Fig. 1).

To keep the notation tractable we introduce the integral
operator

U= tlzfo dt1[ dt2[dzuf(z)/dz/U;’(z')[.],
(18)

with the convention ft: dt,8(ty —t;) = 1/2. Note that other
conventions would only change the appearance of interme-
diate steps but not the final result. We define the two-point
steady-state covariance according to Ref. [58] as

Cip(t) = (Ax(1)By(1))s — (Ax(®)s(By(®))s, (19

where A and B are henceforth either pU or JU, respectively.
We refer to the case when A # B or X # y as (linear) “corre-
lations” and to the case A = B with x =y as “fluctuations”
whereby we adopt the convention varj(t) = C5i(¢). Note
that for simplicity and enhanced readability we only assume
coarse-graining windows U!* and Uyh where the shape is fixed
but the center points x, y may differ. All results equivalently
hold for window functions whose shape and & differ as well.
We now address correlations Cp), of the coarse-grained
time-averaged density at points x and y, which correspond to
the density variance when x =y. To do so, first consider the

(mixed) second moment

(p¥ ()Y (1)), = / dt / d7' (U (x)Uy () . (20)
0 0

The expectation value corresponds to an integration over
the two-point probability density to have x, =z and
X, =27  given by the two-point function P,(z',t' — 1) =
G ,1" —t|z)ps(z) for v’ > v and Py(z,t — 17') for v’ < 7.
We relabel the times 7,7’ as #; <, and use the integral
operator in Eq. (18) to obtain

(T 0PV @), = TV [P(Z .1y — 1) + Py(z. 1 — )], (21)

Since the argument only depends on time differences
t' = t, — t; > 0 the integral operator in Eq. (18) simplifies to

At,U'=l/‘t /(_ﬁ)/ h //h/.
Ixy[ ]_t Odt 1 ; dzU/(z) dzUy(z)[ ].

(22)

To obtain the correlation we subtract the mean values [see
Eq. (15)] which [noting that (1/t)f0t dr'(1 —1t'/t) = 1/2]
gives

C¥ (1) = TLU P2 1) + Py(a. 1) — 2ps@)ps(@)],  (23)

which has been derived before [51,79]. Equation (23)
simplifies further for x =y as well as under detailed balance
and is also symmetric under j, — —js, all of which will be
discussed in Sec. VII.

The interpretation of Eq. (23) (see also Ref. [51]) is that
all paths from z to z’ (i.e., from U,f’ to U;l), and vice versa
from z’ to z, in time t' = 1, — #; contribute according to their
correlation to C,}(¢). These contributions are integrated over
all possible time differences and pairs of points within U/ and
Uyh, respectively.

We now explore the important effect of coarse graining
over the windows U!" for the inference of py(x) from noisy
individual trajectories. If one wants to reliably infer the

(coarse-grained) steady-state density from p¥ (¢) the relative
error var,/(pY (t))*> should be small. We have shown that
lim,_,o var,/(pl (t))> = oo [58] and Fig. 3 (blue line)

demonstrates that var,, / (E(l))2 decreases with increasing h.
However, such a decrease does not guarantee an improved
inference. Namely, as & — oo the time spent in the region
around x tends to ¢ and U!* becomes constant on a large region
and hence E(t) — U,ﬁ'(x) which contains no information

about ps(x). Therefore, to reliably infer that p¥ significantly
deviates from U,f‘(x) we must also consider the relative error
of [E — Uf(x)] depicted in Fig. 3 (orange line). There
exists an “optimal coarse graining” where the uncertainty
of simultaneously inferring pU and pU — U/*(x) is minimal
(minimum of the solid lines in Fig. 3) which represents the
most reliable and informative estimate of p!. In Sec. VI
we will turn to an analogous “optimal coarse graining” with
respect to current variances and a system’s dissipation.
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FIG. 3. Relative error of H(t) (blue line) compared to the rel-
ative error of [@(z) — U;’(x)] (orange line) as a function of the
coarsening scale /1 for the rotational flow in Eq. (2) with Q =3
for time ¢ = 10 with a Gaussian window function Eq. (3) around
x = (1,0)7 with width h, i.e., U!(x) = (2rh*)~!. The intersection
point of blue and orange lines at 4 & 1.3 yields an “optimal coarse
graining” where the maximum of the two lines (solid line) is mini-
mal, whereas the maximum of the relative errors diverges as h — oo
since (A); — 0 and diverges logarithmically for 7 — 0 [as we will
see in Eq. (51)].

We now consider coarse-grained time-averaged currents.
To compute the correlation of the current at a point x and the
density at y we need to consider

=t

Pl @), = /0 dt f L (U (%)) (%) 0 dxXc) . (24)

S

Relabeling with #; < 1,, introducing the notation
(e sy =800, —2)8(x;, —2) ), (29)
and considering the Stratonovich increments

odXy = Xrydr/2 — Xe—dr/2s (26)

and subtracting the mean values (15) and (17), we can write
the correlation as

R e = A
CJP(Z):IX’y dr, + dn, —2js(z)ps(z) |-
27

Equation (27) is harder to compute and more difficult to
interpret as compared to Cp)(7) [see Eq. (23)]. The quanti-
ties involving Stratonovich increments characterize the mean
initial and final displacements of “pinned” paths of duration
t, — t; conditioned on the initial and final points z, z’ or 7/, z,
respectively. Note that z always denotes the point where the
increment occurs. Via the integral operator in Eq. (18) or
Eq. (22) the z variable is integrated over U/ (z); i.e., in C}i @)
the variable z corresponds to the window at x where the
(coarse-grained) current is evaluated. Therefore, correlations
between a current and a density depend on integrals over
conditioned initial-point increments at a point z at time ¢, and
conditioned final-point increments, also at z, at time t, > 1.
We define the increments divided by dt; to be the “initial- and

final-point currents,”

. (odx, )ﬁ: .
in(Z,hh —HZ)= s
Jn(Z,tr —1152) an
) , (odx,, ):: ~
iz n—1:2)= —an (28)
2

In order to understand the correlation in Eq. (27) we must
therefore understand initial- and final-point currents. This is a
priori not easy, since initial-point currents involve both spatial
increments at ¢; and probabilities of reaching a final point at
time 7, > t;, which involves nontrivial correlations—a given
displacement affects (and thus correlates with) the probability
to reach the final point. We will derive a statement (“Lemma”)
in the next section that solves all mathematical difficulties
related to this issue, without resorting to Feynman-Kac and
path-integral methods as in Ref. [80]. Then we will make
intuitive sense of the result by exploiting the dual-reversal
symmetry in Eq. (11).

Before doing so, we also consider the scalar current-current
covariance C}f](t) [note that the complete fluctuations and
correlations of JY(z) are characterized by the d x d covari-
ance matrix with elements (C}}(1))ix = Cjy (t); here we focus
on the scalar case CyYj(t) = TrC}}(1)]. Notably, almost all
results remain completely equivalent for other elements of
the covariance matrix; scalar products simply have a slightly
more intuitive geometrical interpretation and notation. Writ-
ing down the definition and using the notations as in the steps
towards Eq. (27) we immediately arrive at

X, =2

(odxy, - odx,,)

X, =Z

o =2

dtdt,
X, =2
(del‘] . det2>x::z’

N —2j(@) (@) |, (29

dtdt,

which is similar to the correlation in Eq. (27) but involves an
average over scalar products of initial- and final-point incre-
ments along individual trajectories “pinned” at initial and end
points. We will return to Eq. (29) and solve for these incre-
ments in Sec. IV F upon having explained the density-current
correlation.

C. Lemma

To be able to treat expressions involving the increments
correlated with future positions, we need a technical lemma
that will turn out to be very powerful and central to all cal-
culations. The required statement can also be obtained from
the more general concept of Doob conditioning [20,55,63,81],
but here we provide a direct proof. Consider an Itd noise
increment /2D(x;)dW; [or equivalently o(x;)dW.] with
dW; = W_;; — W_. In the following we will need to com-
pute the expected values involving expressions like

* = ([v2D(Xr )dW- [ U (X, )V (X ))s, (30)

where U(x’) and V(x') are arbitrary differentiable, square
integrable functions, the subscript k denotes the kth com-
ponent, and the subscript s denotes that the process evolves
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from ps(x’). Correlations of dW, = W, 4, — W, with any
function of X,/ at a time t/ < t vanish by construction of the
Wiener process (it has nominally independent increments).
However, correlations with functions at t/ > 7 are nontrivial.

Note that given an initial point Xo =2z and setting
V2D(z)dWj = e, the It6/Langevin in Eq. (5) predicts a dis-
placement dxo(z, &) = [F(z) + VI D(z)]dt’ + e. With this we
can write the expectation in Eq. (30) for t =0 <¢ =1’
as & integrated over the probability to be at points z,z +
dxo(z, €),7 attimes 0,dt’, ¢/, i.e.,

* = /dz/dz/U(z)V(z’)/dsP(s)sk

x G(z',t' — dt'|z + dxo(z, €))ps(2), (31)

where the probability P (e) of «/2D(z)dW, = ¢ is given by a
Gaussian distribution with zero mean and covariance matrix
2D(z)dt’. Since this distribution is symmetric around 0, only
terms with even powers of the components of & survive the
P (&) integration. Noting that for dt’ — 0 we have G(z/, ¢’ —
dt'|z + dxo(z, €)) — [1 + dxo(z, &) - V,|G(Z ,t'|z), we see
that the only even power of the components of € in &,G(---)
gives

- / dz / 2V @)py(2)V (2)
X / deP(e)ere - V,G(Z , t'|z), (32)
which using f deP (e)ere; = 2Dy j(z)dt’ yields the result

* = /dz/dZ'U(z)ps(z)V(z’)[ZD(z)VzG(z',t’|z)]kdt’.
(33)
Rewritten in terms of Pz, t') = G(Z,t'|z)ps(z)

and i = —p@)D@)V,p;'(z) we have [P,z 1) =
—ps(z)D(z)V,G(Z',t'|z), and thus

x= -2 / dz / dz/U(z)V(z/)[jﬁ]sz(z/,t’)dt/. (34)

Motivated by the dual-reversal symmetry and the anticipated
applications we define the dual-reversed current operator by
inverting j and concurrently inverting j; — —js, i.e.,
Ji =i = =[5 - pd i)
= ps(DX)Vyp ' (%) + pg (0js(®). (39

Since jﬁ — J2 = —2j% we can rewrite Egs. (33) and (34) as

*= / dz / dZU @V @)(j; — J2) P2, t)dt',  (36)

which will turn out to be the crucial part of the following
calculations and will allow for an intuitive interpretation of
the results in terms of dual-reversed dynamics.

