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Abstract. We present technical results required for the description and understand-
ing of correlations and fluctuations of the empirical density and current as well as
diverse time-integrated and time-averaged thermodynamic currents of diffusion pro-
cesses with a general time dependence on all time scales. In particular, we generalize
the results from arXiv:2105.10483 (Phys. Rev. Lett. , article in press), arXiv:2204.06553
(Phys. Rev. Research, article in press), and arXiv:2206.04034 to additive functionals
with explicit time dependence and transient or non-ergodic overdamped diffusion. As
an illustration we apply the results to two-dimensional harmonically confined over-
damped diffusion in a rotational flow evolving from a non-stationary initial distribu-
tion.

1. Introduction

“Time-average statistical mechanics” focuses on the study of additive functionals of
stochastic paths and is important in the analysis of single-particle tracking [1–3], large
deviation theory [4–8], and stochastic thermodynamics [9–16], to name but a few. The
most important functionals from a physical point of view include the “empirical density”
(also known as local or occupation time) [17–26], time-integrated and time-averaged
currents [4–7, 15, 16, 27–35], and the time-averaged mean squared displacement (see
e.g. [1, 2, 36–40]).

Fluctuations of time-averaged observables have a noise floor—they are bounded
from below by the dissipation in a system, which is embodied within the “thermodynamic
uncertainty relation” (TUR) [10, 41–49]. One may fruitfully exploit this universal
lower bound on current fluctuations, e.g. to gauge the thermodynamic cost of precision
[41,50,51], infer dissipation from fluctuations [34,35,43,44], or to derive thermodynamic
limits on the temporal extent of anomalous diffusion [52].

Recent works addressed fluctuations of additive functionals in transient non-
equilibrium systems [45–47], as well as in periodically [10, 48, 49] and generally driven
systems [10].
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Our aim here is to generalize the direct, stochastic-calculus approach we developed
for steady-state systems in [34,35] to transients and systems as well as functionals with
explicit time dependence. Note that this includes non-ergodic systems (see e.g. [20,25]).

The paper is structured as follows. We first set up the formal background and define
the additive functionals in Sec. 2. In Section 3 we evaluate the first moments. In Sec. 4
we present our main result—a Lemma that allows a direct evaluation of fluctuations and
correlations of general additive functionals in systems with explicit time dependence—
and derive general results for current fluctuations and current-density correlations. In
Sec. 5 we illustrate how to apply the newly developed results by evaluating current-
density correlations in overdamped diffusion in a rotational flow evolving from a non-
stationary initial distribution. We conclude with a brief outlook.

2. Set-up

Consider overdamped Langevin dynamics with possibly multiplicative noise and explicit
time dependence, described by the anti-Itô (or Hänggi-Klimontovich [53,54]) stochastic
differential equation

dxτ = F(xτ , τ)dτ + σ(xτ , τ) ~ dWτ , (1)

with positive definite diffusion matrix D(xτ , τ) = σ(xτ , τ)σT (xτ , τ)/2. Assume that
the drift F(xτ , τ) and noise amplitude σ(xτ , τ) are sufficiently well-behaved for Eq. (1)
to be well-defined with a unique strong solution (e.g. assume that a weak solution
exists and F and σ are locally Lipschitz continuous [55]). The anti-Itô convention
~dWτ = Wτ − Wτ−dτ is the thermodynamically consistent choice [13, 33, 35], in
particular it ensures Boltzmann statistics if the drift F(xτ , τ) is such that the system
settles into thermodynamic equilibrium [35]. The time-evolution of the probability
density P (x, τ) for any initial density P (x, τ = 0) obeys a Fokker-Planck equation [56,57]

∂τP (x, τ) = [−∇x · F(x, τ) +∇T
xD(x, τ)∇x]P (x, τ)

≡ L(x, τ)P (x, τ), (2)

which is equivalent to a continuity equation [∂τ + ∇x · ĵ(x, τ)]P (x, τ) = 0, with the
current operator

ĵ(x, τ) ≡ F(x, τ)−D(x, τ)∇x (3)

that gives the instantaneous current as j(x, τ) = ĵ(x, τ)P (x, τ).
As a special case of Eq. (1) we will also study time-homogeneous non-equilibrium

steady-state systems, where the stochastic equation of motion reads (curly brackets
throughout denote that derivatives only act inside brackets)

dxτ =

[
D(xτ ){∇ log ps}(xτ ) +

js(xτ )

ps(xτ )

]
dτ + σ(xτ ) ~ dWτ , (4)
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where ps and js denote the steady-state density and current [35]. Note that (as opposed
to [34,35]) we do not assume that the initial distribution is sampled from ps.

