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We present general results on fluctuations and spatial correlations of the coarse-grained empirical
density and current of Markovian diffusion in equilibrium or nonequilibrium steady states on all timescales.
We unravel a deep connection between current fluctuations and generalized time-reversal symmetry,
providing new insight into time-averaged observables. We highlight the essential role of coarse graining in
space from mathematical, thermodynamical, and experimental points of view. Spatial coarse graining is
required to uncover salient features of currents that break detailed balance, and a thermodynamically
“optimal” coarse graining ensures the most precise inference of dissipation. Defined without coarse
graining, the fluctuations of empirical density and current are proven to diverge on all timescales in
dimensions higher than one, which has far-reaching consequences for the central-limit regime in
continuous space. We apply the results to examples of irreversible diffusion. Our findings provide new
intuition about time-averaged observables and allow for a more efficient analysis of single-molecule
experiments.
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Single-molecule experiments [1–5] probe equilibrium
and nonequilibrium (i.e., detailed balance violating) proc-
esses during relaxation [6–12] or in steady states [13–21]
on the level of individual trajectories. These are typically
analyzed by averaging along individual realizations yield-
ing random quantities with nontrivial statistics [22,23].
Time-averaged observables, in particular generalized cur-
rents, are central to stochastic thermodynamics [16,24–28].
Such time-average statistical mechanics focuses on func-
tionals of a trajectory ðxτÞ0≤τ≤t, in particular the empirical
density (or occupation time [29–37]) ρxðtÞ and current
JxðtÞ at a point x. Necessary in the analysis of laboratory
[1,38] or computer [39] experiments with a finite spatial
resolution, and useful for smoothing data a posteriori to
improve statistics, the density and current should be defined
as spatial averages over a window Uh

xðx0Þ at x with coarse-
graining scale h

ρUx ðtÞ≡ 1

t

Z
t

0

Uh
xðxτÞdτ; JUx ðtÞ≡ 1

t

Z
τ¼t

τ¼0

Uh
xðxτÞ∘dxτ;

ð1Þ
where ∘dxτ denotes the Stratonovich integral. These
observables are illustrated in terms of sojourns of the

window in Figs. 1(a) and 1(b). Choosing the window
Uh

x as a bin, the density and current observables appear as
histograms along single trajectories over occupations of or
displacements in the bin that fluctuate between different
realizations [see Figs. 1(c)–1(e) and companion extended
paper [40] ]. Aside from coarse graining, the integration
over Uh

xðx0Þ may also represent a pathwise thermody-
namic potential, e.g., heat dissipation (the force integrated
along a stochastic path

R
τ¼t
τ¼0 FðxτÞ · ∘dxτ [24] ) or gener-

alized currents [18,27,28,41]. Normalized windows, i.e.,R
Uh

xðzÞdz ¼ 1, yield ρUx ðtÞ and JUx ðtÞ that are estimators of
the probability density and current density, respectively.
The usually defined empirical density ρxðtÞ and current
JxðtÞ [14,42–50] correspond to no coarse graining, i.e.,
Uh¼0

x ðzÞ being Dirac’s delta function δðx − zÞ.
Reliably inferring from noisy trajectories whether a

system obeys detailed balance, notwithstanding recent pro-
gress [1,2,38,39,51–55], remains challenging. Quantifying
violations of detailed balance is a daunting task. One can
quantify broken detailed balance through violations of the
fluctuation dissipation theorem [19,56,57], which requires
perturbing the system from the steady state. One can also
check for a symmetry breaking of forward and backward
transition-path times [53,54], measure the entropy produc-
tion [51,55,58,59], or infer steady-state currents [see arrows
in Fig. 1(c)] directly [1,38], all of which require substantial
statistics. However, single-molecule experiments often can-
not reach ergodic times, have a finite resolution, and only
allow for a limited number of repetitions. This leads to un-
certainties in estimates of observables such as steady-state
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currents [see Figs. 1(d)–1(f). Notably, fluctuations of ρUx
and JUx encode information about violations of detailed
balance [even where the mean current or its components
locally vanish; see Figs. 1(d) and 1(e)], which a priori is
hard to interpret.
Current fluctuations have a noise floor—they are