D. Application of the lemma to initial- and final-point currents

In order to quantify and understand the density-current
correlation expression in Eq. (27), we now turn back to the
initial- and final-point currents, recalling the definitions in
Eq. (28). These observables characterize the mean initial and

final displacements of “pinned” paths of duration #, — #; con-
ditioned on the respective initial and final points z, z' or 7/, z.
The fact that both are currents in z justifies the name “initial-
and final-point current.” Such objects turn out to play a crucial
role in the evaluation and understanding of correlations of
densities and currents [see Eq. (27)]. The computation of
current variances in fact involves the expectation of scalar
products of such displacements [see Eq. (29)], but we first
focus on simple displacements.

Final-point currents can be computed by substituting for
odx, and integrating by parts as in Eq. (17),

(odx, >:’2 z,
¥l = / dz, / 42821 — 7)8(22 — 2)
dty

X Py (22,1, — 1)[F(22) + V, D(2,)]
=[F(z) — D@)V,1Py(z, 1, — t1)
=3Py (2, — 1), (37)

where the Itd term involving dW,, vanishes whereas the
Stratonovich correction term survives. Therefore, the final-
point current is obtained from the two-point density and
current operator, both appearing in the Fokker-Planck equa-
tion [recall that (9, + Vy -jx)Py(x, 1) =0]

i@, 6 —11;7) = j,Py(z, 1o — 1y). (38)

For the initial-point current, analogous computations yield an
Itd increment as a correction:

Jin(@ 12 = 11:2) = joPu(@ . 1y = 11) + (V2D (%, )A Wi )
(39)

Note that the latter Itd increment also appears in the calcu-
lations in Egs. (17) and (37), but its mean vanishes since
it involves end-point increments dW;, (note f, and not f;),
which are by construction uncorrelated with the evolution up
to time . The correction term here does not vanish since
the increment at time #; is correlated with the probability to
reach z at time t,. Therefore, this expectation is nontrivial, but
fortunately we solved this problem with the Lemma derived in
Eqgs. (30)—(36).

When U and V in Eq. (36) tend to a Dirac delta function
(which is mathematically not problematic since we later inte-
grate over z, z’), we obtain

(V2D ()W, [0 = G~ Jon@ - n), @0)

which gives, recalling Eq. (35),
jin(2 12 — 11:2) = ;P2 1y — 1), (41

Note that ji,(y, t;x, 0) = —jgj“(x, t;y,0) in agreement with
dual-reversal symmetry.

To better understand these currents and their symmetry
we require some intuition about the generalized time-reversal
symmetry (i.e., the dual-reversal symmetry), which we gain
on the basis of a simple overdamped shear flow in Fig. 4.
Consider an isotropic diffusion with additive noise in a
shear flow dx, = Fy,(x;)dt + ﬁdWr with Fy,((x, y)7) =
(0,2x)T [see gray arrows in Figs. 4(a)—4(c)]. For simplicity

033243-7



CAI DIEBALL AND ALJAZ GODEC

PHYSICAL REVIEW RESEARCH 4, 033243 (2022)

()2 (bF

FIG. 4. (a) Shear drift (gray background arrows) and inverted
shear drift (blue background arrows) as described in the text, and
currents and paths from (b) to (d) shown in purple, yellow, and
blue. We see that the purple arrow equals the inverted blue arrow,
and the purple line overlaps with the blue dashed line, as implied
by Eq. (43). (b) Simulated trajectories in the shear flow (gray back-
ground arrows) from z = (0, 0)7 to z' = (2, 0)7 in time ¢’ = 1 with
time always running from dark to bright. The initial-point current,
i.e., the initial-point increment averaged over all trajectories, is de-
picted by the purple arrow and the mean paths (averaged over all
trajectories) by the gray curve. (c) As in (b) but from z’ = (2, 0)” to
z = (0, 0)7 and final-point current depicted by a yellow arrow. (d) As
in (c) but with the inverted shear flow depicted by blue arrows in the
background.

we here only consider shear flow in a flat potential, such that
strictly speaking a steady-state density ps does not exist. The
existence of p is in fact not necessary for the discussion in this
section, nor to connect this example to a genuine nonequilib-
rium steady state. One may equally consider the shear flow to
be confined in a box that is large enough to allow neglecting
boundary effects at times before ¢ and yet would yield flat p;
as t — oo. The drift of the unconfined shear flow is purely
irreversible, i.e., Fiy'(x") = 0. Thus, inverting the irreversible
part completely inverts the drift F;hj* (x') = —F (X)) [see blue
arrows in Figs. 4(a) and 4(d)]. The initial-point current [purple
arrow in Fig. 4(b)] is difficult to understand, since it corre-
lates with the constraint to reach the end point after time #’.
In the case of detailed balance, the time-reversal symmetry
would allow to obtain this initial-point current as the inverted
final-point current [yellow arrow in Fig. 4(c)]. However, since
detailed balance is broken by the shear flow this does not
suffice. Instead, one has to consider the final-point current for
the dynamics with the inverted irreversible drift [blue arrow in
Fig. 4(d)]. According to ji,(y, t;X,0) = —jg"s(x, t;y,0) and
as can be seen in Fig. 4(a), this allows to obtain the cumber-
some initial-point current (yellow) as the inverted final-point
current (blue).

In addition to the initial- and final-point currents, we also
depict in Fig. 4 the mean “pinned” paths. In Fig. 4(a) we
see that the forward and dual-reversed paths (purple and blue
dashed lines) overlap. This can also be seen from the dual-
reversal symmetry in Eq. (11).

To prove the equality of mean paths consider 0 < T
t'" where t' =t, —t, > 0. The (nonrandom) point w(t)

A

(xtl+,)§2: on the mean path z — 7’ is given by an integral
over all possible intermediate points p(7) = x weighted by
G, — t|x)G(x, t|2)/G(Z/, t'|z) (since X, is a Markov pro-
cess) which gives the Chapman-Kolmogorov-like equation

G, t'|lD)p(r) = /a’xG(z’, ' —1x)G(x, t|z)x.  (42)

The corresponding point on the mean dual-reversed path
i A A ’ :
wi(t) = (x,7,), _, from Z’' to z with reversed steady-state
1=
current j, — —Jjs is given by [using three times the dual rever-
sal in Eq. (11)]
Gz, V1)t — 1)
= f dxG ¥ (z, T|x)G ¥ (x, 1’ — 1|Z)x

= /dXG(X, r|z)pS—(Z)G(Z/’ — ps(x) X
ps() ps(@)

_ ps(z)
ps(Z')
=Gz, t'|7)n(z), (43)

G, t'|2)p(t)

which implies u(t) = p*(t' — 7) for all t; < T < t,, so the
mean paths indeed agree (but run in opposite directions),
which completes the proof that the blue and purple paths in
Fig. 4(a) overlap.

E. Current-density correlation

With the definitions (2§) andt’' =1 — t; > 0 we have [re-
call the simplification of I,’('YU in Eq. (22)]

CY ) = 17§z 1 2) + jin(@, 1';2) — 2js(2)ps ()],
(44)

As we have shown in Egs. (38) and (41) the initial- and
final-point currents can be expressed in terms of the current
operators, yielding

Cl () = T4 [Py (2, 1) + §iPu(2, 1) — 2js(@)po(2)],
(45)

which allows to explicitly calculate C}i () if Py(z,t) is
known. An analogous result for the scalar current variance
was very recently obtained in Ref. [55] but did not establish
a connection to current operators and dual-reversal symme-
try and did not consider coarse graining or multidimensional
continuous-space examples. The current-density correlation
C}f)(t) can be interpreted analogous to CJ}},(¢) as follows.

All possible paths between points z, z' in time 0 < ¢/ < ¢
contribute, weighted by their corresponding probability, to
this correlation. The difference with respect to density corre-
lations CJ},(¢) is that now currents at position z are correlated
with probabilities to be at the point z'. For paths z’ — z the
displacement is obtained from the familiar current operator
ji = j2Py (z,t'). Paths from z — z’ are mathematically more
involved (and somewhat harder to understand), but can be un-
derstood intuitively with the dual-reversal symmetry (see also
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FIG. 5. (a) Illustration of the steady-state density (color gradi-
ent) and current (arrows) of the two-dimensional rotational flow in
Eq. (2) with = 3. Gray dotted lines in (a)—(d) are circles with
radii 0.25, 0.5, 0.75, 1. (b, c¢) Single-point x =y and (d) two-point
time-accumulated correlation C}Y at 7 = 0.2 and 7 =5 (black ar-
row), with final point Cg = f,’(y[szzr(z, t") — js(z)ps(Z')] (orange)
and initial point Cy, (green) contribution, such that C}} = Ci, + Ci.
Ci(js — —Js) (gray) is the current-reversed final-point contribution
which agrees with the inverted initial-point contribution —C;,. Solid
lines in (b) are the mean trajectory [11] = (X;»0)x,=x (Orange) and its
current reverse [ph— 5] (gray). Uyy (shaded circles) is a Gaussian
at x, y with width 4 [see Eq. (3)].