Based on the dynamics defined in Eqs. (1) or (4), we consider time-averaged density
and current functionals of the trajectories [xτ ]0≤τ≤t defined as

ρVt =
1

t

∫ t

0

V (xτ , τ)dτ

JUt =
1

t

∫ τ=t

τ=0

U(xτ , τ) ◦ dxτ , (5)

with U, V differentiable and square integrable functions and ◦ denotes the Stratonovich
convention of the stochastic integral. The density functional ρVt measures the time spent
in the region V (x) 6= 0, weighted by V (x), while the current JUt functional measures
weighted displacements accumulated in U . In particular, for positive V, U that are
centered around some point x and decay on a finite length scale, one can interpret ρVt
and JUt as the coarse-grained empirical density and current at x [34, 35].

In the following, we will derive expressions for the mean values, correlations and
fluctuations of these stochastic quantities and illustrate them with an example, thereby
generalizing the results in [34,35] to non-steady-state initial conditions and even systems
with explicit time-dependence, and thus in particular also without the existence of a
steady state.

3. First moments

Consider overdamped Langevin dynamics as defined in Eq. (1) starting from an arbitrary
initial density P (x, τ = 0). Let P (x, τ) be the probability density to find the particle at
position x after time τ , i.e. the solution of the Fokker-Planck equation in Eq. (2). Then
the mean value of the density functional in Eq. (5) is given by

〈
ρVt
〉

=
1

t

∫ t

0

〈V (xτ , τ)〉 dτ

=
1

t

∫ t

0

dτ

∫
ddxV (x, τ)P (x, τ). (6)

The mean value of the current is in turn given accordingly by (following closely the
approach [35] using that the Itô-dWτ -term vanishes on average, integrating by parts,
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and using D = DT )

〈
JUt
〉

=
1

t

∫ t

0

〈U(xτ , τ) ◦ dxτ 〉

=
1

t

∫ τ=t

τ=0

〈U(xτ , τ)dxτ 〉+
1

t

∫ τ=t

τ=0

1

2
〈dU(xτ , τ)dxτ 〉s

=
1

t

∫ t

0

dτ

∫
dxP (x, τ)

[
U(x, τ)F(x, τ) +

{
∇T

xD(x, τ)
}
U(x, τ) + D(x, τ) {∇xU(x, τ)}

]
=

1

t

∫ t

0

dτ

∫
dxP (x, τ)

[
U(x, τ)F(x, τ) +∇T

xD(x, τ)U(x, τ)
]

=
1

t

∫ t

0

dτ

∫
dxU(x, τ) [F(x, τ)−D(x, τ)∇x]P (x, τ)

=
1

t

∫ t

0

dτ

∫
dxU(x, τ )̂j(x, τ)P (x, τ)

=
1

t

∫ t

0

dτ

∫
dxU(x, τ)j(x, τ). (7)

The expressions Eq. (6) and (7) average the probability density and current over the
function U(x, τ) and over time τ ∈ [0, t], i.e. one can interpret ρVt and JUt as estimators
of space and time averages of P (x, τ) and j(x, τ). Note that for time-homogeneous
steady-state dynamics (see Eq. (4)) these results are unchanged. They only further
simplify for dynamics in Eq. (4) if also the initial condition is sampled from the steady
state P (x, τ = 0) = ps(x), in which case P (x, τ) = ps(x) and j(x, τ) = js(x) implies
that

〈
ρVt
〉
and

〈
JUt
〉
become independent of t.

