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Abstract

We present technical results required for the description and understanding of
correlations and fluctuations of the empirical density and current as well as
diverse time-integrated and time-averaged thermodynamic currents of diffu-
sion processes with a general time dependence on all time scales. In particu-
lar, we generalize the results from Dieball and Godec (2022 Phys. Rev. Lett.
129 140601); Dieball and Godec (2022 Phys. Rev. Res. 4 033243); Dieball and
Godec (2022 arXiv:2206.04034 [cond-mat.stat-mech]) to additive functionals
with explicit time dependence and transient or non-ergodic overdamped dif-
fusion. As an illustration we apply the results to two-dimensional harmonic-
ally confined overdamped diffusion in a rotational flow evolving from a non-
stationary initial distribution.
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1. Introduction

‘Time-average statistical mechanics’ focuses on the study of additive functionals of stochastic
paths and is important in the analysis of single-particle tracking [1–3], large deviation theory
[4–8], and stochastic thermodynamics [9–16], to name but a few. The most important func-
tionals from a physical point of view include the ‘empirical density’ (also known as local or
occupation time) [17–26], time-integrated and time-averaged currents [4–7, 15, 16, 27–35],
and the time-averaged mean squared displacement (see e.g. [1, 2, 36–40]).

Fluctuations of time-averaged observables have a noise floor—they are bounded from
below by the dissipation in a system, which is embodied within the ‘thermodynamic uncer-
tainty relation’ (TUR) [10, 41–49]. One may fruitfully exploit this universal lower bound on
current fluctuations, e.g. to gauge the thermodynamic cost of precision [41, 50, 51], infer dis-
sipation from fluctuations [34, 35, 43, 44], or to derive thermodynamic limits on the temporal
extent of anomalous diffusion [52].

Recent works addressed fluctuations of additive functionals in transient non-equilibrium
systems [45–47], as well as in periodically [10, 48, 49] and generally driven systems [10].
Our aim here is to generalize the direct, stochastic-calculus approach we developed for steady-
state systems in [34, 35] to transients and systems as well as functionals with explicit time
dependence. Note that this includes non-ergodic systems (see e.g. [20, 25]).

The paper is structured as follows. We first set up the formal background and define the
additive functionals in section 2. In section 3 we evaluate the first moments. In section 4 we
present our main result—a Lemma that allows a direct evaluation of fluctuations and correl-
ations of general additive functionals in systems with explicit time dependence—and derive
general results for current fluctuations and current-density correlations. In section 5 we illus-
trate how to apply the newly developed results by evaluating current-density correlations in
overdamped diffusion in a rotational flow evolving from a non-stationary initial distribution.
We conclude with a brief outlook.

2. Set-up

Consider overdamped Langevin dynamics (for details on deriving the overdamped limit see
[53–55]) with possibly multiplicative noise and explicit time dependence, described by the
anti-Itô (or Hänggi–Klimontovich [56, 57]) stochastic differential equation

dxτ = F(xτ , τ)dτ +σ(xτ , τ)⊛ dWτ , (1)

with positive definite diffusion matrix D(xτ , τ) = σ(xτ , τ)σT(xτ , τ)/2. Assume that the drift
F(xτ , τ) and noise amplitude σ(xτ , τ) are sufficiently well-behaved for equation (1) to be
well-defined with a unique strong solution (e.g. assume that a weak solution exists and F and
σ are locally Lipschitz continuous [58]). The anti-Itô convention⊛dWτ =Wτ −Wτ−dτ is the
thermodynamically consistent choice [13, 33, 35], in particular it ensures Boltzmann statistics
if the drift F(xτ , τ) is such that the system settles into thermodynamic equilibrium [35]. The
time-evolution of the probability density P(x, τ) for any initial density P(x, τ = 0) obeys a
Fokker–Planck equation [59, 60]

∂τP(x, τ) =
[
−∇x ·F(x, τ)+∇T

xD(x, τ)∇x

]
P(x, τ)

≡ L(x, τ)P(x, τ), (2)
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which is equivalent to a continuity equation [∂τ +∇x · ĵ(x, τ)]P(x, τ) = 0, with the current
operator

ĵ(x, τ)≡ F(x, τ)−D(x, τ)∇x (3)

that gives the instantaneous current as j(x, τ) = ĵ(x, τ)P(x, τ).
As a special case of equation (1) we will also study time-homogeneous non-equilibrium

steady-state systems, where the stochastic equation of motion reads (curly brackets throughout
denote that derivatives only act inside brackets)

dxτ =

[
D(xτ ){∇ logps}(xτ )+

js(xτ )
ps(xτ )

]
dτ +σ(xτ )⊛ dWτ , (4)

where ps and js denote the steady-state density and current [35]. Note that (as opposed to
[34, 35]) we do not assume that the initial distribution is sampled from ps.