Fig. 4). More precisely, they can be understood and calculated
in terms of the dual-reversed current operator jz = —j "

A direct observation that follows from the result in Eq. (45)
is that at equilibrium (i.e., under detailed balance) we have
Js=0,J; = =, and P,(#, 1) = Py(z, 1) and thus C (1) =
0 for all window functions and all points x, y. The correlation
C}i (t) can also be utilized to improve the TUR, as recently
shown in Ref. [56]. The result in Eq. (45) thus allows to
inspect and understand more deeply this improved TUR.

An explicit example of the correlation result in Eq. (45)
for C})(r) is shown in Fig. 5. In line with the pre-
vious arguing Cﬁ (t) can be understood as a vector
with initial- and final-point contributions, C}> = Ci, + Cs,
where Ciy = 71 [jiP(2', ') — j()ps(z)]. In the Appendix
we show that for x =y in the limit # — 0 of small
windows the results for the correlation simplify Ci,(¢) =~
[2s(x)/ ps(x) — F(x)]vary(r)/4 and Cg(r) >~ F(x)var,(1)/4,
implying C}’;(t) >~ js(x)vary, (1)/2ps(x). Since F =F"*' +
js/ps and thus 2js(x)/ps(x) — F(x) = —F(x), the above
implies that for x = y and small windows & we have —C;, =
C.* and Cj points along F(x) that is tangent to the mean
trajectory [u] at x, while C}’/‘] () points in the js(x) direction
[see Fig. 5(b)]. For longer times ¢ and/or larger A, the direction

of Cj changes but —Cj, = C;; ¥ still holds [see Fig. 5(c)] since
the symmetry ji, (y, t;x, 0) = —jgjs (x,t;y, 0) can be applied
in the integrands. Conversely, the two-point correlation C}‘y
need not point along js(x) [Fig. 5(d)]. In fact, its direction
changes over time [see inset of Fig. 5(d)]. Notably, results
for x # y akin to Fig. 5(d) may provide deeper insight into
barrier-crossing problems on the level of individual trajecto-
ries in the absence of detailed balance.

F. Current (co)variance

Recall that the current (co)variance in Eq. (29) in-
volves scalar products of initial- and final-point increments

(odxy, ~odx,2)§f:, which cannot be easily interpreted as
scalar products of currents. They are not the scalar products

of initial- and final-point currents, since (odx;, - odx,)x’—, #

(odx,l)ifz; - {odx,, )2?: Rather they correspond to the

scalar product of the initial- and final-point increment along
the same trajectory and only then they become averaged over
all trajectories from z to z’ (see also Fig. 2 in Ref. [58]).
For #; < t, these are computed equivalently to Egs. (37)—(41)
based on the Lemma (36) as

(odxy, - odx,)if =o=0 el ). (46)

However, according to the convention fri dtyd(ty —t1)) =1/2
in Eq. (18), we also need to consider the case t; = 1,, i.e.,
t" = 0, which did not contribute for C,, and Cjy,. In the case
t; = 1, [recall the definition in Eq. (25)],

(odxy, - odx,,)

2
X, =Z

= (5(X,1 — z) odxy, - 8()(,2 — z’) o dxh)
"= (5(x, — 2),/2D(x,,)dW,,
- 8(x;, —2){/2D(x,,)dW,,), 47

where we used that for #; = 1, the only term surviving is d W,?
(and not dW, dt; and dt}, which is why such terms only
enter in current-current expressions but not in current-density
or density-density correlations), as well as (by Itd’s isom-

. 1
etry) f[l] dt,dW/! ™y _ 8jidt;. Using Py(z',t' =0) = 6(z —
z')ps(z) we find for ty = 1,

S

n dn

X, =7

(odXy, - odX;, >x,f —

d
=P, 0) Z [v2D(2)];;[v2D(2)]ud (1) — 12)8 1d1y

ijl=1

d
= p(@)8(z— 7)) _[2D@)]id(t) — )dny

i=1

= 2Tr[D(z))ps(z)8(z — 2)5(t; — t)dt. (48)

Plugging this into Eq. (29), we obtain, using Eq. (46) and
accounting for the #' = 0 contribution, the result for current
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covariances in the form of
(oA _?2 dzTr[D(2)|U (z)U?
T3¢ )—; 2Tr[D(2)]Uy (2)Uy (z)ps(2)
+ IV GE 3Pt 4] Je P )

— 2js(2) - s (@) (49)

The second line is interpreted analogously to the current-
density correlation in Eq. (45) with the only difference that
the scalar product of current operators reflects scalar products
of increments along individual trajectories. The first term,
however, does not appear in Cy) and Cpj,. As can be seen
from the derivation in Eq. (48) this term originates from the
purely diffusive (i.e., Brownian) term involving dx; - dx, =
2TrD(z)dt and only appears for #; = 1,, i.e., t' = 0. Thus,
this term cannot be interpreted in terms of trajectories from
z to 7 or vice versa, but instead reflects that due to the nature
of Brownian motion the square of instantaneous fluctuations
(dx,)?* does not vanish but contributes on the order dt. Note
that since here z = z’ this term only contributes if Uf (z) and
Uyh(z’) have nonzero overlap.

For x =y the covariance becomes the current variance
var}(t) = Cy(t) which plays a vital role in stochastic ther-
modynamics. As an application of the result in Eq. (49)
we use the TUR bound under concurrent variation of the
coarse-graining scale 4 to optimize the inference of a system’s
dissipation via current fluctuations. Before we turn to this
inference problem, we take a closer look at the limit of no
coarse graining, i.e., h — 0.

V. THE LIMIT OF NO COARSE GRAINING

In this section we consider the variance var)(r)=
C;’; (¢), varj(t) = Cy3(t) and correlations C}’;(t) in Egs. (23),
(45), and (49) with x =y in the limit of no coarse grain-
ing, i.e., when 2 — 0. In particular, we consider normalized
window functions f dzU;‘(z) =1 such that in the limit of
no coarse graining U,fl_’o(z) = §(x —z) [see, e.g., Eq. (3)].
Thus, the density and current observables in Eq. (1) for 2 = 0
correspond to the empirical density and current defined with a
é function,

E(t)zl/ d(x — x;)d,
tJo

=t
J (1) = l/ 8(X — X;) o dxX,, (50)
t Jr=0
which is the definition typically adopted in the literature
[4,7,60—67]. We show in the Appendix that in spatial dimen-
sions d > 2 the variance and correlation functions diverge:
var;(t), vary(t), C}";(t) — 00 as h — 0. Note that the mean
values in Egs. (15) and (17) of the observables in Eq. (50)
do not diverge but instead for U~%(z) = §(x — z) directly
simplify to (px(7))s = ps(x) and (Jx(#))s = js(x) (see also
Ref. [4]). Before we go into the specific results for the limit
h — 0, let us first discuss why divergent fluctuations of the
functionals in Eq. (50), although overlooked so far, are in
fact not surprising. The simplest argument is that second mo-
ments as, e.g., (px(1)?) involve terms (8(x — X;)8(X — X;/))s,
which diverge for T = 1’ since a squared § function appears.

In contrast, the mean value (ox(¢))s contains (§(X — X;))s =
ps(x) which is finite. Loosely speaking, the mean value in-
volving (§(x — X;))s is given by the probability to be at point
x, which is zero, multiplied by the height of the § function at x,
which is infinite. Since the mean value is finite for 4 — O this
can be seen to yield “0 x co = ps(x),” while the second mo-
ment contains a squared § peak, such that the second moment
loosely speaking diverges due to “0 x 00? = p,(X) x 00 =
o0.” This argument illustrates that divergent fluctuations are
not surprising but this argument is oversimplified since it does
not take into account the time integration. In particular, to
explain why the divergence only occurs in spatial dimensions
d > 2, we have to note that due to the time integration the
one-dimensional case is qualitatively different. Given some
point z in d-dimensional space, the trajectory will hit z =z
with a finite probability in d = 1 (i.e., with nonzero probabil-
ity there is some 7 € [0, ¢] such that x;, = z; e.g., if xop < x;
all points in [xg, x;] are hit). This is qualitatively different
for d > 2, since overdamped motion in d > 2 does not hit
points; i.e., the probability to hit a given point z is zero,
P(3r € (0, 00) : x, = z) = 0 [59]. This property is not spe-
cific to overdamped motion, but is rather due to the fact that
the set of points (X;)o<r<: has Lebesgue measure zero for
d > 2. To further explain the divergence and its dependence
on the dimensionality in a somewhat less oversimplified way
(for the detailed derivation see the Appendix), we take a
second look at the term (§(x — X;)8(X — X))s = G(x, |t —
T'||X)ps(x) occurring in (px(t)?)s. Here, G(x, t'|x) trivially
diverges if ' = 0. However, the relevant question is whether
the return integral f(; G(x,t'|x)dt’ diverges. Any divergence
in the integral would come from t' — 0 where G(X, t'|X)
diverges, i.e., from the limit of small time differences |t — t’|.
For t' — 0 the overdamped propagator G(x, ¢'|x) becomes
Gaussian with variance o« Dt’ [78] [so for very small ¢’ we
have G(x,t'|x) t~4? in d-dimensional space], and thus
the return integral for G(x,t'|x)dt’" diverges if and only if
fot =24’ diverges. Therefore, the variance vary (1) diverges
in spatial dimensions d > 2. Apart from the two arguments
above providing mathematical intuition about the divergence,
there is also a physical intuition that suggests divergent fluc-
tuations. Recall that for finite & > 0, the observables p? and