bounded from below by the “thermodynamic uncertainty
relation” [16–18] which in turn allows for bounding
dissipation in a system from below by current fluctuations
[26,60–62]. As we show in Fig. 1(f) (see Ref. [40] for a
multiwell potential) the precision of inferring dissipation
typically depends nonmonotonically on the coarse-graining
scale h—given a system, a point x, and trajectory length t
there exists a thermodynamically “optimal” coarse graining
due to a diverging variance for h → 0 and vanishing mean
for large h. Moreover, ρx and Jx without coarse graining
turn out to be ill defined.
In systems and on timescales where dynamics is rea-

sonably described by a Markov jump process on a small

state space, current fluctuations are well understood
[15,16,46,63–77]. However, dynamics typically evolves
in continuous space, and a continuous dynamics observed
on a discrete space is not Markovian [78,79] (see Ref. [80]
for a quantitative confirmation). An accurate Markov jump
description may require too many states to be practical, and
is known to fail when considering functionals as in Eq. (1)
[79]. We therefore focus on continuous space, where, with
exceptions [14,18,86,87], insight is limited to hydrody-
namic scales [66,68,88] and large deviations [42–50]. A
comprehensive understanding of fluctuations and spatial
correlations of density and current in continuous space
remains elusive, and the interpretation of the typical
definition without coarse graining in dimensions d ≥ 2
apparently requires a revision, see below.
Here, we provide general results on the empirical density

and current in overdamped diffusive steady-state systems,
revealing a mathematical, thermodynamical, and experi-
mental necessity for spatial coarse graining. When defined
in a point, fluctuations are proven to diverge in spatial
dimensions above one, contradicting existing central-limit
statements. We explain why a systematic variation of the
coarse-graining scale provides deeper insight about the
underlying dynamics and allows for improved inference of
the system’s thermodynamics. Exploiting a generalized
time-reversal symmetry we provide intuition about fluctu-
ating currents along individual trajectories. Nonvanishing
density-current correlations are shown to unravel violations
of detailed balance from short measurements. Our results
allow for a more consistent and efficient analysis of
experiments, and provide new insight into nonequilibrium
steady states and their thermodynamics.
Setup.—We consider time-homogeneous overdamped

Langevin dynamics [81,89] in d-dimensional space evolv-
ing according to the stochastic differential equation
dxτ ¼ FðxτÞdτ þ σdWτ, where dWτ is the increment of
a d-dimensional Wiener processes (i.e., white noise) with
covariance hdWτ;idWτ0;ji ¼ δðτ − τ0Þδijdτdτ0. The Fokker-
Planck equation for the conditional probability density with
initial condition Gðx;0jyÞ¼δðx−yÞ reads ð∂t þ∇x · ĵxÞ×
Gðx; tjyÞ ¼ 0 with current operator ĵx ≡ FðxÞ − D∇x,
where D≡ σσT=2 is the positive definite diffusion matrix.
All results directly generalize to multiplicative noise (see
Ref. [40]). The drift FðxÞ is assumed to be sufficiently
smooth and confining to ensure the existence of a steady-
state density Gðx; t → ∞jyÞ ¼ psðxÞ and, if detailed bal-
ance is violated, a steady-state current jsðxÞ≡ ĵxpsðxÞ≠0
[81,89].
Correlations and fluctuations from paths.—To investi-

gate the nontrivial statistics of the observables in Eq. (1) we
now outline the derivation detailed in [40] of results
for mean values, correlations, and fluctuations assu-
ming steady-state initial conditions. Let h·is denote the
average over all paths (xτ) evolving from ps. The
mean values hρUx ðtÞis ¼ R