Based on the dynamics defined in equations (1) or (4), we consider time-averaged density
and current functionals of the trajectories [xτ ]0⩽τ⩽t defined as

ρVt =
1
t

ˆ t

0
V(xτ , τ)dτ

JUt =
1
t

ˆ τ=t

τ=0
U(xτ , τ) ◦ dxτ , (5)

with U,V differentiable and square integrable functions and ◦ denotes the Stratonovich con-
vention of the stochastic integral. Reasons why the Stratonovich integral is the appropriate
choice are detailed in [35]. The density functional ρVt measures the time spent in the region
V(x) ̸= 0, weighted by V(x), while the current JUt functional measures weighted displacements
accumulated in U. In particular, for positive V,U that are centered around some point x and
decay on a finite length scale, one can interpret ρVt and JUt as the coarse-grained empirical
density and current at x [34, 35].

In the following, we will derive expressions for the mean values, correlations and fluctu-
ations of these stochastic quantities and illustrate them with an example, thereby generalizing
the results in [34, 35] to non-steady-state initial conditions and even systems with explicit
time-dependence, and thus in particular also without the existence of a steady state.

3. First moments

Consider overdamped Langevin dynamics as defined in equation (1) starting from an arbitrary
initial density P(x, τ = 0). Let P(x, τ) be the probability density to find the particle at position
x after time τ , i.e. the solution of the Fokker–Planck equation in equation (2). Then the mean
value of the density functional in equation (5) is given by

⟨
ρVt
⟩
=

1
t

ˆ t

0
⟨V(xτ , τ)⟩dτ

=
1
t

ˆ t

0
dτ
ˆ

dxV(x, τ)P(x, τ). (6)

The mean value of the current is in turn given accordingly by (following closely the approach
[35] using that the Itô-dWτ -term vanishes on average, integrating by parts, and usingD= DT)

3
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⟨
JUt

⟩
=

1
t

ˆ t

0
⟨U(xτ , τ) ◦ dxτ ⟩

=
1
t

ˆ τ=t

τ=0
⟨U(xτ , τ)dxτ ⟩+

1
t

ˆ τ=t

τ=0

1
2
⟨dU(xτ , τ)dxτ ⟩s

=
1
t

ˆ t

0
dτ
ˆ

dxP(x, τ)
[
U(x, τ)F(x, τ)+

{
∇T

xD(x, τ)
}
U(x, τ)

+D(x, τ){∇xU(x, τ)}]

=
1
t

ˆ t

0
dτ
ˆ

dxP(x, τ)
[
U(x, τ)F(x, τ)+∇T

xD(x, τ)U(x, τ)
]

=
1
t

ˆ t

0
dτ
ˆ

dxU(x, τ) [F(x, τ)−D(x, τ)∇x]P(x, τ)

=
1
t

ˆ t

0
dτ
ˆ

dxU(x, τ )̂j(x, τ)P(x, τ)

=
1
t

ˆ t

0
dτ
ˆ

dxU(x, τ)j(x, τ). (7)

The expressions equations (6) and (7) average the probability density and current over the
functionU(x, τ) and over time τ ∈ [0, t], i.e. one can interpret ρVt and J

U
t as estimators of space

and time averages of P(x, τ) and j(x, τ). Note that for time-homogeneous steady-state dynam-
ics (see equation (4)) these results are unchanged. They only further simplify for dynamics in
equation (4) if also the initial condition is sampled from the steady state P(x, τ = 0) = ps(x),
in which case P(x, τ) = ps(x) and j(x, τ) = js(x) implies that

⟨
ρVt
⟩
and

⟨
JUt

⟩
become inde-

pendent of t.