4. Correlations and fluctuations

We now derive second moments and linear correlations of the time-averaged density and
current in Eq. (5). The derivations for higher moments of currents are more involved
than the first moments but as in [35] we solve the complications in the derivation by
means of a single Lemma derived in the following subsection. Note that one could
alternatively derive the following results using a Feynman-Kac approach (and optionally
functional calculus) by appropriately generalizing the approach in [58].

4.1. Lemma

In the derivation of expressions for fluctuations and correlations of the time-averaged
quantities we must evaluate correlations of noise increments dWτ and functions of xτ ′ .
Correlations for τ ′ ≤ τ vanish by the properties of the Wiener process. Conversely,
correlations for τ ′ > τ are non-trivial. This problem was solved for steady-state
dynamics in [35] and via Doob conditioning [5, 13, 59] for general time-homogeneous
Langevin systems in the Supplemental Material of [16]. We now generalize the direct
approach from [35] to overdamped Langevin systems with explicit time-dependence.
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Consider the k-th component [σ(xτ , τ)dWτ ]k of a noise increment in an expectation
value 〈f(xτ ,xτ ′ , τ, τ

′) [σ(xτ , τ)dWτ ]k〉 with some (differentiable, square integrable)
function f . For τ ′ ≤ τ this term vanishes due to vanishing correlations and zero mean
of dWτ . Now consider τ ′ > τ .

Given a point xτ = x and writing ε ≡ σ(x, τ)dWτ , the equation of motion (1)
rewritten in Itô form (writing out the anti-Itô correction term) implies a displacement
dxτ (x, τ, ε) = [F(x, τ) + ∇T

xD(x, τ)]dτ + ε. With this we can write the expectation
〈f(· · · ) [σ(xτ , τ)dWτ ]k〉 as εk integrated over the probability to be at points x,x +

dxτ (x, τ, ε),y at times τ < τ + dτ < τ ′, i.e. (with joint density P (y, τ ′;x, τ) and
conditional density P (y, τ ′|x, τ) ≡ P (y, τ ′;x, τ)/P (x, τ); we write 1τ<τ ′ for 1 if τ < τ ′

and 0 else)

〈f(xτ ,xτ ′ , τ, τ
′) [σ(xτ , τ)dWτ ]k〉 (8)

= 1τ<τ ′

∫
dx

∫
dyf(x,y, τ, τ ′)

∫
dεP(ε)εkP (y, τ ′|x + dxτ (x, τ, ε), τ + dτ)P (x, τ) ,

where the probability P(ε) is given by a Gaussian distribution with zero mean and
covariance matrix 2D(x, τ)dτ . Since this distribution is symmetric around 0, only
terms with even powers of the components of ε survive the dεP(ε)-integration. Note
that

P (y, τ ′|x + dxτ (x, τ, ε), τ + dτ)
dτ→0−→ [1 + dxτ (x, τ, ε) · ∇x]P (y, τ ′|x, τ) +O(dτ), (9)

and we can neglect the higher orders O(dτ) since εkO(dτ) = O(dτ 3/2) which (unlike
εkO(dτ 1/2)) will still give zero after integration in τ . From the zeroth and first order
contribution, we see that the only even power of the components of ε in the above
integration gives

〈f(xτ ,xτ ′ , τ, τ
′) [σ(xτ , τ)dWτ ]k〉

= 1τ<τ ′

∫
dx

∫
dyf(x,y, τ, τ ′)P (x, τ)

∫
dεP(ε)εkε · ∇xP (y, τ ′|x, τ), (10)

which, using
∫

dεP(ε)εkεj = 2Dkj(x, τ)dτ , yields the result for τ < τ ′

〈f(xτ ,xτ ′ , τ, τ
′) [σ(xτ , τ)dWτ ]k〉

= 1τ<τ ′dτ

∫
dx

∫
dyP (x, τ)f(x,y, τ, τ ′) [2D(x, τ)∇xP (y, τ ′|x, τ)]k . (11)

For scalar products with vector valued functions f the result (11) can be summed over
components fk to obtain