dzUh
xðzÞpsðzÞ and hJUx ðtÞis ¼R

dzUh
xðzÞjsðzÞ [40] are time-independent estimators of the

FIG. 1. (a) Diffusive trajectory traversing an observation
window Uh

0ðx; yÞ ¼ 1 if jxj; jyj ≤ 1=2 and Uh
0ðx; yÞ ¼ 0 other-

wise, with time running from dark to bright. Arrows denote
contributions δxs

i ¼ ðδxsi ; δysi Þ of the two sojourns in Uh
0 between

times τ−i and τþi (see Eq. (A1) in Appendix A). (b) Corresponding
tρU0 ðtÞ and components of tJU0 ðtÞ from Eq. (1) as functions of t.
(c) Two trajectories ðxτÞ (gray lines) of length t ¼ 5 in confined
rotational flow with Ω ¼ 5 (arrows depict the steady-state current
js). The red cross is the reference point xR ¼ ð1; 0Þ considered in
(d)–(f). Coarse-grained density (d) and x current (e) for a
Gaussian window Uh

xR with h ¼ 0.3. Fluctuations of ρUx and

JUx;y ≡ ðJUxRÞx;y encode violations of detailed balance even where

JUx vanishes. (f) Squared relative error of JUy for Uh
xR

as a function
of h (gray) bounded by the thermodynamic uncertainty relation
(TUR; blue). A variance diverging as h−2 (dashed) as h → 0 and
vanishing mean for h ≫ 1 allow for intermediate h optimizing the
TUR-bound and thus the inferred dissipation.
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steady-state density and current coarse grained over a
window Uh

x. In contrast to the mean values, covariances
display a nontrivial time dependence and therefore contain
salient features of the dynamics. We define the two-point
steady-state covariance as

Cxy
ABðtÞ≡ hAxðtÞByðtÞis − hAxðtÞishByðtÞis; ð2Þ

where A and B are either ρU or JU, respectively. We refer to
the case A ≠ B or x ≠ y as (linear) correlations and to
A ¼ B with x ¼ y as fluctuations with the notation
varxAðtÞ≡ Cxx

AAðtÞ. Recall that varxρðtÞ and varxJðtÞ quantify
(experimentally relevant) fluctuations of histograms along
single trajectories [see Figs. 1(d) and 1(e)], and varxJðtÞ is at
the heart of the thermodynamic uncertainty relation [see
Fig. 1(f)].Moreover,Cxy

JρðtÞwas recently found to play a vital
role in stochastic thermodynamics [28]. AllCxy

ABðtÞ are easily
inferred from data, but lack physical understanding. We now
give Cxy

ABðtÞ a physical meaning in terms of the statistics of
paths pinned at end points z and z0 (see Fig. 2). Introduce

h·ixt2
¼z0

xt1
¼z ≡ hδðxt1 − zÞδðxt2 − z0Þ·is, the Stratonovich incre-

ment ∘dxτ ≡ xτþdτ=2 − xτ−dτ=2, and the operator

Î t;U
xy ½·�≡ 1

t2

Z
t

0

dt1

Z
t

t1

dt2

Z
dzUh

xðzÞ
Z

dz0Uh
yðz0Þ½·�; ð3Þ

where ½·� represents functions of t1, t2, z, z0, and with-
out loss of generality we choose the conventionR
t
t1
dt2δðt2 − t1Þ ¼ 1=2. Upon plugging in mean values

hAxis and hByis, the definition (2) becomes [40] Cxy
ρρðtÞ ¼

Î t;U
xy ½Ξzz0

1 − 2psðzÞpsðz0Þ� for density-density correlations,

Cxy
JρðtÞ¼ Î t;u

xy ½Ξzz0
2 −2jsðzÞpsðz0Þ� for current-density correla-

tions, and (see Ref. [90]) Cxy
J·JðtÞ¼ Î t;U

xy ½Ξzz0
3 −2jsðzÞ·jsðz0Þ�

for current-current correlations, where we defined

Ξzz0
1 ≡ h1ixt2¼z0

xt1¼z þ h1ixt2¼z
xt1¼z0 ;

Ξzz0
2 ≡ h∘dxt1i

xt2¼z0
xt1¼z

dt1
þ
h∘dxt2i

xt2
¼z

xt1
¼z0

dt2
;