4. Correlations and fluctuations

We now derive second moments and linear correlations of the time-averaged density and cur-
rent in equation (5). The derivations for higher moments of currents are more involved than
the first moments but as in [35] we solve the complications in the derivation by means of a
single Lemma derived in the following subsection. Note that one could alternatively derive
the following results using a Feynman–Kac approach (and optionally functional calculus) by
appropriately generalizing the approach in [61].

4.1. Lemma

In the derivation of expressions for fluctuations and correlations of the time-averaged quantit-
ies we must evaluate correlations of noise increments dWτ and functions of xτ ′ . Correlations
for τ ′ ⩽ τ vanish by the properties of the Wiener process. Conversely, correlations for τ ′ > τ
are non-trivial. This problem was solved for steady-state dynamics in [35] and via Doob
conditioning [5, 13, 62] for general time-homogeneous Langevin systems in the Supplemental
Material of [16]. Beyond the overdamped motion considered here, similar results can also
obtained from the separation of slow and fast motion in more general systems [55]. We now
generalize the direct approach from [35] to overdamped Langevin systems with explicit time-
dependence.

Consider the kth component [σ(xτ , τ)dWτ ]k of a noise increment in an expectation value⟨
f(xτ ,xτ ′ , τ,τ ′) [σ(xτ , τ)dWτ ]k

⟩
with some (differentiable, square integrable) function f. For
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τ ′ ⩽ τ this term vanishes due to vanishing correlations and zero mean of dWτ . Now consider
τ ′ > τ .

Given a point xτ = x and writing ε≡ σ(x, τ)dWτ , the equation of motion (1) rewritten
in Itô form (writing out the anti-Itô correction term) implies a displacement dxτ (x, τ,ε) =
[F(x, τ)+∇T

xD(x, τ)]dτ + ε. With this we can write the expectation
⟨
f(· · ·) [σ(xτ , τ)dWτ ]k

⟩
as εk integrated over the probability to be at points x,x+ dxτ (x, τ,ε),y at times τ <
τ + dτ < τ ′, i.e. (with joint density P(y, τ ′;x, τ) and conditional density P(y, τ ′|x, τ)≡
P(y, τ ′;x, τ)/P(x, τ); we write 1τ<τ ′ for 1 if τ < τ ′ and 0 else)⟨

f(xτ ,xτ ′ , τ,τ ′) [σ(xτ , τ)dWτ ]k
⟩

=1τ<τ ′

ˆ
dx
ˆ
dyf(x,y, τ,τ ′)

ˆ
dεP(ε)εkP(y, τ ′|x+dxτ (x, τ,ε), τ + dτ)P(x, τ) , (8)

where the probability P(ε) is given by a Gaussian distribution with zero mean and covariance
matrix 2D(x, τ)dτ . Since this distribution is symmetric around 0, only terms with even powers
of the components of ε survive the dεP(ε)-integration. Note that

P(y, τ ′|x+ dxτ (x, τ,ε), τ + dτ)
dτ→0−→ [1+ dxτ (x, τ,ε) ·∇x]P(y, τ

′|x, τ)+O(dτ), (9)

and we can neglect the higher orders O(dτ) since εkO(dτ) =O(dτ 3/2) which (unlike
εkO(dτ 1/2)) will still give zero after integration in τ . From the zeroth and first order contri-
bution, we see that the only even power of the components of ε in the above integration gives⟨

f(xτ ,xτ ′ , τ,τ ′) [σ(xτ , τ)dWτ ]k
⟩

=1τ<τ ′

ˆ
dx
ˆ

dyf(x,y, τ,τ ′)P(x, τ)
ˆ

dεP(ε)εkε ·∇xP(y, τ
′|x, τ), (10)

which, using
´
dεP(ε)εkεj = 2Dkj(x, τ)dτ , yields the result for τ < τ ′⟨
f(xτ ,xτ ′ , τ,τ ′) [σ(xτ , τ)dWτ ]k

⟩
=1τ<τ ′dτ

ˆ
dx
ˆ

dyP(x, τ)f(x,y, τ,τ ′)
[
2D(x, τ)∇xP(y, τ

′|x, τ)
]
k
. (11)