〈f(xτ ,xτ ′ , τ, τ ′) · σ(xτ , τ)dWτ 〉

= 1τ<τ ′dτ

∫
dx

∫
dyP (x, τ)f(x,y, τ, τ ′) · 2D(x, τ)∇xP (y, τ ′|x, τ). (12)
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Eq. (12) is the central result of this work that allows us to directly deduce expressions
for fluctuations and correlations of densities and currents. Upon integrating by parts
and using symmetry DT (x, τ) = D(x, τ) Eq. (12) could also be rewritten as

〈f(xτ ,xτ ′ , τ, τ ′) · σ(xτ , τ)dWτ 〉

= −1τ<τ ′dτ
∫

dx

∫
dyP (y, τ ′|x, τ)∇x · [P (x, τ)2D(x, τ)f(x,y, τ, τ ′)]. (13)

4.2. Fluctuations and correlations of densities and currents

Following the developed approach and generalizing the results obtained in [35] we now
derive expressions for fluctuations and correlations of densities and currents for arbitrary
initial conditions.

For two time-averaged densities ρUt , ρVt , the covariance (variance for U = V ) is given
by

〈
ρUt ρ

V
t

〉
−
〈
ρUt
〉 〈
ρVt
〉

= t−2
∫ t

0

dτ

∫ t

0

dτ ′ [〈U(xτ , τ)V (xτ ′ , τ
′)− 〈U(xτ , τ)〉 〈V (xτ ′ , τ

′)〉〉]

= t−2
∫ t

0

dτ

∫ t

0

dτ ′
∫

dx

∫
dyU(x, τ)V (y, τ ′) [P (x, τ ;y, τ ′)− P (x, τ)P (y, τ ′)] .

(14)

Note that this result can be interpreted as correlations caused by differences of
P (x, τ ;y, τ ′) and P (x, τ)P (y, τ ′), averaged over time and over functions U, V . More
precisely, the two-point function P (x, τ ;y, τ ′) can be understood to be characterized by
all paths with xτ = x and xτ ′ = y. For further interpretation, in particular for the case
of steady-state dynamics, see [34,35].

For the correlation of JUt and ρVt we first consider the expectation of the product
and carry out the same steps as in Eq. (7),

t2
〈
JUt ρ

V
t

〉
=

∫ t

0

dτ ′
∫ τ=t

τ=0

〈U(xτ , τ) ◦ dxτV (xτ ′ , τ
′)〉

=

∫ t

0

dτ

∫ t

0

dτ ′
∫

dx

∫
dyU(x, τ)V (y, τ ′)̂j(x, τ)P (y, τ ′;x, τ)

+

∫ t

0

dτ ′
∫ τ=t

τ=0

〈U(xτ , τ)σ(xτ , τ)dWτV (xτ ′ , τ
′)〉 . (15)

Comparing with the calculation in Eq. (7), the noise term no longer vanishes since terms
with τ < τ ′ give non-trivial correlations according to Eq. (11), which in turn gives∫ t

0

dτ ′
∫ τ=t

τ=0

〈U(xτ , τ)σ(xτ , τ)dWτV (xτ ′ , τ
′)〉 =

∫ t

0

dτ ′
∫ t

0

dτ1τ<τ ′×∫
dx

∫
dyU(x, τ)V (y, τ ′)

[
2P (x, τ)D(x, τ)∇xP (x, τ)−1

]
P (y, τ ′;x, τ), (16)
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where we rewrote P (y, τ ′|x, τ) = P (x, τ)−1P (y, τ ′;x, τ). Introducing the adapted
current operator

ĵ‡(x, τ) ≡ ĵ(x, τ) + 2P (x, τ)D(x, τ)∇xP (x, τ)−1, (17)

we thus obtain from Eq. (15) an expression for the current-density correlation that reads〈
JUt ρ

V
t

〉
−
〈
JUt
〉 〈
ρVt
〉

= t−2
∫ t

0

dτ

∫ t

0

dτ ′
∫

dx

∫
dyU(x, τ)V (y, τ ′)×[

1τ>τ ′ ĵ(x, τ) + 1τ<τ ′ ĵ
‡(x, τ)

]
[P (y, τ ′;x, τ)− P (x, τ)P (y, τ ′)] . (18)

Note that to write the expression more compactly, we used that ĵ(x, τ)P (x, τ) =

ĵ‡(x, τ)P (x, τ) = j(x, τ). For symmetry reasons and since the difference vanishes, we
wrote 1τ>τ ′ instead of 1τ≥τ ′ .