Ξzz0
3 ≡ h∘dxt1 · ∘dxt2i

xt2¼z0
xt1¼z

dt1dt2
þ
h∘dxt1 · ∘dxt2i

xt2¼z
xt1¼z0

dt1dt2
: ð4Þ

Equations (3) and (4) tie Cxy
AB to properties of pinned paths,

weighted by Uh
xðzÞ, Uh

yðz0Þ and integrated over space and
times 0 ≤ t1 ≤ t2 ≤ t. In contrast to the somewhat better
understood density-density covariance [23,29,91], current-
density and current-current covariances involve (scalar prod-
ucts of) more subtle Stratonovich increments along pinned
trajectories, explained graphically in Fig. 2 and further
investigated in the following.
Correlations and fluctuations from two-point densi-

ties.—To obtain quantitative results, we evaluate the

averages h·ixt2¼z0
xt1¼z in terms of two-point functions

Pzðz0; t2 − t1Þ≡Gðz0; t2 − t1jzÞpsðzÞ. For density-density
correlations Cxy

ρρ the result is readily obtained from Eq. (4)

using h1ixt2¼z0
xt1¼z ¼ Pzðz0; t2 − t1Þ. Conversely, Stratonovich

increments are difficult to understand and hard to evaluate,
particularly initial-point increments ∘dxt1 because they are
correlated with future events.

FIG. 2. (a) Two sample trajectories in a shear flow FshðxÞ (gray arrows) with Stratonovich displacements ∘dxt in the initial xt1 ¼ z and
final point xt2 ¼ z0 for fixed t1 < t2 depicted by purple and yellow arrows, respectively. Time is running from dark to bright.
(b) Trajectories as in (a) but running from xt1 ¼ z0 to xt2 ¼ z. (c) As in (b) but with the inverted shear flow −Fshðx0Þ (blue background
arrows) and initial and final increments depicted by gray and blue arrows. (d) Ensemble of paths from xt1 ¼ z to xt2 ¼ z0 contributing to

Pzðz0; t2 − t1Þ. The average initial displacement h∘dxtixt2¼z0
xt1¼z is depicted by the black-purple arrow, and the mean path z → z0 in time

t2 − t1 by the gray gradient line. (e) As in (d) but corresponding to (b) instead of (a). (f) As in (e) but with the reversed shear flow as in
(c). (g), (h) Since the shear flow breaks time-reversal symmetry, initial-point increments in (a) cannot be obtained by inverting final-point
increments in (b). By dual-reversal symmetry initial-point increments follow from inverting the final-point increments in the inverted
shear flow in (c), which explains initial point increments ∘dxt1 in current-density correlations and current (co)variances via the easier and

more intuitive final point increments ∘dx−js
t2 .
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To gain intuition we examine a two-dimensional shear
flowFshðxÞ ¼ 2xŷ shown in Fig. 2, depicting initial-, ∘dxt1 ,
and end-point, ∘dxt2 , increments along forward [Fig. 2(a)]
and time-reversed [Fig. 2(b)] pinned trajectories between
times t1 < t2 and their ensemble averages [Figs. 2(d) and
2(e)]. In the companion extended paper [40] we show that

h∘dxt2i
xt2¼z0
xt1¼z ¼ ĵz0Pzðz0; t2Þdt2, i.e., mean displacements

are given by the Fokker-Planck current as expected.
Moreover, when detailed balance holds, time-reversal

symmetry implies Pð∘dxt1 j
xt2¼z0
xt1¼z Þ ¼ Pð−∘dxt2 j

xt2
¼z

xt1
¼z0 Þ,

whereas under broken detailed balance, e.g., due to the
shear flow in Fig. 2, this ceases to hold. We may, however,

employ a generalized time-reversal symmetry—the dual-
reversal symmetry (see Refs. [27,40,92,93])—implying