.ﬁ in Eq. (1) by definition measure the time and displace-
ment that the trajectory (x;)o<r<, accumulates in the region
U,f‘ of scale i around x. Now as & — 0, only visitations of
precisely the point x contribute. Two very similar (but not
equal) trajectories may now give very different values for E

and JY, depending whether the point x is hit or even slightly
missed (e.g., by a distance /). Therefore, fluctuations among
different trajectories of these functionals diverge as 4 — O.
This reasoning is not restricted to overdamped stochastic mo-
tion, and indeed seems to hold for more general dynamics
(see outlook in Sec. X). This simple illustration also explains
why fluctuations do not diverge in one-dimensional space.
There, points are hit, meaning that, e.g., a trajectory starting
at 0 and ending at 1 always hits all points in between at
some intermediate time, which is why the density and current
observables have qualitatively lower fluctuations compared to
higher dimensions. The reason that the divergence for d > 2
was overlooked so far is probably due to the fact that most
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explicit examples were analyzed in one-dimensional space
only. Explicitly, in the limit # — O the expressions Egs. (23),
(45), and (49) with x =y for any time ¢ take the form

ford > 2

-0 K E
X t x>~ = d-2
var (1) ps(X){ ford — 2.

Dyt —Inh

Cprn "2 jivark(1)/2p,(x),

o 2D,
vary(r) "= K’T"ps(x)(d — D+ 0 Hom'™),

(51

where 2 denotes asymptotic equality, Dy and D/, are constants
bounded by the smallest and largest eigenvalues of D(x), and
K and K’ are constants depending on the specific normalized
window U/ (see the Appendix). Note that the dominant term
in varj(#) vanishes for d = 1 such that all three expressions
only diverge for d > 2. Some details on the case d = 1 are
shown in Appendix Sec. 4. Thus, the empirical density and
current as defined in Eq. (50) have divergent fluctuations. Note
that an infinite variance contradicts Gaussian statistics on all
time scales. This divergence, moreover, leads us to question
whether Eq. (50) is even well defined, i.e., whether these ob-
servables are mathematically well-defined random variables,
and whether the result in the limit 2z — 0 is unaffected by the
specific choice of the U!" as long as U~%(z) = §(x — z).

VI. APPLICATION TO INFERENCE OF DISSIPATION

We now apply the results for the current variance vary(f) =
Cj‘,’j(t) in Eq. (49) for x =y. For an individual component,
e.g.,Jy = [ﬁ]y, of the vector ﬁ the equivalent result reads

X 2 h h
var (1) = = f dz[D(2)],, Uy (2)Uy (2)ps(2)

+ i,t"xu[(j; )y(jz)ypz’ (Z’ t,) + Gi)y(jz’)ypz(zlv t,)
- Z[js(z)]y[js(z/)]y]- (52)
With the dissipation rate ¥ in Eq. (10), current observables

such as J, = [E]y satisfy the TUR [15,34] (in the form rele-
vant below first proven in Ref. [15]),

vary (t) 2
Y 5 2 J—
(Jy) ty

S

(53)

This bound is of particular interest since it allows to infer a
lower bound on a system’s dissipation from measurements of
the local mean current and current fluctuations [17,53,82—-84].
Note that Eq. (53) implicitly assumes “perfect” statistics; i.e.,
(Jy)s and Varﬁv () are the exact mean and variance for the pro-
cess under consideration (not limited by sampling constraints
on a finite number of realizations).

We now investigate the influence of the coarse graining on
the sharpness of the bound (53). One might naively expect that
coarse graining annihilates information. However, as shown in
Ref. [58] the current fluctuations diverge in spatial dimensions
d > 2 in the limit # — 0 (of no coarse graining), whereas
the mean converges to a constant (note that ¥ does not at all
depend on U!"). The exact asymptotics for # — 0 in Ref. [58]
demonstrate that the bound (53) becomes entirely independent
of the process (i.e., it only depends on ps but contains no

information about the nonequilibrium part of the dynamics).
Therefore, the left-hand side of inequality (53) tends to oo
as h — 0, rendering the TUR without spatial coarse graining
unable to infer dissipation beyond the statement ¥ > 0 for
h=0.

However, the naive intuition is correct in the limit of
“ignorant” coarse graining h — 0o, where U!' becomes
asymptotically constant in a sufficiently large hypervolume
centered at x [i.e., in a hypervolume A where f A Ds(X)dx ~

1]. The integration over a constant U,f’ = ¢ yields (,ﬁ(z‘))s =
c f dzjs(z) = 0 for the mean in Eq. (17). The vanishing
<E(t)>s may be seen in two ways. First, since V, - js(z) = 0,
curl js(z) = V, x f(z) and by the Stokes theorem fA d*zV, x
f(z) = fa A - dl which vanishes since at the boundary dA at
oo we have py — 0; thus j; — O and therefore the vector
potential f — 0. Second, for U,f =cwehave JY(t) = f(x, —
Xp) [and we assume X, to be sampled from ps(x)]. Then xy and
x, are both distributed according to pg, and thus (X,)s = (Xo)s
and £ (JY (t))s/c = (X;)s — (Xo)s = 0. Conversely, the variance
remains strictly positive. Therefore, also for 4 — oo the left-
hand side of inequality (53) diverges, rendering the TUR with
an “ignorant” coarse graining incapable of inferring dissipa-
tion (again only giving ¥ > 0 as for 7 = 0).

These two arguments, i.e., the necessity of coarse graining
[58] and the failure of an “ignorant” coarse graining, imply
that an intermediate coarse graining exists that is optimal for
inferring dissipation via the TUR [Eq. (53)].

We first demonstrate this finding using a two-dimensional
rotational flow (2) with Gaussian coarse graining window
in Eq. (3). We evaluate the left-hand side of Eq. (53) for
varying h and x and compare it to the constant right-hand
side of Eq. (53). Particularly for D(z) = D1, we have p(z) =
r/Q2rD)exp(—rz*/(2D)) and js(z) = Qps(2)(z2, —z1)" and
the dissipation rate in Eq. (10) is given by

. iT@ (@) _9_2/ >
E_/ @ @ Dpal®=7p | rn®

Q? Q2 @ D 20
Sl =i +a)=52-=— (4

Thus the TUR in Eq. (53) for the rotational flow becomes

var}v (1) r
U T

(55)

The results shown in Figs. 6(a)-6(d) demonstrate, as argued
above, that relative fluctuations diverge as & — 0, co. For this
example, the relative error as a function of /4 has a unique
minimum (slightly depending on x, and possibly on other
parameters such as ). This means that (restricted to U/ being
a Gaussian around x) there is a coarse-graining scale & that
is optimal for inferring a lower bound on the dissipation, that
may also provide some intuition about the formal optimization
carried out in Ref. [84]. This result demonstrates that coarse-
graining trajectory data a posteriori can improve the inference
of thermodynamical information, which is a strong motivation
for considering coarse graining.

In particular, note that this method is readily applica-
ble; i.e., one does not need to know the underlying process
(as long as the dynamics is overdamped). As was done in
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FIG. 6. (a) Steady-state density (blue color gradient) and current (yellow arrows) for the rotational flow in Eq. (2) with = 3. Points
around which the currents are evaluated in (b)—(d) are denoted by colored crosses. (b) Simulated values (circles) of the mean y component of
the time-integrated current from 2000 trajectories of length = 10 with time step dt = 0.001 (using the stochastic Euler algorithm) starting
from steady-state initial conditions using a Gaussian window function [Eq. (3)] with different coarse-graining scales 4. Analytical results in
Eq. (17) are shown with lines. (c) As in (b) but for variances. Simulations (circles) are shown alongside analytical results [lines; the results are
analytic up to one time integration; see Eq. (52)] for the variance of currents. (d) The relative error (ratio of variance and mean squared) as a
function of / features a minimum at an intermediate /. At this minimum, the current fluctuations give the best lower bound on the dissipation via
the TUR [Eq. (53)] at the value 2/(t2) =2/(10 x 18) = 0.011 (black line). (e) As in (a) but for the more complicated process in Eq. (57) with
D =1 and we choose €2 = 0.957 to have the same dissipation as in (d); here the dissipation is obtained by means of a numerical integration.
(f) As in (b) but for the process in (e) the “analytical” mean [Eq. (17)] had to be evaluated by means of a numerical integration. (g) As in (c) but
simulated values are shown by circles and dashed lines (but without a comparison to results of numerical integration since these require the
knowledge of the propagator). (h) As in (d) but for the process in (e). The relative error may display several local minima. Some intermediate
h still allows for an optimal inference of the dissipation via the TUR (black line). Note that the relative error diverges (orange line) where the
mean crosses zero [orange line in (b)].

Figs. 6(e)-6(h) one simply integrates the trajectories to ob-
tain the coarse-grained current as defined in Eq. (1). Then,
the mean and variance are readily obtained from the fluctu-
ations along an ensemble of individual trajectories, and for
each value of x and /& one determines a lower bound on the
dissipation via Eq. (53). Finally, one takes the best of those
bounds. We here only consider Gaussian U} for the coarse
graining, but due to the flexibility of the theory one could
even choose window functions that do not have to relate to
the notion of coarse graining. Notably, a Gaussian window
function is in this case better than, e.g., a rectangular indicator
function (which one usually uses for binning data) due to an
improved smoothing effect. Moreover, one further expects a
reduced error due to discrete-time effects.