The expression (18) is a natural generalization of Eq. (14) with the current operators
ĵ, ĵ‡ appearing. Recall that ĵ is the current operator entering the Fokker-Planck equation,
see Eqs. (2)-(3). The adapted operator ĵ‡ defined in Eq. (17) accounts for the fact that
trajectories contributing to P (y, τ ′;x, τ) that first visit x and later y (i.e. τ < τ ′) have,
compared to the Fokker-Planck evolution, altered statistics, since displacements at x

correlate with probabilities of reaching y later. For the particular case of steady-state
systems, the special case of the correlation result (18) and the adapted current operator
were discussed in detail, and explained using a generalized time-reversal symmetry,
in [34,35]. Note that for the case of time-homogeneous dynamics (in particular steady-
state dynamics defined in Eq. (4)), the Fokker-Planck current operator Eq. (3) does
not have an explicit time dependence such that ĵ(x, τ) in Eq. (18) simplifies to ĵ(x).
However, the adapted current operator ĵ‡(x, τ) defined in Eq. (17) retains explicit time-
dependence even for time-homogeneous dynamics. Only in the case of steady-state
systems with steady-state initial conditions (where P (x, τ) = ps(x) for all τ) ĵ‡ has no
explicit time dependence, and simplifies to the negative ĵ with inverted steady-state
current js → −js [34, 35].

Covariances of components m,n of time-integrated currents JUt,m and JVt,n can be
obtained analogously by considering

t2
〈
JUt,mJ

V
t,n

〉
=

∫ τ ′=t

τ ′=0

∫ τ=t

τ=0

〈U(xτ , τ) ◦ dxmτ V (xτ ′ , τ
′) ◦ dxnτ ′〉 , (19)

where both ◦dxt increments split into dt and dWt terms. The dτdτ ′ terms give rise to
the current operator ĵ as in Eqs. (7),(15), but now its components ĵm(x, τ) and ĵn(y, τ ′)

appear. The dWτdWτ ′ term yields (by Itô’s isometry, i.e. “delta-correlated white noise”)∫ τ ′=t

τ ′=0

∫ τ=t

τ=0

〈U(xτ , τ) [σ(xτ , τ)dWτ ]m V (xτ ′ , τ
′) [σ(xτ ′ , τ

′)dWτ ′ ]n〉

=

∫ t

0

〈U(xτ , τ)V (xτ , τ)2Dmn(xτ )〉 dτ

= 2

∫ t

0

dτ

∫
dxU(x, τ)V (x, τ)Dmn(x)P (x, τ). (20)
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The mixed term dτ ′dWτ (and equivalently dτdWτ ′) in Eq. (19) according to
calculations as in Eq. (7) and using Eq. (11) gives∫ t

0

dτ ′
∫ τ=t

τ=0

〈U(xτ , τ) [σ(xτ , τ)dWτ ]m [V (xτ ′ , τ
′)F(xτ ′ , τ

′) + {∇DV }(xτ ′ , τ ′)]n〉 = 1τ<τ ′×∫ t

0

dτ

∫ t

0

dτ ′
∫

dx

∫
dyU(x, τ)V (y, τ ′)̂jn(y, τ ′)

[
2P (x, τ)∇xP (x, τ)−1

]
m
P (y, τ ′;x, τ).