Pð∘dxt1 j
xt2

¼z0
xt1

¼z Þ ¼ Pð−∘dx−js
t2 jxt2

¼z
xt1

¼z0 Þ connecting ensembles

with currents js and −js [see Figs. 2(c), 2(f), and 2(g)]. Via
this generalized time-reversal symmetry we circumvent the
correlation of ∘dxt1 with the future. To materialize this we

isolate the irreversible drift in ĵx ¼ psðxÞ−1jsðxÞ−
psðxÞD∇xpsðxÞ−1, and introduce the dual current operator
ĵ‡x ≡ −ĵ−jsx ¼ psðxÞ−1jsðxÞ þ psðxÞD∇xpsðxÞ−1, render-
ing all terms in Eq. (4) [illustrated in Fig. 2(h)] tractable,
and ultimately leading to our main result

Cxy
JρðtÞ ¼ Î t;U

xy ½ĵzPz0 ðz; t0Þ þ ĵ‡zPzðz0; t0Þ − 2jsðzÞpsðz0Þ�;

Cxy
J·JðtÞ ¼

2TrD
t

Z
dzUh

xðzÞUh
yðzÞpsðzÞ þ Î t;U

xy ½ĵz · ĵ‡z0Pz0 ðz; t0Þ þ ĵz0 · ĵ
‡
zPzðz0; t0Þ − 2jsðzÞ · jsðz0Þ�; ð5Þ

where the first term in Cxy
J·JðtÞ arises from t1 ¼ t2 [40],

and the operator Î t;U
xy simplifies t−2

R
t
0 dt1

R
t
t1
dt2 →

t−1
R
t
0 dt

0ð1 − t0=tÞ since Eq. (5) depends only on time
differences t0 ≡ t2 − t1 ≥ 0. Notably, written in this sim-
plified form Eq. (5) establishes Green-Kubo relations
[94,95] connecting covariances Cxy

AB to time-integrals of
generalized correlation functions.
Given the two-point function Pzðz0; t0Þ, Eq. (5) gives the

correlation and fluctuations of observables defined in
Eq. (1). In practice, Pzðz0; t0Þ may not necessarily be
available. However, the theoretical result Eq. (5) never-
theless allows us to draw several conclusions, in particular
by considering special cases and limits. At equilibrium

ĵ‡z ¼ −ĵz, implying Cxy
JρðtÞ ¼ 0. A nonzero Cxy

JρðtÞ at any
time t is thus a conclusive signature of broken detailed
balance. Moreover, at equilibrium Cxy

J·JðtÞ does not vanish
although hJUx is¼0. When js≠0, varxJðtÞ≡ Cxx

J·JðtÞmay dis-

play maxima where PsðxÞ has none [see Figs. 3(a)–3(c)],
and an oscillatory time dependence due to circulating
currents [see Fig. 3(d)], both signaling nonequilibrium.
For a more detailed discussion of Eq. (5), see Ref. [40].
Necessity of coarse graining.—Of particular interest is

the dependence of fluctuations on the coarse-graining
length scale h (see Figs. 1(f) and 3(c) and Ref. [40] ).
Importantly, the limits h → ∞ and h → 0 are generally
accessible from Eq. (5) independent of the detailed dynam-
ics (see Ref. [40]). The limit h → 0 with Uh

xðzÞ → δðx − zÞ
corresponds to no coarse graining, i.e., the observables
Eq. (1) are evaluated in a single point z. In this limit, the

FIG. 3. tvarxJ as a function of the radius jxj in the harmonically
confined rotational flow in Fig. 1(c) for increasing Ω with
Gaussian Uh

x with width h at (a) t ¼ 0.2 and (b) t ¼ 1; lines
depict Eq. (5) and symbols simulations [80]. (c) tvarxJ at t ¼ 1 for
Ω ¼ 10 (full lines) and equilibrium Ω ¼ 0 (dashed lines), for
various h decreasing along the arrow. Inset: divergence of varxJ as
h → 0 at jxj ¼ 1; the dashed line depicts Eq. (6). Note the
logarithmic scales. (d) varxJ as a function of t for very strong
driving Ω ¼ 50; inset: (d) on logarithmic scales alongside the
central-limit scaling ∝ t−1.
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variance and covariance of ρUx and JUx for d ≥ 2 and any t
behave as [40]

varxρðtÞ ≃h→0 kpsðxÞ
t

×

� h2−d
d−2 for d > 2;