Note that compared to many of the similar existing meth-
ods [17,54,56], we neither advise to rasterize the continuous
dynamics to parametrize (i.e., “count”) currents nor advise to
approximate the dynamics by a Markov-jump process. Our
method is therefore not only correct (note that a Markov-jump
assumption is only accurate in the presence of a time-scale
separation ensuring a local equilibration, e.g., as a result
of high barriers separating energy minima) but also has
the great advantage of not having to parametrize rates at
all. Instead one simply integrates trajectories according to
Eq. ().

A generalization to windows that are not centered at in-
dividual points as well as the use of correlations in Eq. (45)
entering the recent so-called correlation-TUR (CTUR) in-
equality [56] will be considered in forthcoming publications.

To underscore the applicability of the above inference strat-
egy, we apply it to a more complicated system, for which a
Markov jump process description would be difficult due to
the presence of low and flat barriers and extended states. The
results are shown Figs. 6(e)—6(h). The example is constructed
by considering the two-dimensional potential

¢(x, y) =0.75(x2 — 1)2 + (y2 _ 15)2
x (x4+0.5y —0.5%+0.5)+¢, (56)

where ¢ is a constant such that ps(z) = exp[—¢(z)] is nor-
malized. We consider isotropic additive noise D(z) = D1 and
construct the Itd/Langevin equation for the process as

dx, = —D{V$}(x;)dt + F™ (x;) + V2DdW,,  (57)

where

Firrev (Z) —

jS(Z) _ O —1
ps(z) ~ _DQL 0 ] Vel (58)

is an irreversible drift that is by construction orthogonal
to V¢ and thus does not alter the steady state [i.e., same
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ps = exp[—¢] for equilibrium (2 = 0) or any other 2]. With
Eq. (58) the dissipation in Eq. (10) for this process reads

T
¥ =DQ? / dzx{v¢}(x)T[(1) _01} [(1) _01}
{V¢}(x)ps(x) = DQ? / d*x{V¢}*(x) exp [~ (X)],

(39)

which is solved numerically and gives 3 = 19.65DQ2. We
see in Fig. 6(h) that some intermediate coarse graining /4 is still
optimal, but the optimal scale # now depends more intricately
on x and the curves are not convex in 4 anymore.

Overall we see that the approach is robust and easily appli-
cable, and does not require to determine and parametrize any
rates. Moreover, due to the implications of the theory to the
limits & — 0, oo we can assert that some intermediate coarse
graining will generally be optimal.

VII. SIMPLIFICATIONS AND SYMMETRIES

In this section we list the symmetries obeyed by the results
in Egs. (15), (17), (23), (45), and (49) [with integral operator
(22)]. Note that the limit # — 0 was carried out in Sec. V and
the limit & — oo gives U/ = c as noted before which greatly
simplifies the further analysis. The limits t — 0 and t — oo
will be addressed in Sec. IX (see also the Supplemental Mate-
rial in Ref. [58]).

First consider dynamics obeying detailed balance, i.e., j, =
0. We then have jﬁ = —j, = —)% and the dual-reversal sym-
metry in Eq. (11) simplifies to the detailed balance statement
G(y, t|x)ps(x) = G(x, t|y)ps(y) or P(Z',t) = Py(z, t). From
this we obtain the following simplifications for j; = 0:

(@), =o.
CY () =21 [Py(Z . 1) — ps(2)ps ()],

Cln =0,

Xy — 2 h h
== / AT D @)U U (2)py(2)

— 2LV (2) - J @ )P 1) + s(@) - (@)
(60)

For the remainder of this section we consider js # 0. Note that

by definition the interchange x <>y leaves C,} (1) and CyYj (1)

invariant, but not C}Z(I) since it considers currents at x and
densities at y.

For single-point correlations and variances x =y (more
precisely U = Uyh) the integrations over z and z’ are equiva-
lent and thus the results simplify to

C (1) =213/ [Py(2 1) — py(2)ps(Z)],
i) =I5V [Ge + 3P 1) = 2js(2)py(2)],
CRy(1) = % / dzT[D@)|[UL] @)ps(2)
+ 225V 155 JePu@ 1) — o) - o(@)]. (61)

Now we again allow x3#y and consider the process
and the j; < —js inverted process. Then, from Eq. (11)

fmd [j; 'jZ]TjS =A._jf' . [_j-Z’F] =j j; =j§ Ju, we get [jjzIE .
3Py (z,1)]7) =i - jyPy(Z, t') and thus obtain

(), = (T ). ",
W), = -7w),"
@ =[Cn] ™.
i =-[crm] ™,
) = [Cn] ™. (62)

In addition to the symmetries of the first and second cu-
mulants, a stronger pathwise version of the dual-reversal
symmetry in Eq. (11) (or time-reversal symmetry at equi-
librium) dictates symmetries of the full distributions of the
functionals of steady-state trajectories under the reversal j; <>
—js. Notably, at equilibrium (j; = 0) these simplify to sym-
metries of the process [which is a much stronger result since
we do not have to compare to another (artificial) process with
an inverted js].

To motivate this stronger symmetry, note that for steady-
state initial conditions for any finite set of times 7} <1, <

- < t, we have that the joint density P,(---) for positions
z; at equally spaced times t; =i x At for i =0,1,...,nis
given by [since we have a Markov process by definition, i.e.,
Eq. (4) has no memory]

Po(z0, 10521, ts - -+ 3 Zns Bn)
= Ps(XO)G(Xl, Al‘|XO) t G(Xnv AI|X,1,1 ) (63)

By applying the dual-reversal symmetry in Eq. (11) n — 1
times, we obtain

3 Zns tn)

= G4 (xp, At|x1) - G (X1, At]X,)ps(X,)

P, (zo,t0; 21, t15 - ..

= Pr;js(Zn» O;anlv At; -+ +520s nAt)

= P20, 103 2015 113 - - 2320, 1) (64)
The n + 1 points (zy, ..., z,) represent a discrete-time path
for which Eq. (64) implies the pathwise discrete-time dual-
reversal symmetry (denote t = t,, = nAt)

Po(20, t0521, 115+ - 520y 1)

= P;js(zna P —1Zn—1,0 —In—15-..520, 1 — tO)’ (65)
1.e., the probability of forward paths (x;,)i=o,1....., agrees with
the probability of backwards paths of the process with inverted
steady-state current j, — —js, i.e.,

P[(le)i=o,1,...,n] = Pijs[(xf—tf);=o,1 ..... it (66)

Note that at equilibrium, j; = 0, this is nothing but the detailed
balance for discrete-time paths.

Assuming that one can take a continuum limit At — 0
(and that a resulting path measure exits) one could con-
clude that continuous-time paths fulfill the symmetry (see also
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Ref. [55])

P[(X:o<r<r] = PH[(%—r o<r<i]- (67)

Based on this strong symmetry, and noting that densities are
symmetric while currents are antisymmetric under time rever-
sal, i.e.,

/O,E][(xr)ogrgz] = P,l(][(xz—r)ogzgz],

IV (o< = =TV [(—o do<r<r], (68)

we obtain the following symmetries:

P[pU(t) = u] = P73 [pU(1) = u],
PJY(t) =u] = P#[J(r) = —u]. (69)

Equation (69) implies symmetries for mean values and vari-
ances (x =y) li listed in Eq. (62) since it implies that all
moments of pU(t) agree and that the nth moment of a
current component i fulfills ([Jf{(t)],- Ys = ([— JU(t)], )_JS =
(=T 01"

Note that Eq. (69) implies that the statistics of p(¢) (in-
cluding all moments) in general depends on jg but is invariant
under the inversion js <> —js. Moreover, current fluctuations
at equilibrium (j; = 0, hence Pgq = P = P ) are symmetric

around the mean (JY)s = 0, i.e.,

Peo[JV (1) = u] = Po[JV (1) = —u]. (70)

The symmetries for correlations in Eq. (62), possibly with x #
y, may be seen as implications of the more general symmetries

P[pY (t)pY (t) = u] =
PIY(@)p¥ (1) = u] =
PY@t)- V(1) =u] =

P ol ()Y (1) = u],
PV 1)pl (t) = u],
PV - Ity =u].  (T1)

VIII. CONTINUITY EQUATION ALONG INDIVIDUAL
DIFFUSION PATHS

In this section we derive a continuity equatlon for the time-
accumulated density t,oU (t) and current tJU (t) defined with
windows that satisfy U, h(x )="U, h(x — x). This condition in
particular holds for all window functions that may be inter-
preted as a spatial coarse graining, as, e.g., a Gaussian around
x or any indicator function U,ﬁ’(x’) o< 1}y —x||<nr With any norm
[|---|]. Under this assumption, —V U (x') = VyU!(x') =
{VU! (') such that

=t =t
—vx/ U,f’(xt)odxfzf VU }(x0) 0 dx,

=0 =0

t
ﬂwm—WWha/WWMn (72)
0
which can be written in the form of a continuity equation,

a[tpl ()] = —Vx - 1 IV (). (73)

This generalizes the notion of a continuity equation to individ-
ual trajectories (X Jo<r<: With arbitrary initial and end points.
For steady-state dynamics and normalized window func-
tions, i.e., [dzU/(z) = 1, taking the mean (-); of Eq. (73)
leads to a continuity equation for (coarse-grained) probability
densities. Conversely, for non-normalized window functions
fdz Uf(z) = Volume(U,f’), the mean ()¢ of Eq. (73) may be
interpreted as a continuity equation for probabilities.