(21)

Collecting all terms and using the and notation ĵ‡m for the components of ĵ‡ in Eq. (17),
we obtain for Eq. (19)

t2
〈
JUt,mJ

V
t,n

〉
= 2

∫ t

0

dτ

∫
dxU(x, τ)V (x, τ)Dmn(x, τ)P (x, τ) +

∫ t

0

dτ

∫ t

0

dτ ′
∫

dx

∫
dy×

U(x, τ)V (y, τ ′)
[
1τ<τ ′ ĵ

‡
m(x, τ )̂jn(y, τ ′) + 1τ>τ ′ ĵm(x, τ )̂j‡n(y, τ ′)

]
P (y, τ ′;x, τ). (22)

From the derivation one sees that the first term is the τ = τ ′-contribution (see also
[35]). This is the natural generalization of the results in Eqs. (14) and (18), with
the interpretation of non-trivial displacements (and thus ĵ‡ instead of ĵ) for currents
evaluated at earlier times (see above and [34, 35]). As before, for time-homogeneous
dynamics ĵ(x, τ) simplifies to ĵ(x) and in the special case of steady-state dynamics (see
Eq. (4)) with steady-state initial conditions, ĵ‡(x, τ) simplifies to ĵ‡(x). This special
case was discussed and explained using generalized time-reversal symmetry in [34,35].

5. Example

To present a concrete minimal example, we consider a two-dimensional harmonically
confined overdamped diffusion in a rotational flow (i.e. an irreversible Ornstein-
Uhlenbeck process)

dxt = −

[
1 −Ω

Ω 1

]
xdt+

√
2dWt. (23)

Assuming that the initial density P (x, τ = 0) is Gaussian, the solution P (x, τ) of the
Fokker-Planck equation corresponding to Eq. (23) is well known to be a Gaussian density
for all τ ≥ 0 (see e.g. [57]). We choose U to be a two-dimensional Gaussian centered at
z with width h, i.e.

Uz(x) =
1

2πh2
exp

[
−(x− z)2

2h2

]
. (24)

Due to the Gaussianity of P (x, τ) and Uz(x), all spatial integrals entering the results
Eqs. (14), (18) and (22) can be performed analytically, e.g. using the computer algebra
system SymPy [60] (as outlined in the Supplemental Material of [34]). The two remaining
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time-integrals are computed numerically. For simplicity we only consider the (non-
steady-state) initial condition in a point, i.e. P (x, τ = 0) = δ(x − x0). For this initial
condition, via a left-right decomposition for the process Eq. (23) (see e.g. [56]) or by
solving the Lyapunov equation, we have the time-dependent density

P (x, τ) =
1

2π(1− e−2τ )
exp


−

(
x− e−τ

[
cos(Ωτ) sin(Ωτ)

− sin(Ωτ) cos(Ωτ)

]
x0

)2

2(1− e−2τ )

 , (25)

i.e. the mean value 〈xτ 〉 = e−τ

[
cos(Ωτ) sin(Ωτ)

− sin(Ωτ) cos(Ωτ)

]
x0 moves on a spiral shape towards

the center. The case Ω = 0 corresponds to the equilibrium process, i.e. harmonically
confined overdamped diffusion without rotational flow.

For this example, we compute the density-current correlation vector as in Eq. (18),

Cjρ(z, t;x0) ≡
〈
JUz
t ρ

Uz
t

〉
x0
−
〈
JUz
t

〉
x0

〈
ρUz
t

〉
x0

= t−2
∫ t

0

dτ

∫ t

0

dτ ′
∫

dx

∫
dy×

Uz(x)Uz(y)
[
1τ>τ ′ ĵ(x) + 1τ<τ ′ ĵ

‡(x, τ)
]

[P (y, τ ′;x, τ)− P (x, τ)P (y, τ ′)] . (26)

with Gaussian Uz as in Eq. (24). In Fig. 1 we show the time evolution and spatial
dependence of this correlation vector. For long times without driving Ω = 0, we see that
tCjρ(z, t;x0)→ 0. This corresponds to the limit when the initial condition is forgotten,
i.e. for long times Cjρ(z, t;x0) approaches the result of Cjρ(z, t) for steady-state initial
conditions where in equilibrium (Ω = 0) we have P (y, τ ′;x, τ) = P (x, τ ′;y, τ) (time-
reversal symmetry) and ĵ‡(x) = −ĵ(x) [35], implying Cjρ(z, t) = 0 at all z. In the case
Ω 6= 0, the correlation tCjρ(z, t;x0) becomes constant for long times, where Cjρ ∝ t−1

represents the large-deviation limit of the correlation result, which agrees with the large-
deviation limit for the process starting in steady-state initial conditions [35]. This has
a spatial dependence similar to the steady-state current js(z) but averaged over the
Gaussian Uz. By comparison with the color gradient we see in all panels in Fig. 1, as
expected, that large values of the correlation can only occur at points that are visited
for a significant amount of time, i.e. with not too small

〈
ρUz
t

〉
.