For scalar products with vector valued functions f the result (11) can be summed over com-
ponents f k to obtain⟨

f(xτ ,xτ ′ , τ,τ ′) ·σ(xτ , τ)dWτ

⟩
=1τ<τ ′dτ

ˆ
dx
ˆ

dyP(x, τ)f(x,y, τ,τ ′) · 2D(x, τ)∇xP(y, τ
′|x, τ). (12)

Equation (12) is the central result of this work that allows us to directly deduce expressions
for fluctuations and correlations of densities and currents. Upon integrating by parts and using
symmetry DT(x, τ) = D(x, τ) equation (12) could also be rewritten as

⟨
f(xτ ,xτ ′ , τ,τ ′) ·σ(xτ , τ)dWτ

⟩
=−1τ<τ ′dτ

ˆ
dx
ˆ

dyP(y, τ ′|x, τ)∇x · [P(x, τ)2D(x, τ)f(x,y, τ,τ ′)]. (13)

4.2. Fluctuations and correlations of densities and currents

Following the developed approach and generalizing the results obtained in [35] we now derive
expressions for fluctuations and correlations of densities and currents for arbitrary initial
conditions.

5
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For two time-averaged densities ρUt ,ρVt , the covariance (variance for U= V) is given by⟨
ρUt ρ

V
t

⟩
−
⟨
ρUt

⟩⟨
ρVt

⟩
= t−2

ˆ t

0
dτ
ˆ t

0
dτ ′ [⟨U(xτ , τ)V(xτ ′ , τ ′)

⟩
−⟨U(xτ , τ)⟩

⟨
V(xτ ′ , τ ′)

⟩]
= t−2

ˆ t

0
dτ
ˆ t

0
dτ ′
ˆ

dx
ˆ

dyU(x, τ)V(y, τ ′)
[
P(x, τ ;y, τ ′)−P(x, τ)P(y, τ ′)

]
. (14)

Note that this result can be interpreted as correlations caused by differences of P(x, τ ;y, τ ′)

and P(x, τ)P(y, τ ′), averaged over time and over functions U,V. More precisely, the two-
point function P(x, τ ;y, τ ′) can be understood to be characterized by all paths with xτ = x and
xτ ′ = y. For further interpretation, in particular for the case of steady-state dynamics, see
[34, 35].

For the correlation of JUt and ρVt we first consider the expectation of the product and carry
out the same steps as in equation (7),

t2
⟨
JUt ρ

V
t

⟩
=

ˆ t

0
dτ ′
ˆ τ=t

τ=0

⟨
U(xτ , τ) ◦ dxτV(xτ ′ , τ ′)

⟩
=

ˆ t

0
dτ
ˆ t

0
dτ ′
ˆ

dx
ˆ

dyU(x, τ)V(y, τ ′)̂j(x, τ)P(y, τ ′;x, τ)

+

ˆ t

0
dτ ′
ˆ τ=t

τ=0

⟨
U(xτ , τ)σ(xτ , τ)dWτV(xτ ′ , τ ′)

⟩
. (15)

Comparing with the calculation in equation (7), the noise term no longer vanishes since terms
with τ < τ ′ give non-trivial correlations according to equation (11), which in turn gives

ˆ t

0
dτ ′
ˆ τ=t

τ=0

⟨
U(xτ , τ)σ(xτ , τ)dWτV(xτ ′ , τ ′)

⟩
=

ˆ t

0
dτ ′
ˆ t

0
dτ1τ<τ ′

ˆ
dx
ˆ

dyU(x, τ)V(y, τ ′)

×
[
2P(x, τ)D(x, τ)∇xP(x, τ)

−1
]
P(y, τ ′;x, τ), (16)

where we rewrote P(y, τ ′|x, τ) = P(x, τ)−1P(y, τ ′;x, τ). Introducing the adapted current
operator

ĵ‡(x, τ)≡ ĵ(x, τ)+ 2P(x, τ)D(x, τ)∇xP(x, τ)
−1, (17)

we thus obtain from equation (15) an expression for the current-density correlation that reads⟨
JUt ρ

V
t

⟩
−
⟨
JUt
⟩⟨

ρVt

⟩
= t−2

ˆ t

0
dτ
ˆ t

0
dτ ′
ˆ

dx
ˆ

dyU(x, τ)V(y, τ ′)

×
[
1τ>τ ′ ĵ(x, τ)+1τ<τ ′ ĵ‡(x, τ)

][
P(y, τ ′;x, τ)−P(x, τ)P(y, τ ′)

]
. (18)

Note that to write the expression more compactly, we used that ĵ(x, τ)P(x, τ) = ĵ‡(x, τ)P(x, τ) =
j(x, τ). For symmetry reasons and since the difference vanishes, we wrote 1τ>τ ′ instead of
1τ⩾τ ′ .