Note that the statement [ {VU!"}(x,) o dx, = Ul(x;) —
Ul (xo) holds only for the Stratonovich integral but, e.g., not
for an It6 integral. Therefore, the continuity equation further
motivates the definition in Eq. (1) via the Stratonovich inte-
gral, which was also required for the mean empirical current
[see comment below Eq. (17)] and for consistency of time
reversal (e.g., to obtain the symmetry in Eqs. (45) and (49);
also see Fig. 2 in Ref. [58]).

IX. SHORT AND LONG TRAJECTORIES
AND THE CENTRAL-LIMIT REGIME

As already noted on several occasions, in the case of
steady-state initial conditions the mean values of the time-
averaged density and current are time independent [see
Egs. (15) and (17)]. The correlation and (co)variance results
1Egs. (23), (45), and (49) with integral operator (22)] display
a nontrivial temporal behavior dictated by the time integrals
% f(; dr'(1 — ’t—') over two-point densities P,(z’, t').

In Figs. 7(a)-7(c) we depict this time-dependent behavior
for the two-dimensional rotational flow in Eq. (2) for x =y.
The short-time behavior can be obtained by analogy to the
short-time expansion in the Appendix. Note that the short-
time limit of fluctuations of time-integrated currents recently
attracted much attention in the context of inference of dissipa-
tion, since in this limit the thermodynamic uncertainty relation
becomes sharp [82,83]. The long-time behavior shows that
C(t), var(t) oc t !, as expected from the central-limit theorem
(and large deviation theory) due to sufficiently many suffi-
ciently uncorrelated visits of the window region. Accordingly,
a serious problem is encountered in dimensions > 2 in the
limit 7 — 0 because diffusive trajectories do not hit points
(for a detailed discussion see Ref. [58]).

The limit of #C(¢), tvar(¢) for large ¢ can be obtained as
follows. We have f, dr’[Py(x,1") — ps(x)] — Ofort’ — o0

since Py(x,1’) ina ps(x) and JxPy(X,t ) i Jjs(x) with ex-
ponentially decaying deviations. This implies that for large
t, we can replace %f(j dr'(1 — ’?’) by 1 [, dt’ in the integral
operator (22). This replacement of integrals and the scaling
are also confirmed by a spectral expansion (see, e.g., Ref. [51]
for spectral-theoretic results for the empirical density).

We now discuss the central-limit regime, which is con-
tained in large deviation theory as small deviations from the
mean. According to the central-limit theorem [for not almost
surely constant U!, and for finite variances (i.e., strictly pos-
itive h, see Sec. V)], the probability distributions p(A, = a)
for A, = pf (t) and A, = JY(#) become Gaussian for large
t. This is contained in large deviation theory in terms of
a parabola that locally (for a &~ ) approximates the rate
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FIG. 7. We consider the rotational flow in Eq. (2) with Q = 3 starting from steady-state initial conditions and use a Gaussian coarse-
graining window in Eq. (3) around x = (0, 1)” with width & = 0.5. (a) Analytical result for the variance of the time-averaged density p¥ (¢)
multiplied by time ¢ as a function of ¢. At long times the variance approaches the large deviation variance in Eq. (76). (b) As in (a) but
for the components of the correlation vector CXX (t) as in Egs. (45) and (61). (c) As in (a) but for the variances of the current components

in Eq. (52). (d) Simulation of the probability density function of the empirical density p,ﬁ’ (t) assuming the parameters listed above. Colors
of lines and symbols throughout denote r = 40, 60, 80, 100 from dark to bright. The simulated probability densities were obtained from
histograms of 2 x 10* trajectories for each set of parameters. (e) Parabolic approximation for the rate function with variance from Eq. (76)
(line) and simulated rate function I(p) = —+ ln P[pY(t) = p] (symbols). The numerical value of the rate function at the mean p = (oY (t))s

was subtracted. (f), (g) As in (d) and (e) but for the x component of the current [J,‘{ ] instead of the density px .

function

(a—p)?

I(a) = :
(a) 202

1
— lim - InpA, =a)~ (74)
t—oo t

where the mean p is given by (pY (1))s = [ dzU}"(z)ps(z) and
JY(1))s = [ dzUl(z)js(z) [see Egs. (15) and (17)] and the
large deviation variance o} follows by the above arguments
from Egs. (23) and (49) for x =y as in Eq. (61) as

02— = hm t var® (1)

_2/ dr’ fdz/dz UMz)UMz)

x [Py(z, 1) — ps(2)ps(2))], (75)

as well as

Opr = lim 7 vary(r) = 2/dzTr[D(z)][ T 2)p(2)

+2/ dr’ fdz/dz Ulz)Ulz)

X [jz : j-z/Pz’(L t) - js(z)js(z )] (76)

For any Lebesgue integrable window function U/ (i.e., if the
window size h fulfills 2 > 0), and in d = 1 even for the §
function, this variance is finite, and the central-limit theorem
applies as described above. The parabolic approximation for
the rate function for a two-dimensional system with finite
window size & > 0 is shown for the density E(t) and current

ﬁ(t) in Figs. 7(e) and 7(g). The agreement of the simula-
tion and the variance given by Egs. (75) and (76) is readily
confirmed.

If we instead take the limit of no coarse graining 7 — 0
in multidimensional space d > 2, the variances diverge [see
Eq. (5D)]. Figure 8 depicts the distribution of the empiri-
cal density pY(r) in a fixed point x for different times ¢
and window sizes 4. We see that the distribution becomes
non-Gaussian for small 4; in particular the most probable
value departs from the mean and approaches zero. Even
though a Gaussian distribution is restored for longer times
[see Fig. 8(b)], for even smaller window sizes the distribution
again becomes non-Gaussian [see Fig. 8(c)]. This behavior is
not surprising since Gaussian distributions are only expected
for sufficiently many (sufficiently uncorrelated) visits of the
coarse-graining window. For & — 0 the recurrence time to
return to the window diverges and thus for any finite ¢ one
cannot expect a Gaussian distribution. Note that it is not
clear whether a limit in distribution for 7 — 0 of p¥ and JY
even exists. We hypothesize that, if the limit # — 0 of the

2.0f(a) t=5 |[[(b) t=20 [[(c) t=20
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I — h=03 — h=03 h=0.03
=
o 10 L -
S,
& o5t L V x
00 . . . =~
0 1 2 0 1 2 0 12
/oY (1)) /(P () p/(pL ()

FIG. 8. Simulation of the probability density function of the em-
pirical density E(t) for x = (0, 1) and Gaussian window function
U,f' in Eq. (3) with width & for the two-dimensional driven Ornstein-
Uhlenbeck process in Eq. (2) with Q = 3 with x, starting from the
steady state. The simulated probability densities were obtained from
histograms of 2 x 10’ trajectories for each set of parameters.
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FIG. 9. (a) Variance divided by squared mean of the em-
pirical density and (b) variance of the empirical current with
Gaussian coarse-graining window [see Eqs. (1) and (3)] around
x = (0.1,0.1)" umand x = (0.15, 0)” um for 200 experimental tra-
jectories (X, — Xo):<s0 s measured in particle tracking in living cells
[85] with time step dt = 0.1 s and spatial resolution 10~3 um. (c, d)
Analogous results for underdamped dynamics simulated according to
Eq. (77) for 1000 trajectories with an Euler integration scheme with
time step dt = 0.02, total time 10, initial positions xo = (0, 0)7, and
Maxwellian initial velocities vq (i.e., zero-mean Gaussian with vari-
ance kgT), evaluated with Gaussian coarse-graining window around
x = (0.1, 0)". The observables in (a) and (c) and in (b) and (d) relate
to the predicted analytical curves in Figs. 3 and 6(c), respectively,
but now for completely different underlying dynamics. We note
that processes not following an overdamped motion, in fact even
non-Markovian processes, also seem to feature the divergence of
fluctuations in the limit 2 — 0, at least down to relevant small values
of h > 0 (larger than the resolution yet small enough to display
impractically large fluctuations to be experimentally useful).

distribution indeed exists, then it does so only as a scaling
limit with A — 0 and ¢t — oo simultaneously.

X. OUTLOOK BEYOND OVERDAMPED DYNAMICS

In this section we give a brief outlook on the relevance
of our findings in the limit 4~ — O for processes that are not
described by purely overdamped dynamics. In particular, we
highlight that although in physical systems the assumption
of overdamped dynamics breaks down at very small time
or length scales (which often may not be observable), the
predicted divergence of fluctuations in the limit # — 0 does
not break down, or at least it remains true for sufficiently small
finite i that empirical densities and currents attain numerically
very large values, i.e., effectively diverge. We emphasize that
this section only establishes an outlook that underscores the
experimental relevance of our approach, but does not contain
quantitative theoretical results. Note that beyond the examples
given here, the results in the limit # — 0 also apply to Markov
jump processes as illustrated in the Supplemental Material of
Ref. [58].

To go beyond the assumption of Markovian overdamped
motion assumed in Eq. (4), Fig. 9 depicts the fluctuations of
the empirical density and current for two very different types
of stochastic dynamics. In Figs. 9(a) and 9(b) we evaluate the
functionals in Eq. (1) with a Gaussian window function from
Eq. (3) for particle-tracking data in living cells that was found

to be well described by a two-state fractional Brownian mo-
tion [85-87]. The latter in particular is non-Markovian with
subdiffusive antipersistence on a given time scale. We observe
that, even though the assumption of Markovian overdamped
motion in Eq. (4) is obviously violated (on some time and
spatial scales), and thus the results of our work do not nec-
essarily apply, we still find divergent fluctuations in the limit
of small coarse-graining scales 4. Note that the resolution of
the measurement is 4 = 10~ xm [85]. In Figs. 9(a) and 9(b)
we observe that even for & above this resolution limit the
fluctuations approach impracticably large values. Therefore,
we propose that in general scenarios (e.g., in this experimental
setup that extends way beyond the discussed overdamped dy-
namics) coarse-graining empirical densities and currents may
even in the case of very good statistics be necessary to obtain
experimentally meaningful values with limited fluctuations.