− ln h for d ¼ 2;

Cxx
Jρ ðtÞ ≃

h→0
jsðxÞvarxρðtÞ=2psðxÞ;

varxJðtÞ ¼h→0 k0psðxÞ
t

ðd − 1Þh−d þOðt−1ÞOðh1−dÞ; ð6Þ

where ≃ denotes asymptotic equality, and k, k0 are con-
stants depending on D and Ux [40]. Therefore, taking

Uh
xðzÞ→h→0

δðx − zÞ as implicitly assumed in [23,42–50] we
find for d ≥ 2 that varxρ;JðtÞ, Cxx

Jρ ðtÞ diverge for all t [see
Fig. 3(c)]. Equation (6) also applies to Markov-jump
processes defined on a grid with spacing h → 0; for details
and an example see Ref. [80]. The divergence can be
understood intuitively [40], e.g., based on the following
argument.
Note that the probability that point z is hit by the

trajectory ðxτÞ0≤τ≤t, i.e., that there is a τ ∈ ½0; t� such that
xτ ¼ z, delicately depends on the spatial dimensionality d.
This probability is positive for d ¼ 1 but zero in higher-
dimensional space. That is, Pð ∃ τ ∈ ð0; t�∶xτ ¼ zÞ ¼ 0 for
diffusion in d ≥ 2 [40,96]. Mean values remain finite in the
limit h → 0, namely hρxðtÞis ¼ psðxÞ and hJxðtÞis ¼ jsðxÞ
in agreement with existing literature [14,45–50,87]. Since
the probability to hit the point z is approaching zero as
h → 0, this implies that the mean is precisely balanced
by the infinite contribution of the delta function
Uh

xðzÞ → δðx − zÞ, as in hδðxτ − xÞis ¼ psðxÞ. Loosely
speaking, here “0 ×∞” is finite. One may therefore expect
diverging second (and higher) moments when h → 0 as this
argument extends to “0 ×∞2 ¼ ∞.” The argument is not
limited to overdamped motion but seems to extend to a
larger class of stochastic dynamics, such as underdamped
diffusion and experimental data on anomalous intracellular
transport [97] shown in Fig. 9 of Ref. [40].
We hypothesize that not only the moments diverge, but

that the density and current cannot even be consistently
defined for h ¼ 0. Moreover, the limits h → 0 and t → ∞
do not commute. This has important consequences for the
central-limit regime, i.e., statistics on longest timescales
(see Appendix B and [40]). Some coarse graining h > 0 is
therefore necessary for mathematical consistency and
anticipated central-limit properties.
Notably, for small windows Eq. (6) implies that fluctua-

tions (unlike correlations) carry no information about
steady-state currents jsðxÞ and thus violations of detailed
balance and thermodynamic properties such as the system’s
dissipation. In this limit fluctuations reflect only Brownian,
thermal currents that are invariant with respect to jsðxÞ—
systems with equal psðxÞ and D display identical fluctua-
tions [see Eq. (6) and Fig. 3(c)]. Recall that the dissipation

can be inferred from current fluctuations via the thermo-
dynamic uncertainty relation [16,17,26]. We now see
that only an intermediate coarse graining, such as the
“optimum” in Fig. 1(f), allows us to infer dissipation from
fluctuations. Moreover, spatial features of steady-state
currents [see Fig. 3(c)] are only revealed with coarse
graining. Some coarse graining h > 0 is thus necessary
to infer thermodynamic properties. In addition, divergent
fluctuations make it impossible to accurately infer densities
and currents without coarse graining from experiments.
Experiments also nominally have a finite spatial resolution.
Thus, coarse graining is also experimentally necessary.
Conclusion.—Leveraging Itô calculus and generalized