The expression (18) is a natural generalization of equation (14) with the current operat-
ors ĵ, ĵ‡ appearing. Recall that ĵ is the current operator entering the Fokker–Planck equation,
see equations (2) and (3). The adapted operator ĵ‡ defined in equation (17) accounts for the
fact that trajectories contributing to P(y, τ ′;x, τ) that first visit x and later y (i.e. τ < τ ′) have,
compared to the Fokker–Planck evolution, altered statistics, since displacements at x correlate
with probabilities of reaching y later. For the particular case of steady-state systems, the special
case of the correlation result (18) and the adapted current operator were discussed in detail,

6



J. Phys. A: Math. Theor. 55 (2022) 475001 C Dieball and A Godec

and explained using a generalized time-reversal symmetry, in [34, 35]. Note that for the case
of time-homogeneous dynamics (in particular steady-state dynamics defined in equation (4)),
the Fokker–Planck current operator equation (3) does not have an explicit time dependence
such that ĵ(x, τ) in equation (18) simplifies to ĵ(x). However, the adapted current operator
ĵ‡(x, τ) defined in equation (17) retains explicit time-dependence even for time-homogeneous
dynamics. Only in the case of steady-state systems with steady-state initial conditions (where
P(x, τ) = ps(x) for all τ ) ĵ‡ has no explicit time dependence, and simplifies to the negative ĵ
with inverted steady-state current js →−js [34, 35].

Covariances of components m,n of time-integrated currents JUt,m and JVt,n can be obtained
analogously by considering

t2
⟨
JUt,mJ

V
t,n

⟩
=

ˆ τ ′=t

τ ′=0

ˆ τ=t

τ=0

⟨
U(xτ , τ) ◦ dxmτV(xτ ′ , τ ′) ◦ dxnτ ′

⟩
, (19)

where both ◦dxt increments split into dt and dWt terms. The dτdτ ′ terms give rise to the current
operator ĵ as in equations (7) and (15), but now its components ĵm(x, τ) and ĵn(y, τ ′) appear. The
dWτdWτ ′ term yields (by Itô’s isometry, i.e. ‘delta-correlated white noise’)

ˆ τ ′=t

τ ′=0

ˆ τ=t

τ=0

⟨
U(xτ , τ) [σ(xτ , τ)dWτ ]mV(xτ ′ , τ ′)

[
σ(xτ ′ , τ ′)dWτ ′

]
n

⟩
=

ˆ t

0
⟨U(xτ , τ)V(xτ , τ)2Dmn(xτ )⟩dτ

= 2
ˆ t

0
dτ
ˆ

dxU(x, τ)V(x, τ)Dmn(x)P(x, τ). (20)

The mixed term dτ ′dWτ (and equivalently dτdWτ ′) in equation (19) according to calculations
as in equation (7) and using equation (11) gives

ˆ t

0
dτ ′̂

τ=t

τ=0

⟨
U(xτ , τ) [σ(xτ , τ)dWτ ]m

[
V(xτ ′ , τ ′)F(xτ ′ , τ ′)+ {∇DV}(xτ ′ , τ ′)

]
n

⟩
=1τ<τ ′ ×

ˆ t

0
dτ
ˆ t

0
dτ ′
ˆ

dx
ˆ

dyU(x, τ)V(y, τ ′)̂jn(y, τ
′)

×
[
2P(x, τ)∇xP(x, τ)

−1
]
m
P(y, τ ′;x, τ). (21)