In Figs. 9(c) and 9(d) we similarly evaluate the coarse-
grained empirical density and current for two-dimensional
underdamped harmonically confined Langevin dynamics with
friction constant £ (setting for convenience the mass m = 1
and temperature k3T = 1) simulated by integrating the equa-
tions of motion

dX[ - tht,
dv, = —&v,dt — x,dt + /26dW,. 77

This dynamics exhibits persistence on time scales around
or below m/& (i.e., the ballistic regime). Again we find in
Figs. 9(c) and 9(d) that the divergence predicted in the limit
h — 0 for overdamped dynamics is qualitatively preserved.
The quantitative order of divergence will depend on the de-
tails of the process. We hypothesize that on time scales 4>/D
(with diffusion constant D = kT /&) that are smaller that m /&
the ballistic regime will cause deviations from the predicted
divergence results in Ref. [58]. Following the arguments in
Sec. V, the expressions will still diverge since the probability
to hit points in (d > 2)-dimensional space becomes zero.

The influence of the details of the process, such as memory
effects and ballistic transport, constitutes an interesting direc-
tion for future research that, however, goes beyond the scope
of the present work. From the qualitative behavior found in
Fig. 9 we may already conclude that the relevance of coarse-
graining empirical densities and currents to ensure finite and
manageable fluctuations appears to be a quite general result,
exceeding beyond the overdamped dynamics discussed in this
work.

XI. CONCLUSION

In this extended exposé accompanying the Letter [58] we
presented the conceptual and technical background that is
required to describe and understand the statistics of the empir-
ical density and current of steady-state diffusions, which are
central to statistical mechanics and thermodynamics on the
level of individual trajectories. In order to gain deeper insight
into the meaning of fluctuations of the empirical density and
current we made use of a generalized time-reversal symmetry.
We carried out a systematic analysis of the effect of a spatial
coarse graining. A systematic variation of the coarse-graining
scale in an a posteriori smoothing of trajectory data was
proposed as an efficient method to infer bounds on a system’s
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dissipation. Moreover, we discussed symmetries in the statis-
tics of the empirical current and density that arise as a result
of the (generalized) time-reversal symmetry. Throughout the
work we advocated the application of stochastic calculus,
which is very powerful in the analysis of related problems
and represents a more direct alternative to Feynman-Kac the-
ory and path-integral methods. The technical background and
concepts presented here may serve as a basis for forthcoming
publications, including the generalization of the presented
inference strategy to windows that are not centered at an
individual point, as well as the use of the correlations result
entering the CTUR inequality [56].

ACKNOWLEDGMENTS

We thank Diego Krapf and Matthias Weiss for kindly
providing traces from their particle-tracking experiments.

J

Financial support from Studienstiftung des Deutschen Volkes
(to C.D.) and the Deutsche Forschungsgemeinschaft (DFG)
through the Emmy Noether Program GO 2762/1-2 (to A.G.)
is gratefully acknowledged.

APPENDIX: DERIVATIONS IN THE LIMIT
OF NO COARSE GRAINING

We now take the limit to very small window sizes, i.e.,
the limit to no coarse graining, which will turn out to depend
only on the properties of the two-point functions Px(y, t’) for
small time differences ¢’ = t, — #,. This allows us to derive
the bounds in Eq. (51). We consider normalized window func-
tions such that for a window size 7 — 0 the window function
becomes a § distribution U,f’ (z) > 8(x — z).

1. Density variance

For the variance of the density var),(r) = (E(r)z)s — (E(z))&, we have [see Eq. (23)]

vars(t) = 2250 [Py (z.1') — ps(z)ps(2)].

(AD)

For window size 4 — 0 the mean remains finite such that i"*xU [ps(z)ps(Z')] ﬂ —2ps(x)2 = O(h"). Now consider

(A2)

TPy (2, 1)) = % / dt’(l — ?) / d’z / dZUN2) U )Py (2, 1).
0

Fort' > & > 0, Py(z,1') is bounded and thus [ d“z [ d?z/Ul(z)U}(z')Py(z,1") is bounded using ||Py (z, &)||s = O(h"). Contri-
butions diverging for # — 0 can thus only come from the t' — 0 part of the integral, i.e., from small time differencest’ = t, — t,
(but not small absolute time 7) in the Dyson series. To get the dominant divergent contribution, we can thus set 1 — '/t — 1 and
replace the two-point function Py (z, t') by the short time propagator Py(z, ') — ps(2')Gnori (2, t'|2) which reads (for simplicity
take D(z) = D1, which we generalize later) [78]

— 7 —F@)t 2
Gshort(z’ t/|Z,) = (47TDt/)7d/2 exp [_ [Z : (Z ) ] ]

4Dt
- z—717 2z-17) F@)
= 4Dty - o’
(4 Dr) exp 4Dt' 4Dt +0)
4Dty 1+ @2y F@) | ex fe—2F (A3)
4D P\ " e |
We write fort’ — 0,z — 72 — 0,
Gunona = @Dy 12| 1+ (2 — 2 . F(z) | ex _f2—2f
short,2 = 2D P 4Dt s
_ [z—2z7
Ganort3 = (4 Dty exp [‘W : (A4)
where Gghort2 can be replaced by Gporr 3 (since z — 2’ is small) if Gporr 3 does not give zero in the integrals.
For Gaussian window functions
h 2\—d/2 (z —x)?
U/(z) = 2nmh?) exp | — T , (AS)
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we obtain for the spatial integrals
/ d’z / ' U{ @)Uy (2)Goon 3(2, 1|2 )py(2)
= pu) [ @'z [ dZUN UL G112

_ _ (z—2 @ -2 @-2)
_ 28—d N—d /2 d d_s _ _ _
= p(x)27h?) " (4nDr’) /d z/d z eXp[ o i iDr }

2 2 2 d
- 2y—d —d/2 Xy =y
= POETIE DO (/ n / dvrexp [_ 2h2 2n2 4Dy

d

V2Dh?t" 4+ h*
2YTh22Dt + 2, ) PE 4
= p(X)(4)"V2(Dt' + h?*)~/2, (A6)

= ps(X)

This implies, throughout denoting by 2~ asymptotic equality in the limit # — O (i.e., equality of the largest order),

t
TEY 1Py (2,1) :(4n)—d/2_PSEX) / di' (D' + W2y~
0

h=d (Dnt)
d/ZPSt(X) x _D(l—%)-'_ ford#z

= (47{ )_ ) D(l_z%)
——logD(h ) 4 log (D) (Ll);’h ) otherwise
2 i
~ (47t)_d/2 Ps(X) « la= ford > 2 (A7)
Dt —log(h) ford =2.
This gives for Gaussian U with width £ the result
h=0 _apdps(x) [ ford > 2
() ~ (dg)” P ) A8
var, (1) = G TR X Dlog () ford = 2, (A%)

where only the numerical prefactor changes if we choose other indicator functions, since the relevant part (close to x) of any
finite size window function can be bounded from above and below by Gaussian window functions.

To extend to general diffusion matrices D(z), we first note that for 4 — 0 only the local diffusion matrix D(x) at position x
will enter the result, and, if the local D(x) is not isotropic we transform to coordinates where the diffusion matrix is diagonal,
D(x) = diag(D;(x), . .., D4(x)). One can check this by Taylor expanding around x in % in the local coordinate frame, isolating
the leading-order term, keeping in mind that D(z) was assumed to be smooth. In the local coordinates we then need to evaluate
the integral

¢ d
/O dr’ H(Di(x)t/ + K372, (A9)

i=1
whose integrand can be bounded by

(max(D;(x))' + k)2 < (Dy(x)r’ + 1*) ™2 < (min(D;(x)’ + )72, (A10)
J J

implying that in the final result D in Eq. (A8) can be replaced by D(x) € [min(D;(x)), max(D;(x))],

,\, a2 *Ps(X) 4ps(x) @ ford > 2
var, @) "% (4" D {ilzog(h) ford = 2. (ALD)

The entries D;(x) of the diagonalized D(x) are the eigenvalues; hence in general D(x) € [A(X)min, A(X)max] is bounded by the
lowest and highest eigenvalues A(X)min and A(X)max of the matrix D(x). This proves the density variance result in Eq. (51).