In addition to the qualitative behavior shown in Fig. 1, we present a quantitative
evaluation of the correlation result multiplied by time, tCjρ(z, t;x0), for a single z in
Fig. 2. Simulations shown in Fig. 2 confirm the theoretical result in Eq. (18) (re-stated
in Eq. (26)). As mentioned above this result approaches the large-deviation limit for
long times. Moreover, for long times the initial condition will become irrelevant, i.e.
tCjρ(z, t;x0) approaches the result for tCjρ(z, t) for steady-state initial conditions [35].
First note that, due to the time-integration, deviations for short times are only slowly
’forgotten’ with order t−1 (instead of exponentially fast with some Poincaré time scale).
Interestingly, we see in Fig. 2a that for substantial coarse-graining (i.e. rather large
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Figure 1. White arrows depict the correlation result multiplied by time, tCjρ(z, t;x0)

as in Eq. (18) with x0 = (1, 1)T for the process in Eq. (23) with Ω = 0 in (a-d),
Ω = 5 in (e-h), and Uz as in Eq. (24). The position z = (z1, z2)T around which the
correlation is evaluated varies along the respective axes. The color gradient depicts
the mean time-averaged density

〈
ρUz
t

〉
, i.e. the time spent around z weighted by Uz.

Time increases from left (a,e) to right (d,h), t = 0.3, 0.7, 2, 5

h = 0.5 in Uz in Eq. (24)), the result for tCjρ(z, t;x0) starting in a point only approaches
the corresponding value for steady-state initial condition (green curve) in the large
deviation regime (black line), but not before. Going to smaller coarse graining h = 0.15

in Fig. 2b, we see that the process starting in the center x0 = (0, 0)T (blue line) features
the arguably more intuitive behavior, by first approaching the steady-state (green line)
and later the large deviation result (black line). However, for a different initial condition
(see orange line) the steady state curve is again only approached in the large deviation
limit. This highlights the long-lasting and non-trivial effects of the time-integration and
underscores why interpreting time-average observables, in particular those involving
currents, remains challenging.

6. Conclusion

To summarize, we presented a new Lemma (12) that enabled us to derive results
Eqs. (14), (18) and (22) for correlations and fluctuations of the time-averaged density
and current Eq. (5) for general Langevin dynamics defined in Eq. (1) with general initial
conditions. This generalization of the recent results derived for non-equilibrium steady
states [34,35] may improve the understanding of inference of densities and currents with
the estimators ρVt and JUt (in particular in connection with the notion of coarse graining
[34, 35]) in cases where the dynamics does not evolve from the steady-state, or is not
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Figure 2. Quantitative depiction of the time-dependence of the x-component of
the current-density correlation tCjρ(z, t;x0)x with z = (0,−0.2)T for the process in
Eq. (23) with Ω = 3 and Uz as in Eq. (24) with (a) h = 0.5 and (b) h = 0.15 for different
initial conditions (colors). The new analytical result (blue and orange lines; Eq. (18))
is confirmed by simulations (crosses; for each t, (a) 105 and (b) 106 trajectories with
103 time-steps each were simulated according to the stochastic Euler algorithm). For
t→∞, irrespective of the initial condition, all result approach the same large-deviation
limit.

time-homogeneous. Importantly, the strategy of inferring dissipation from the current
variance (see Eq. (22)) via the thermodynamic uncertainty relation (TUR) [41–44]
remains valid. Generalized versions of the TUR, e.g. for general initial conditions [45] or
time-dependent dynamics [10], already exist. A recently improved version of the TUR
that includes current-density correlations (see Eq. (18)) is, however, so far only available
for steady-state systems with steady-state initial conditions [15]. Notably, as we will
show in a forthcoming publication, Lemma (12) allows the correlation-TUR to also be
proved for transient dynamics.
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