Collecting all terms and using the and notation ĵ‡m for the components of ĵ‡ in equation (17),
we obtain for equation (19)

t2
⟨
JUt,mJ

V
t,n

⟩
= 2
ˆ t

0
dτ
ˆ
dxU(x, τ)V(x, τ)Dmn(x, τ)P(x, τ)+

ˆ t

0
dτ
ˆ t

0
dτ ′̂ dx

ˆ
dy

×U(x, τ)V(y, τ ′)
[
1τ<τ ′ ĵ‡m(x, τ )̂jn(y, τ

′)+1τ>τ ′ ĵm(x, τ )̂j
‡
n(y, τ

′)
]
P(y, τ ′;x, τ). (22)

From the derivation one sees that the first term is the τ = τ ′-contribution (see also [35]). This
is the natural generalization of the results in equations (14) and (18), with the interpretation
of non-trivial displacements (and thus ĵ‡ instead of ĵ) for currents evaluated at earlier times
(see above and [34, 35]). As before, for time-homogeneous dynamics ĵ(x, τ) simplifies to ĵ(x)
and in the special case of steady-state dynamics (see equation (4)) with steady-state initial
conditions, ĵ‡(x, τ) simplifies to ĵ‡(x). This special case was discussed and explained using
generalized time-reversal symmetry in [34, 35].
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5. Example

To present a concrete minimal example, we consider a two-dimensional harmonically confined
overdamped diffusion in a rotational flow (i.e. an irreversible Ornstein–Uhlenbeck process)

dxt =−

[
1 −Ω

Ω 1

]
xdt+

√
2dWt. (23)

Assuming that the initial density P(x, τ = 0) is Gaussian, the solution P(x, τ) of the
Fokker–Planck equation corresponding to equation (23) is well known to be a Gaussian dens-
ity for all τ ⩾ 0 (see e.g. [60]). We choose U to be a two-dimensional Gaussian centered at z
with width h, i.e.

Uz(x) =
1

2πh2
exp

[
− (x− z)2

2h2

]
. (24)

Due to the Gaussianity of P(x, τ) and Uz(x), all spatial integrals entering the results
equations (14), (18) and (22) can be performed analytically, e.g. using the computer algebra
system SymPy [63] (as outlined in the Supplemental Material of [34]). The two remaining
time-integrals are computed numerically. For simplicity we only consider the (non-steady-
state) initial condition in a point, i.e. P(x, τ = 0) = δ(x− x0). For this initial condition, via
a left-right decomposition for the process equation (23) (see e.g. [59]) or by solving the
Lyapunov equation, we have the time-dependent density

P(x, τ) =
1

2π(1− e−2τ )
exp


−

(
x− e−τ

[
cos(Ωτ) sin(Ωτ)
−sin(Ωτ) cos(Ωτ)

]
x0

)2

2(1− e−2τ )

 , (25)

i.e. the mean value ⟨xτ ⟩= e−τ

[
cos(Ωτ) sin(Ωτ)
−sin(Ωτ) cos(Ωτ)

]
x0 moves on a spiral shape towards the

center. The caseΩ= 0 corresponds to the equilibrium process, i.e. harmonically confined over-
damped diffusion without rotational flow.

For this example, we compute the density-current correlation vector as in equation (18),

Cjρ(z, t;x0)≡
⟨
JUz
t ρUz

t

⟩
x0
−
⟨
JUz
t

⟩
x0

⟨
ρUz
t

⟩
x0

= t−2
ˆ t

0
dτ
ˆ t

0
dτ ′
ˆ

dx
ˆ

dy×Uz(x)Uz(y)

×
[
1τ>τ ′ ĵ(x)+1τ<τ ′ ĵ‡(x, τ)

][
P(y, τ ′;x, τ)−P(x, τ)P(y, τ ′)

]
. (26)

with Gaussian Uz as in equation (24). In figure 1 we show the time evolution and spatial
dependence of this correlation vector. For long times without driving Ω= 0, we see that
tCjρ(z, t;x0)→ 0. This corresponds to the limit when the initial condition is forgotten, i.e. for
long times Cjρ(z, t;x0) approaches the result of Cjρ(z, t) for steady-state initial conditions
where in equilibrium (Ω= 0) we have P(y, τ ′;x, τ) = P(x, τ ′;y, τ) (time-reversal symmetry) and
ĵ‡(x) =−ĵ(x) [35], implying Cjρ(z, t) = 0 at all z. In the case Ω ̸= 0, the correlation tCjρ(z, t;x0)
becomes constant for long times, where Cjρ ∝ t−1 represents the large-deviation limit of the
correlation result, which agrees with the large-deviation limit for the process starting in steady-
state initial conditions [35]. This has a spatial dependence similar to the steady-state current
js(z) but averaged over the Gaussian Uz. By comparison with the color gradient we see in all