2. Correlation of current and density

Now consider the small-window limit for correlations with x =y defined as CXx (t) = (JU (t),o,ﬁf 1)) — (ﬁ(r))s(w(t))s,
given according to Eq. (45) by

Cy (1) = IV [1.Pr (2. 1) + 5iPu( 1) — 25s(2)py(2)]. (A12)
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Recall that jz =F(z) — D(z)V,. As always the term involving the mean values is finite for 7 — 0. We first look at
I,’;XU [JzPz (z,t')], again first for constant isotropic diffusion D(z) = D1
Here we have to use Ggnort 2 [see Eq. (A4)], since the integrals over Gyt 3 vanish. Hence consider

1 [ t 2
! / dt’(l _ 7) / a4 / 44U DU )Py (1)
0

PSEX)/ dt//ddZ/ddZ/U,f'(z)U,f‘(Z’)[F(z) — DV, ]G 2(2, 1'|2), (A13)
0

U 5Py (2, 1)]

[

where we can use 70,V [F(z)Py(z, t')] = F(x)ILV [Py (z,t')] = F(x)x Eq. (A7) and we compute

. 1 [z 27 apF@) [ [2-2P
A N—d/2 / ’ N—d/2
ViGshort 2(Z, t'|2') = (4 Dt") / |:1 + E(Z —7) -F(z )] V,exp |:— ADr i| + (4nDt'y~Y D exp T,

- 1 —7 z—27] . F@) [z — 771
= —nDt)"?|1 —7)-F — 4x Dty P22 =2
(4w Dr) [ top ) k@ )} 2Dr’ eXp[ 4Dr’ }’L( R I d T,

(A14)

[z—2T*

By symmetry, the spatial integrals over (z — ') exp[— 5>

] vanish and we are left to compute
-D / d’z / d'ZU{ @Uy (@) VsGion2(2,'|2))

_ [(x—y)-FMIx—y) F@) [z 27
~ _ n—d/2 d d _ _
~ —D(4nDt") /d x/d yU(x)U(y)( D2 + 2D )exp|: ADr :|, (A15)

where the second term gives ——F(X)I’;(U [Py (z,t")]. The remaining term, noting that F(z') >~ F(x) and integrating out all
directions except k for the F;(x) component [by symmetry (z; — z:)(z; — z}) integrates to zero if i # j], becomes

47D’y 4/2 P
% / 4’z / dZ7UMN UM (2 — 7)) - FX)|(z — 7)) exp [—%]
F(x)
4Dt’ le/dle (ZI)U (Zl)(Zl _11) Gihort, 3,0ne— dlm(Zlyt |Z1)
F Dh*t’ F(x)h?
- (X? - x) . (A16)
Dt [ (Dr 4+ h?):  AJT (DY + h?)?
This term is subdominant as we see from the time integral
5 F(x) - psFx)I* [ _3
ItV [-DV,Py(z,1')] =~ —TI;;(U [Py (z,t")] + 547 /0 dt'(Dt' + h*)":
Bl
F
~_ (X)I’ 1Pz, 1)]. (A17)
Hence, overall we get
t,U 3 / (X) t,U
T 3oPy (2, 1)) = —— 1LV [Py (z, 1)) (A18)

The generalization to nonconstant or nonisotropic D(z) only changes T U[Pz/ (z,1")] but Eq. (A18) is retained.
Now consider I L]iP (z', t")]. Since this involves derivatives of both G and pjs (at the initial point) we instead take the form
i =@/ ps(2) +DPS(Z)VZPS(Z) !'such that j;P,(z, ') = [js(z) + Dps(2)V,1G(Z , t'|2), giving

LGP )] = % / dr’(l —~ t;) / d'z / d7UMz)UMNZ)jo(2) + Dp(2)V,1G(Z , 1'|z)
0

i
N Ds(X)

t
TLUIP,, )] + Dpy(x) / dr / d'z / AU DU WV, Gona @ 112), (AL9)
0
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where [note that Gehore,3(2, 1'|2) = Gshort 3(Z, t'|2)]

_ 1 [z 2T _ap—F@) [z—27]
ViGnon2(2,1'[2) = (47 Dr') ‘”2[1 + 5<z/—z>-F(z/)}vz exp [‘W] + (D) exp | -

= —@xDy | 14 (z—z) F) |2 exp _lz—2T @) (A20)
2D¢’ 4Dt ap e nEn

As before, asymptotically only the last term contributes, giving

t
0GP, 1)) = Ji(x )IfU[P (@, 1")] + Dps(x) / dr' / d’z / dZUN2) U2 )V,Gapon 2, V' |2)
0

ps(x) ™

~ ) FUUP,(Z 1')] + Dps(x) / dr’ / dz f d"z/Uf(z)U,f’(z/)_F(Z/)
Ps( X) 0 2

[h

ps(x) 2

Gshort,3(z/7 t/|Z)

}I’ YIP,(Z, ). (A21)

Overall, this gives for the correlations (having the same form for anisotropic diffusion)

=0 5(X) 4,y js ()
) = Ixx [P,(Z',1)] > ———varX(¢). (A22)
ps(X) 2ps(x) *
This proves the correlation result in Eq. (51).
3. Current variance
We now turn to the current variance [see Eq. (49)] for x =y,
2 S A A% , . .«
varj(t) = - / dzTiD@) UL (2)UL 2)ps(2) + 2150 [§, - 5o Pu (2. 1) — §s(2) - §s(2)]. (A23)
The first term for 2z — 0 gives
2TrD(z) , 2TrD(x)
— / AU (U (1)py(2) = ————p(OU{ (%), (A24)

where U'(x) o< h™? is the height of the §-function approximation, e.g., Ul (x) = (27r)~4/2h~¢ for Gaussian U}". In the derivation
(see Sec. IV) this term occurred from cross correlations dW;, dW;, = dt’ # 0 in the noise part; hence it can be seen to come from
zero time differences t' = f, — #; = 0. Such a term does not appear in the density variance or density-current correlation since
there dt;dt, = 0 and dt,dW,, = 0 would occur instead of dW,,dW,,.

Due to the fast 4~¢ divergence, the dominant limit does not depend on terms with no or only one derivative since they were
shown to scale at most as #>~¢. The only new term is the second derivative, for which we see that

t t
/ dt/sz : (_vz’)Gshort,S(Z, l‘/|Z/) = / DVZZGshort,S (zv [/|Z/)
0 0

t
Z/ dt/at’Gshort,S(th/|Z/)
0

= [Gshort,3 (Zv t/|z/)]i)
= Gshon3(2, 1|2') — 8(z — 7)), (A25)

such that
A UR / SN L d_ryrhgoNrrh "I
Lo e dybe (2, 0] = =D7=—= | di" [ d"z [ d"2U{ @)U (@)Vy - Vo Gspont3(2, 1'12)
0

~ —D@/ddz/ddz’U,f(z)Uh(z’)a(z—z/) ~ pS( )U”( X). (A26)
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FIG. 10. (a) One-dimensional Brownian motion in a harmonic potential [see Eq. (2) in 1d with parameters r = V2 and D = 1] starting
at xo = 0 and ending at x;op = 0.62. (b) Time-integrated density of the trajectory in (a) as a function of x for normalized window function
Uxh @) =hn" 1 jx—vi<n/2 With width 2 = 0.3. The dashed line shows the expectation value of the time-integrated density conditioned on xy = 0.
(c) As in (b) for width &2 = 0.001. (d) Time-integrated current for window as in (b) for width 2 = 0.3. The dashed line shows the expectation
value of the time-integrated current conditioned on xy = 0. (e) As in (d) for width & = 0.001.

For nonisotropic and possibly nonconstant D(z) # D1, we again note that for # — 0 only D(z) at z = x matters, and move to

the basis where D = D(x) is diagonal, where we have

DV, .V, —> ZDZB 9.,

The operator we need is V,DV, =, D;d,d., so we bound one of the D; in Dl.2 by D’

d
70z, (A27)

i=1

€ [min(D;), max(D;)] such that we get

00, - §h Py )] ~ /p‘( P i, (A28)
Since TrD = ), D; we have D = TTD_ID € [min(D;), max(D;)] and we can write
. . 2TD , o ps( ) 2D/

vary(r) ~ TPS(X)U (x) =20 ——U"(x) = ps(xX)(d — DU (x), (A29)

where U (x) o« h=¢. This proves the current variance result in Eq. (51). Thus, we see that the current fluctuations diverge for

h — 0, except in one-dimensional space where d — 1 = 0.

4. Limit of no coarse graining in the one-dimensional case

In the one-dimensional case, the variance of empirical
density and current remain finite for A — O which al-
lows to take the limit to U'=(x') = §(x — x’). In terms
of the stochastic integrals, the one-dimensional case is
much simpler, since any one-dimensional function Uxh(x’)
possesses an antiderivative—a primitive function U"(x') =
JF UMx")dx" such that Ul(x") = dU(x'). This implies for
the Stratonovich integral that

17(1) = / U)o dxe = Usn() = Us(xo). (A30)
0

(

Thus, the stochastic current is no longer a functional but only
a function of the initial and end points of the trajectory. Its
moments are directly accessible, e.g.,

— 1
(7 @F), = (1) = Us o)),
=t12 / dz / dz/ Us(2) — U@ Po (2, 1).

(A31)
If U is Gaussian, then U, is the error function such that

(U (x) — U (»)]* < 1 and thus ([JY(2)]?)s < 1/¢%. This also
holds in the limit of a § function where the primitive function
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becomes a Heaviside step function and we get that the current
can only be zero or +¢72 (see Fig. 10). The current defined
with a § function at x simply counts the net number of cross-
ings through x such that all crossings except maybe one cancel
out. Note that the reasoning above only holds for the current
defined with a Stratonovich integral—the same definition with
an It6 or anti-It6 integral would give a divergent current for the
8 function.

To obtain a 1/¢ term as in large deviations one would need
to have a steady-state current which could, e.g., be achieved
by generalizing to periodic boundary conditions. Then the

current would depend on the initial and final points and, in
addition, also on the net number of crossings of the full inter-
val between the boundaries of the system.

Figure 10 shows the time-integrated density and current,
i.e., the empirical density and current in Eq. (1) multiplied
by the total time ¢. Fluctuations remain in the same order of
magnitude for # — 0 [see Figs. 10(c) and 10(e)]. We see that
the time-integrated current is bounded by 1 which is due to
the fact that it simply counts the net number of crossings.
According to Eq. (A30) it only depends on the initial point
X and end point x;, in this case xg.
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