time-reversal symmetry we were able to provide elusive
physical intuition about fluctuations and correlations of
empirical densities and currents that are central to stochas-
tic thermodynamics. We established the so far overlooked
necessity for spatial coarse graining—it is required to
ensure mathematically well defined observables and the
validity of central-limit statements in dimensions d ≥ 2, to
improve the accuracy of inferring thermodynamic proper-
ties (e.g., dissipation) from fluctuations and to uncover
salient features of nonequilibrium steady-state currents
without inferring these individually [98–100], and is
unavoidable in the analysis of experimental data with a
finite resolution. Nonvanishing current-density correlations
were shown to be a conclusive indicator of broken detailed
balance, and may improve the accuracy of inferring
invariant densities [101] and dissipation far from equilib-
rium [28]. Our results allow for generalizations to nonsta-
tionary initial conditions or nonergodic dynamics, which
will be addressed in forthcoming publications.

Financial support from Studienstiftung des Deutschen
Volkes (to C. D.) and the German Research Foundation
(DFG) through the Emmy Noether Program GO 2762/1-2
(to A. G.) is gratefully acknowledged.

Appendix A: Density and current from sojourns.—In
general the density and current functionals measure the
(Uh

x-weighted) time spent and displacement accumulated in
the window Uh

x averaged over time. Specifically, when Uh
x

is the indicator function, Uh
xðzÞ ¼ h−d1Ωx

ðzÞ, of a region
Ωx centered at x with volume hd, we can write this
illustratively in terms of the sojourns of the window as
follows. Letting the times of entering and exiting said
window be τ−i and τþi , respectively, tρ

U
x ðtÞ corresponds to

the sum of sojourn times, τsi ¼ τþi − τ−i , and tJ
U
x ðtÞ the sum

of vectors δxs
i between entrance xτ−i

and exit xτþi
points,

that is,

tρUx ðtÞ ¼
1

hd
X
i≤Nt

ðτþi − τ−i Þ≡ 1

hd
X
i≤Nt

τsi ;

tJUx ðtÞ ¼
1

hd
X
i≤Nt

ðxτþi
− xτ−i

Þ≡ 1

hd
X
i≤Nt

δxs
i ; ðA1Þ
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where Nt is the number of visits of the window. Note that
Nt is almost surely either ∞ or 0, but the sum converges.
The points x0 or xt may lie within Uh

x for which we set
xτ−

1
¼ x0 and/or xτþNt

≡ xt. As a result of correlations

between xτ−i
and τsi as well as xτþi

and xτ−iþ1
, tρU and

tJU are in general not renewal processes. A realization of xτ

in Figs. 1(a) and 1(b) provides intuition about Eq. (A1).

Appendix B: Central-limit regime.—Since the observ-
ables defined in Eq. (1) involve time averages, their
statistics on the longest timescales is expected to be
governed by the central limit theorem. Indeed, for nonzero
h or in spatial dimension d ¼ 1 (in both cases we obtained
finite variances) on timescales t that are very large
compared to all timescales in the system, different parts
of a trajectory [e.g., the sojourns in Fig. 1(a) and Eq. (A1)]
become sufficiently uncorrelated such that the central limit
theorem implies Gaussian statistics. However, the diverg-
ing variance for h → 0 for d ≥ 2 prevents Gaussian central-
limit statistics on all timescales for the empirical density
and current defined with a δ function (i.e., without coarse
graining). Since the diverging part of the variance in Eq. (6)
has the dominant central-limit scaling ∝ t−1, the asymptotic

variance σ2A ¼t→∞
tvarxAðtÞ [where AxðtÞ denotes ρUx ðtÞ or

JUx ðtÞ] also diverges as h → 0. This implies that taking
t → ∞ first and then h → 0 also does not yield finite
variances. Moreover, note that the longest timescale in the
system becomes the recurrence time, which diverges as
h → 0. We hypothesize that a limiting distribution of AxðtÞ
only exists as a scaling limit where h → 0 and t → ∞
simultaneously in some d-dependent manner [40].
The central-limit regime is generally contained in the

framework of large deviation theory [42,48,102]. Because
of the divergent variance σ2A and the resulting breakdown of
Gaussian central-limit statistics, any large deviation prin-
ciple for empirical densities and currents without coarse
graining that predicts finite variances ceases to hold
in d ≥ 2.
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