8
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Figure 1. White arrows depict the correlation result multiplied by time, tCjρ(z, t;x0) as
in equation (18) with x0 = (1,1)T for the process in equation (23) withΩ= 0 in (a)–(d),
Ω= 5 in (e)–(h), andUz as in equation (24). The position z= (z1,z2)

T around which the
correlation is evaluated varies along the respective axes. The color gradient depicts the
mean time-averaged density

⟨
ρUz
t

⟩
, i.e. the time spent around z weighted by Uz. Time

increases from left (a), (e) to right (d), (h), t= 0.3, 0.7, 2, 5.

Figure 2. Quantitative depiction of the time-dependence of the x-component of
the current-density correlation tCjρ(z, t;x0)x with z= (0,−0.2)T for the process in
equation (23) with Ω= 3 and Uz as in equation (24) with (a) h= 0.5 and (b) h= 0.15
for different initial conditions (colors). The new analytical result (blue and orange lines;
equation (18)) is confirmed by simulations (crosses; for each t, (a) 105 and (b) 106

trajectories with 103 time-steps each were simulated according to the stochastic Euler
algorithm). For t→∞, irrespective of the initial condition, all result approach the same
large-deviation limit.

panels in figure 1, as expected, that large values of the correlation can only occur at points that
are visited for a significant amount of time, i.e. with not too small

⟨
ρUz
t

⟩
.

In addition to the qualitative behavior shown in figure 1, we present a quantitative evaluation
of the correlation result multiplied by time, tCjρ(z, t;x0), for a single z in figure 2. Simulations
shown in figure 2 confirm the theoretical result in equation (18) (re-stated in equation (26)). As

9
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mentioned above this result approaches the large-deviation limit for long times. Moreover, for
long times the initial condition will become irrelevant, i.e. tCjρ(z, t;x0) approaches the result for
tCjρ(z, t) for steady-state initial conditions [35]. First note that, due to the time-integration, devi-
ations for short times are only slowly ‘forgotten’ with order t−1 (instead of exponentially fast
with some Poincaré time scale). Interestingly, we see in figure 2(a) that for substantial coarse-
graining (i.e. rather large h= 0.5 in Uz in equation (24)), the result for tCjρ(z, t;x0) starting in a
point only approaches the corresponding value for steady-state initial condition (green curve)
in the large deviation regime (black line), but not before. Going to smaller coarse graining
h= 0.15 in figure 2(b), we see that the process starting in the center x0 = (0,0)T (blue line) fea-
tures the arguablymore intuitive behavior, by first approaching the steady-state (green line) and
later the large deviation result (black line). However, for a different initial condition (see orange
line) the steady state curve is again only approached in the large deviation limit. This highlights
the long-lasting and non-trivial effects of the time-integration and underscores why interpret-
ing time-average observables, in particular those involving currents, remains challenging.

6. Conclusion

To summarize, we presented a newLemma (12) that enabled us to derive results equations (14),
(18) and (22) for correlations and fluctuations of the time-averaged density and current
equation (5) for general Langevin dynamics defined in equation (1) with general initial con-
ditions. This generalization of the recent results derived for non-equilibrium steady states
[34, 35] may improve the understanding of inference of densities and currents with the estim-
ators ρVt and JUt (in particular in connection with the notion of coarse graining [34, 35]) in
cases where the dynamics does not evolve from the steady-state, or is not time-homogeneous.
Importantly, the strategy of inferring dissipation from the current variance (see equation (22))
via the TUR [41–44] remains valid. Generalized versions of the TUR, e.g. for general initial
conditions [45] or time-dependent dynamics [10], already exist. A recently improved version
of the TUR that includes current-density correlations (see equation (18)) is, however, so far
only available for steady-state systems with steady-state initial conditions [15]. Notably, as
we will show in a forthcoming publication, Lemma (12) allows the correlation-TUR to also
be proved for transient dynamics.
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